(完整版)高考中的数列问题
高考数学专题03数列求和问题(第二篇)(解析版)

⾼考数学专题03数列求和问题(第⼆篇)(解析版)备战2020年⾼考数学⼤题精做之解答题题型全覆盖⾼端精品第⼆篇数列与不等式【解析版】专题03 数列求和问题【典例1】【福建省福州市2019-2020学年⾼三上学期期末质量检测】等差数列{}n a 的公差为2, 248,,a a a 分别等于等⽐数列{}n b 的第2项,第3项,第4项. (1)求数列{}n a 和{}n b 的通项公式;(2)若数列{}n c 满⾜12112n n nc c c b a a a ++++=L ,求数列{}n c 的前2020项的和.【思路引导】(1)根据题意同时利⽤等差、等⽐数列的通项公式即可求得数列{}n a 和{}n b 的通项公式; (2)求出数列{}n c 的通项公式,再利⽤错位相减法即可求得数列{}n c 的前2020项的和.解:(1)依题意得: 2324b b b =,所以2111(6)(2)(14)a a a +=++ ,所以22111112361628,a a a a ++=++解得1 2.a = 2.n a n ∴= 设等⽐数列{}n b 的公⽐为q ,所以342282,4b a q b a ==== ⼜2224,422.n n n b a b -==∴=?= (2)由(1)知,2,2.n n n a n b ==因为11121212n n n n nc c c c a a a a +--++++= ①当2n ≥时,1121212n n n c c c a a a --+++= ②由①-②得,2n n nc a =,即12n n c n +=?,⼜当1n =时,31122c a b ==不满⾜上式,18,12,2n n n c n n +=?∴=?≥ .数列{}n c 的前2020项的和34202120208223220202S =+?+?++?2342021412223220202=+?+?+?++?设2342020202120201222322019220202T =?+?+?++?+? ③,则34520212022202021222322019220202T =?+?+?++?+? ④,由③-④得:234202120222020222220202T -=++++-?2202020222(12)2020212-=-?-2022420192=--? ,所以20222020201924T =?+,所以2020S =202220204201928T +=?+.【典例2】【河南省三门峡市2019-2020学年⾼三上学期期末】已知数列{}n a 的前n 项和为n S ,且满⾜221n S n n =-+,数列{}n b 中,2+,对任意正整数2n ≥,113nn n b b -??+=.(1)求数列{}n a 的通项公式;(2)是否存在实数µ,使得数列{}3nn b µ+是等⽐数列?若存在,请求出实数µ及公⽐q 的值,若不存在,请说明理由;(3)求数列{}n b 前n 项和n T . 【思路引导】(1)根据n S 与n a 的关系1112n nn S n a S S n -=?=?-≥?即可求出;(2)假设存在实数µ,利⽤等⽐数列的定义列式,与题⽬条件1331n n n n b b -?+?=,⽐较对应项系数即可求出µ,即说明存在这样的实数;(3)由(2)可以求出1111(1)4312nn n b -??=?+?- ,所以根据分组求和法和分类讨论法即可求出.解:(1)因为221n S n n =-+,当1n =时,110a S ==;当2n ≥时,22121(1)2(1)123n n n a S S n n n n n -=-=-+-----=-.故*0,1 23,2,n n a n n n N =?=?-∈?…;(2)假设存在实数µ,使得数列{}3xn b µ?+是等⽐数列,数列{}n b 中,2133a b a =+,对任意正整数2n (113)n n b b -??+=.可得116b =,且1331n nn n b b -?+?=,由假设可得(n n n b b µµ--?+=-?+,即1334n n n n b b µ-?+?=-,则41µ-=,可得14µ=-,可得存在实数14µ=-,使得数列{}3nn b µ?+是公⽐3q =-的等⽐数列;(3)由(2)可得11111133(3)(3)444nn n n b b ---=-?-=?- ,则1111(1)4312nn n b -??=?+?- ,则前n 项和11111111(1)123643121212nn n T -=++?+?+-+?+?-?? ? ????????? 当n 为偶数时,111111*********n n n T ??- =+=- ???- 当n 为奇数时,11111115112311128312248313n n n nT ??- =+=-+=- ????- 则51,21248311,2883nn n n k T n k ?-=-=??-=(*k N ∈).【典例3】【福建省南平市2019-2020学年⾼三上学期第⼀次综合质量检查】已知等⽐数列{}n a 的前n 项和为n S ,且( )*21,nn S a a n =?-∈∈R N.(1)求数列{}n a 的通项公式;(2)设11n n n n a b S S ++=,求数列{}n b 的前n 项和n T .【思路引导】(1)利⽤临差法得到12n n a a -=?,再根据11a S =求得1a =,从⽽求得数列通项公式;(2)由题意得1112121n n n b +=---,再利⽤裂项相消法求和. 解:(1)当1n =时,1121a S a ==-.当2n ≥时,112n n n n a S S a --=-=?()*,因为{}n a 是等⽐数列,所以121a a =-满⾜()*式,所以21a a -=,即1a =,因此等⽐数列{}n a 的⾸项为1,公⽐为2,所以等⽐数列{}n a 的通项公式12n n a -=.(2)由(1)知21nn S =-,则11n n n n a b S S ++=,即()()1121121212121n n n n n n b ++==-----,所以121111111113377152121n n n n T b b b +?=++???+=-+-+-+???+- ? ? ? ?--?,所以11121n n T +=--.【典例4】【⼭东省⽇照市2019-2020学年上学期期末】已知数列{}n a 的⾸项为2,n S 为其前n 项和,且()120,*n n S qS q n +=+>∈N (1)若4a ,5a ,45a a +成等差数列,求数列{}n a 的通项公式;(2)设双曲线2221ny x a -=的离⼼率为n e ,且23e =,求222212323n e e e ne ++++L .【思路引导】(1)先由递推式()120,*n n S qS q n +=+>∈N 求得数列{}n a 是⾸项为2,公⽐为q 的等⽐数列,然后结合已知条件求数列通项即可;(2)由双曲线的离⼼率为求出公⽐q ,再结合分组求和及错位相减法求和即可得解. 解:解:(1)由已知,12n n S qS +=+,则212n n S qS ++=+,两式相减得到21n n a qa ++=,1n ≥.⼜由212S qS =+得到21a qa =,故1n n a qa +=对所有1n ≥都成⽴.所以,数列{}n a 是⾸项为2,公⽐为q 的等⽐数列. 由4a ,5a ,45+a a 成等差数列,可得54452=a a a a ++,所以54=2,a a 故=2q .所以*2()n n a n N =∈.(2)由(1)可知,12n n a q-=,所以双曲线2的离⼼率n e ==由23e ==,得q =.所以()()()()2122222123231421414n n e e e n e q n q -++++?=++++++ ()()()21214122n n n q nq -+=++++,记()212123n n T q q nq -=++++①()()2122221n n n q T q q n qnq -=+++-+②①-②得()()221222221111n n nnq q ---=++++-=-- 所以()()()()222222222211122121(1)111nn n n n n n n q nq q nq T n n q q q q --=-=-=-+?=-+----. 所以()()222212121242n n n n e e n e n +++++?=-++. 【典例5】已知数列{}n a 的各项均为正数,对任意*n ∈N ,它的前n 项和n S 满⾜()()1126n n n S a a =++,并且2a ,4a ,9a 成等⽐数列. (1)求数列{}n a 的通项公式;(2)设()111n n n n b a a ++=-,n T 为数列{}n b 的前n 项和,求2n T .【思路引导】(1)根据n a 与n S 的关系,利⽤临差法得到13n n a a --=,知公差为3;再由1n =代⼊递推关系求1a ;(2)观察数列{}n b 的通项公式,相邻两项的和有规律,故采⽤并项求和法,求其前2n 项和. 解:(1)Q 对任意*n ∈N ,有() ()1126n n n S a a =++,①∴当1a =时,有()()11111126S a a a ==++,解得11a =或2. 当2n ≥时,有()()1111126n n n S a a ---=++.②①-②并整理得()()1130n n n n a a a a --+--=. ⽽数列{}n a 的各项均为正数,13n n a a -∴-=.当11a =时,()13132n a n n =+-=-,此时2429a a a =成⽴;当12a =时,()23131n a n n =+-=-,此时2429a a a =,不成⽴,舍去.32n a n ∴=-,*n ∈N .(2)2122n n T b b b =+++=L 12233445221n n a a a a a a a a a a +-+-+-L()()()21343522121n n n a a a a a a a a a -+=-+-++-L242666n a a a =----L ()2426n a a a =-+++L246261862n n n n +-=-?=--.【典例6】【2020届湖南省益阳市⾼三上学期期末】已知数列{}n a 的前n 项和为112a =,()1122n n n S a ++=-. (1)求2a 及数列{}n a 的通项公式;(2)若()1122log n n b a a a =L ,11n n nc a b =+,求数列{}n c 的前n 项和n T . 【思路引导】(1)利⽤临差法将递推关系转化成2112n n a a ++=,同时验证2112a a =,从⽽证明数列{}n a 为等⽐数列,再利⽤通项公式求得n a ;(2)利⽤对数运算法则得11221nn c n n ??=+- ?+??,再⽤等⽐数列求和及裂项相消法求和,可求得n T 。
2024年高考数学专项复习数列中的奇偶项问题(微专题)(解析版)

数列中的奇偶项问题(微专题)题型选讲题型一、分段函数的奇偶项求和1(深圳市罗湖区期末试题)已知数列a n中,a1=2,na n+1-n+1a n=1n∈N*.(1)求数列a n的通项公式;(2)设b n=a n+1,n为奇数,2a n+1,n为偶数,求数列bn的前100项和.1(2023·黑龙江大庆·统考三模)已知数列a n满足a1+3a2+⋯+2n-1a n=n.(1)证明:1a n是一个等差数列;(2)已知c n=119a n,n为奇数a n a n+2,n为偶数,求数列c n 的前2n项和S2n.2024年高考数学专项复习数列中的奇偶项问题(微专题)(解析版)2(2023·吉林·统考三模)已知数列a n满足a n=2n-2,n为奇数3n-2,n为偶数an的前n项和为S n.(1)求a1,a2,并判断1024是数列中的第几项;(2)求S2n-1.3(2023·安徽蚌埠·统考三模)已知数列a n满足a1=1,a2n+1=a2n+1,a2n=2a2n-1.(1)求数列a n的通项公式;(2)设T n=1a1+1a2+⋯+1a n,求证:T2n<3.4(2023·湖南邵阳·统考三模)记S n 为等差数列{a n }的前n 项和,已知a 3=5,S 9=81,数列{b n }满足a 1b 1+a 2b 2+a 3b 3+⋯+a n b n =n -1 ⋅3n +1+3.(1)求数列{a n }与数列{b n }的通项公式;(2)数列{c n }满足c n =b n ,n 为奇数1a n a n +2,n 为偶数,n 为偶数,求{c n }前2n 项和T 2n .5(2023·湖南岳阳·统考三模)已知等比数列a n 的前n 项和为S n ,其公比q ≠-1,a 4+a 5a 7+a 8=127,且S 4=a 3+93.(1)求数列a n 的通项公式;(2)已知b n =log 13a n ,n 为奇数a n,n 为偶数,求数列b n 的前n 项和T n .2【2020年新课标1卷文科】数列{a n}满足a n+2+(-1)n a n=3n-1,前16项和为540,则a1=1(2021·山东济宁市·高三二模)已知数列{a n}是正项等比数列,满足a3是2a1、3a2的等差中项,a4=16.(1)求数列{a n}的通项公式;log,求数列{b n}的前n项和T n.(2)若b n=-1n⋅2a2n+12【2022·广东省深圳市福田中学10月月考】已知等差数列{a n}前n项和为S n,a5=9,S5=25.(1)求数列{a n}的通项公式及前n项和S n;(2)设b n=(-1)n S n,求{b n}前n项和T n.n n+13(2023·广东深圳·统考一模)记S n,为数列a n的前n项和,已知S n=a n2+n2+1,n∈N*.(1)求a1+a2,并证明a n+a n+1是等差数列;(2)求S n.1(2022·湖北省鄂州高中高三期末)已知数列a n满足a1=1,a n+a n+1=2n;数列b n前n项和为S n,且b1=1,2S n=b n+1-1.(1)求数列a n和数列b n的通项公式;(2)设c n=a n⋅b n,求c n前2n项和T2n.2(2022·湖北省鄂州高中高三期末)已知数列a n前n项和满足a1=1,a n+a n+1=2n;数列b n为S n,且b1=1,2S n=b n+1-1.(1)求数列a n的通项公式;和数列b n(2)设c n=a n⋅b n,求c n前2n项和T2n.数列中的奇偶项问题(微专题)题型选讲题型一、分段函数的奇偶项求和1(深圳市罗湖区期末试题)已知数列a n中,a1=2,na n+1-n+1a n=1n∈N*.(1)求数列a n的通项公式;(2)设b n=a n+1,n为奇数,2a n+1,n为偶数,求数列bn的前100项和.【解析】【小问1详解】∵na n+1-n+1a n=1,∴a n+1n+1-a nn=1n-1n+1,a n+1+1n+1=a n+1n,所以a n+1n是常数列,即a n+1n=a1+11=3,∴a n=3n-1;【小问2详解】由(1)知,a n是首项为2,公差为3等差数列,由题意得b2n-1=a2n-1=6n-4,b2n=2a2n+1=12n+4,设数列b2n-1,b2n的前50项和分别为T1,T2,所以T1=50b1+b992=25×298=7450,T2=50×b2+b1002=25×620=15500,所以b n的前100项和为T1+T2=7450+15500=22950;综上,a n=3n-1,b n的前100项和为T1+T2=7450+15500=22950.1(2023·黑龙江大庆·统考三模)已知数列a n满足a1+3a2+⋯+2n-1a n=n.(1)证明:1a n是一个等差数列;(2)已知c n=119a n,n为奇数a n a n+2,n为偶数,求数列c n 的前2n项和S2n.【答案】(1)证明见详解(2)S2n=2n-1n19+n34n+3【详解】(1)当n=1时,可得a1=1,当n≥2时,由a1+3a2+⋯+2n-1a n=n,则a1+3a2+⋯+2n-3a n-1=n-1n≥2,上述两式作差可得a n=12n-1n≥2,因为a1=1满足a n=12n-1,所以a n的通项公式为a n=12n-1,所以1a n=2n-1,因为1a n-1a n-1=2n-1-2n-3=2(常数),所以1a n是一个等差数列.(2)c n=2n-119,n为奇数12n-12n+3,n为偶数 ,所以C1+C3+⋯C2n-1=1+5+9+⋯4n-319=2n-1n19,C2+C4+⋯C2n=1413-17+17-111+⋯+14n-1-14n+3=n34n+3所以数列c n的前2n项和S2n=2n-1n19+n34n+3.2(2023·吉林·统考三模)已知数列a n满足a n=2n-2,n为奇数3n-2,n为偶数an的前n项和为S n.(1)求a1,a2,并判断1024是数列中的第几项;(2)求S2n-1.【答案】(1)a1=12,a2=4;1024是数列a n的第342项(2)S2n-1=4n6+3n2-5n+116【详解】(1)由a n=2n-2,n为奇数3n-2,n为偶数可得a1=12,a2=4.令2n-2=1024=210,解得:n=12为偶数,不符合题意,舍去;令3n-2=1024,解得:n=342,符合题意.因此,1024是数列a n的第342项.(2)S2n-1=a1+a2+a3+a4+⋅⋅⋅+a2n-2+a2n-1=12+4+2+10+⋅⋅⋅+6n-8+22n-3=12+2+⋅⋅⋅+22n-3+4+10+⋅⋅⋅+6n-8=121-4n1-4+n-14+6n-82=164n-1+n-13n-2=4n6+3n2-5n+116.另解:由题意得a2n-1=22n-3,又a2n+1a2n-1=4,所以数列a2n-1是以12为首项,4为公比的等比数列.a2n=6n-2,又a2n+2-a2n=6,所以数列a2n是以4为首项,6为公差的等差数列.S2n-1为数列a2n-1的前n项和与数列a2n的前n-1项和的总和.故S2n-1=121-4n1-4+n-14+6n-82=164n-1+n-13n-2=4n6+3n2-5n+116.3(2023·安徽蚌埠·统考三模)已知数列a n满足a1=1,a2n+1=a2n+1,a2n=2a2n-1.(1)求数列a n的通项公式;(2)设T n=1a1+1a2+⋯+1a n,求证:T2n<3.【答案】(1)a n=2n+12-1,n为奇数, 2n2+1-2,n为偶数.(2)证明见解析.【详解】(1)由题意a2n+1=a2n+1=2a2n-1+1,所以a2n+1+1=2a2n-1+1,因为a1+1=2≠0,所以数列a2n-1+1是首项为2,公比为2的等比数列,所以a2n-1+1=2n,即a2n-1=2n-1,而a2n=2a2n-1=2n+1-2,所以a n=2n+12-1,n为奇数, 2n2+1-2,n为偶数.(2)方法一:由(1)得T2n=ni=11a2i-1+1a2i=32ni=112i-1=32ni=12i+1-12i-12i+1-1<32ni=12i+12i-12i+1-1=3ni=12i2i-12i+1-1=3ni=112i-1-12i+1-1=31-12n+1-1<3方法二:因为2n-1≥2n-1n∈N*,所以T2n=∑ni=11a2i-1+1a2i=32∑n i=112i-1≤32∑n i=112i-1=31-12n<34(2023·湖南邵阳·统考三模)记S n为等差数列{a n}的前n项和,已知a3=5,S9=81,数列{b n}满足a 1b 1+a 2b 2+a 3b 3+⋯+a n b n =n -1 ⋅3n +1+3.(1)求数列{a n }与数列{b n }的通项公式;(2)数列{c n }满足c n =b n ,n 为奇数1a n an +2,n 为偶数,n 为偶数,求{c n }前2n 项和T 2n .【答案】(1)a n =2n -1,b n =3n (2)T 2n =3⋅9n 8-116n +12-724【详解】(1)设等差数列{a n }的公差为d ,∵a 3=5S 9=81 ,即a 1+2d =59a 1+9×82d =81 ,∴a 1=1,d =2,∴a n =2n -1.∵a 1b 1+a 2b 2+a 3b 3+⋯+a n b n =n -1 ⋅3n +1+3,①∴a 1b 1+a 2b 2+⋯+a n -1b n -1=n -2 ⋅3n +3n ≥2 ,②所以①-②得,a n b n =2n -1 ⋅3n ,∴b n =3n n ≥2 .当n =1时,a 1b 1=3,b 1=3,符合b n =3n .∴b n =3n .(2)T 2n =c 1+c 2+c 3+⋯+c 2n ,依题有:T 2n =b 1+b 3+⋯+b 2n -1 +1a 2a 4+1a 4a 6+⋯+1a 2n a 2n +2.记T 奇=b 1+b 3+⋯+b 2n -1,则T 奇=3(1-32n )1-32=32n +1-38.记T 偶=1a 2a 4+1a 4a 6+⋯+1a 2n a 2n +2,则T 偶=12d 1a 2-1a 4 +1a 4-1a 6 +⋯+1a 2n -1a 2n +2=12d 1a 2-1a 2n +2=1413-14n +3 .所以T 2n =32n +1-38+1413-14n +3 =3⋅9n 8-116n +12-7245(2023·湖南岳阳·统考三模)已知等比数列a n 的前n 项和为S n ,其公比q ≠-1,a 4+a 5a 7+a 8=127,且S 4=a 3+93.(1)求数列a n 的通项公式;(2)已知b n =log 13a n ,n 为奇数a n,n 为偶数,求数列b n 的前n 项和T n .【答案】(1)a n =3n (2)T n =18×3n +1-98-n +1 24,n 为奇数983n -1-n 24,n 为偶数【详解】(1)因为a n 是等比数列,公比为q ≠-1,则a 4=a 1q 3,a 5=a 1q 4,a 7=a 1q 6,a 8=a 1q 7,所以a 4+a 5a 7+a 8=a 1q 3+a 1q 4a 1q 6+a 1q 7=1q 3=127,解得q =3,由S 4=a 3+93,可得a 11-34 1-3=9a 1+93,解得a 1=3,所以数列a n 的通项公式为a n =3n .(2)由(1)得b n =-n ,n 为奇数3n ,n 为偶数,当n 为偶数时,T n =b 1+b 2+⋅⋅⋅+b n =b 1+b 3+⋅⋅⋅+b n -1 +b 2+b 4+⋅⋅⋅+b n =-1+3+⋅⋅⋅+n -1 +32+34+⋅⋅⋅+3n=-n2⋅1+n -12×+91-9n 21-9=983n -1 -n 24;当n 为奇数时T n =T n +1-b n +1=983n +1-1 -n +1 24-3n +1=18×3n +1-98-n +1 24;综上所述:T n =18×3n +1-98-n +1 24,n 为奇数983n -1-n 24,n 为偶数.题型二、含有(-1)n 类型2【2020年新课标1卷文科】数列{a n }满足a n +2+(-1)n a n =3n -1,前16项和为540,则a 1=【答案】7【解析】a n +2+(-1)n a n =3n -1,当n 为奇数时,a n +2=a n +3n -1;当n 为偶数时,a n +2+a n =3n -1.设数列a n 的前n 项和为S n ,S 16=a 1+a 2+a 3+a 4+⋯+a 16=a 1+a 3+a 5⋯+a 15+(a 2+a 4)+⋯(a 14+a 16)=a 1+(a 1+2)+(a 1+10)+(a 1+24)+(a 1+44)+(a 1+70)+(a 1+102)+(a 1+140)+(5+17+29+41)=8a 1+392+92=8a 1+484=540,∴a 1=7.故答案为:7.1(2021·山东济宁市·高三二模)已知数列{a n }是正项等比数列,满足a 3是2a 1、3a 2的等差中项,a 4=16.(1)求数列{a n }的通项公式;(2)若b n =-1 n ⋅2a 2n +1log ,求数列{b n }的前n 项和T n .【解析】(1)设等比数列{a n }的公比为q ,因为a 3是2a 1、3a 2的等差中项,所以2a 3=2a 1+3a 2,即2a 1q 2=2a 1+3a 1q ,因为a 1≠0,所以2q 2-3q -2=0,解得q =2或q =-12,因为数列{a n }是正项等比数列,所以q =2.因为a 4=16,即a 4=a 1q 3=8a 1=16,解得a 1=2,所以a n =2×2n -1=2n ;(2)解法一:(分奇偶、并项求和)由(1)可知,a 2n +1=22n +1,所以,b n =-1 n ⋅2a 2n +1log =-1 n ⋅222n +1log =-1 n ⋅2n +1 ,①若n 为偶数,T n =-3+5-7+9-⋯-2n -1 +2n +1 =-3+5 +-7+9 +⋯+-2n -1 +2n +1 =2×n2=n ;②若n 为奇数,当n ≥3时,T n =T n -1+b n =n -1-2n +1 =-n -2,当n =1时,T 1=-3适合上式,综上得T n =n ,n 为偶数-n -2,n 为奇数(或T n =n +1 -1 n -1,n ∈N *);解法二:(错位相减法)由(1)可知,a 2n +1=22n +1,所以,b n =-1 n ⋅2a 2n +1log =-1 n ⋅222n +1log =-1 n ⋅2n +1 ,T n =-1 1×3+-1 2×5+-1 3×7+⋯+-1 n ⋅2n +1 ,所以-T n =-1 2×3+-1 3×5+-1 4×7+⋯+-1 n +1⋅2n +1 所以2T n =3+2[-1 2+-1 3+⋯+-1 n ]--1 n +12n +1 ,=-3+2×1--1 n -12+-1 n 2n +1 =-3+1--1 n -1+-1 n 2n +1=-2+2n +2 -1 n ,所以T n=n+1-1n-1,n∈N*2【2022·广东省深圳市福田中学10月月考】已知等差数列{a n}前n项和为S n,a5=9,S5=25.(1)求数列{a n}的通项公式及前n项和S n;(2)设b n=(-1)n S n,求{b n}前n项和T n.【答案】(1)a n=2n-1,S n=n2;(2)T n=(-1)n n(n+1)2.【解析】【分析】(1)利用等差数列的基本量,列方程即可求得首项和公差,再利用公式求通项公式和前n项和即可;(2)根据(1)中所求即可求得b n,对n分类讨论,结合等差数列的前n项和公式,即可容易求得结果.【详解】(1)由S5=5(a1+a5)2=5×2a32=5a3=25得a3=5.又因为a5=9,所以d=a5-a32=2,则a3=a1+2d=a1+4=5,解得a1=1;故a n=2n-1,S n=n(1+2n-1)2=n2.(2)b n=(-1)n n2.当n为偶数时:T n=b1+b2+b3+b4+⋯+b n-1+b n=-12+22+-32+42+⋯+-(n-1)2+n2=(2-1)×(2+1)+(4-3)×(4+3)+⋯+[n-(n-1)]×[n+(n-1)] =1+2+3+⋯+(n-1)+n=n(n+1)2.当n为奇数时:T n=b1+b2+b3+b4+⋯+b n-2+b n-1+b n=-12+22+-32+42+-(n-2)2+(n-1)2-n2=(2-1)×(2+1)+(4-3)×(4+3)+⋯+[(n-1)-(n-2)]×[(n-1)+(n-2)]-n2 =1+2+3+⋯+(n-2)+(n-1)-n2=(n-1)(1+n-1)2-n2=-n(n+1)2.综上得T n=(-1)n n(n+1)2题型三、a n+a n+1类型3(2023·广东深圳·统考一模)记S n,为数列a n的前n项和,已知S n=a n2+n2+1,n∈N*.(1)求a1+a2,并证明a n+a n+1是等差数列;(2)求S n.【解析】(1)已知S n=a n2+n2+1,n∈N*当n=1时,a1=a12+2,a1=4;当n=2时,a1+a2=a22+5,a2=2,所以a1+a2=6.因为S n=a n2+n2+1①,所以S n+1=a n+12+n+12+1②.②-①得,a n+1=a n+12-a n2+n+12-n2,整理得a n+a n+1=4n+2,n∈N*,所以a n+1+a n+2-a n+a n+1=4n+1+2-4n+2=4(常数),n∈N*,所以a n+a n+1是首项为6,公差为4的等差数列.(2)由(1)知,a n-1+a n=4n-1+2=4n-2,n∈N*,n≥2.当n为偶数时,S n=a1+a2+a3+a4+⋯+a n-1+a n=n26+4n-22=n2+n;当n为奇数时,S n=a1+a2+a3+a4+a5+⋯+a n-1+a n=4+n-1210+4n-22=n2+n+2.综上所述,S n=n2+n,当n为偶数时n2+n+2,当n为奇数时1(2022·湖北省鄂州高中高三期末)已知数列a n满足a1=1,a n+a n+1=2n;数列b n前n项和为S n,且b1=1,2S n=b n+1-1.(1)求数列a n和数列b n的通项公式;(2)设c n=a n⋅b n,求c n前2n项和T2n.【答案】(1)a n=n,n=2k-1,k∈Zn-1,n=2k,k∈Z,bn=3n-1;(2)58n-59n8.【分析】(1)根据递推公式,结合等差数列的定义、等比数列的定义进行求解即可;(2)利用错位相减法进行求解即可.(1)n ≥2,a n -1+a n =2n -1 ,∴a n +1-a n -1=2,又a 1=1,a 2=1,n =2k -1(k 为正整数)时,a 2k -1 是首项为1,公差为2的等差数列,∴a 2k -1=2k -1,a n =n ,n =2k (k 为正整数)时,a 2k 是首项为1,公差为2的等差数列.∴a 2k =2k -1,∴a n =n -1,∴a n =n ,n =2k -1,k ∈Zn -1,n =2k ,k ∈Z,∵2S n =b n +1-1,∴n ≥2时,2S n -1=b n -1,∴2b n =b n +1-b n ,又b 2=3,∴n ≥2时,b n =3n -1,b 1=1=30,∴b n =3n -1;(2)由(1)得c n =n 3n -1,n =2k -1,k ∈Zn -1 3n -1,n =2k ,k ∈Z ,T 2n =1×30+3×32+5×34+⋅⋅⋅+2n -1 ⋅32n -2 +1×31+3×33+5×35+⋅⋅⋅+2n -1 ⋅32n -1 =41×30+3×32+5×34+⋅⋅⋅2n -1 ⋅32n -2 设K n =1×30+3×32+5×34+⋅⋅⋅2n -1 ⋅32n -2 ①则9K n =1×32+3×34+5×36+⋅⋅⋅+2n -1 ⋅32n ②①-②得-8K n =1+232+34+⋅⋅⋅+32n -2-2n -1 ⋅32n=5+8n -5 9n-4,K n =5+8n -5 9n 32,∴T 2n =58n -5 9n82(2022·湖北省鄂州高中高三期末)已知数列a n 满足a 1=1,a n +a n +1=2n ;数列b n 前n 项和为S n ,且b 1=1,2S n =b n +1-1.(1)求数列a n 和数列b n 的通项公式;(2)设c n =a n ⋅b n ,求c n 前2n 项和T 2n .【答案】(1)a n =n ,n =2k -1,k ∈Zn -1,n =2k ,k ∈Z,b n =3n -1;(2)58n -5 9n8.【解析】(1)根据递推公式,结合等差数列的定义、等比数列的定义进行求解即可;(2)利用错位相减法进行求解即可.(1)n ≥2,a n -1+a n =2n -1 ,∴a n +1-a n -1=2,又a 1=1,a 2=1,n =2k -1(k 为正整数)时,a 2k -1 是首项为1,公差为2的等差数列,∴a 2k -1=2k -1,a n =n ,n =2k (k 为正整数)时,a 2k 是首项为1,公差为2的等差数列.∴a 2k =2k -1,∴a n =n -1,∴a n =n ,n =2k -1,k ∈Zn -1,n =2k ,k ∈Z,∵2S n =b n +1-1,∴n ≥2时,2S n -1=b n -1,∴2b n =b n +1-b n ,又b 2=3,∴n ≥2时,b n =3n -1,b 1=1=30,∴b n =3n -1;(2)由(1)得c n =n 3n -1,n =2k -1,k ∈Zn -1 3n -1,n =2k ,k ∈Z ,T 2n =1×30+3×32+5×34+⋅⋅⋅+2n -1 ⋅32n -2 +1×31+3×33+5×35+⋅⋅⋅+2n -1 ⋅32n -1 =41×30+3×32+5×34+⋅⋅⋅2n -1 ⋅32n -2 设K n =1×30+3×32+5×34+⋅⋅⋅2n -1 ⋅32n -2 ①则9K n =1×32+3×34+5×36+⋅⋅⋅+2n -1 ⋅32n ②①-②得-8K n =1+232+34+⋅⋅⋅+32n -2-2n -1 ⋅32n=5+8n -5 9n-4,K n =5+8n -5 9n 32,∴T 2n =58n -5 9n8。
高考数学压轴专题专题备战高考《数列》全集汇编含答案解析

【高中数学】数学高考《数列》试题含答案一、选择题1.在正整数数列中,由1开始依次按如下规则,将某些数取出.先取1;再取1后面两个偶数2,4;再取4后面最邻近的3个连续奇数5,7,9;再取9后面的最邻近的4个连续偶数10,12,14,16;再取此后最邻近的5个连续奇数17,19,21,23,25.按此规则一直取下去,得到一个新数列1,2,4,5,7,9,10,12,14,16,17,…,则在这个新数列中,由1开始的第2 019个数是( ) A .3 971 B .3 972C .3 973D .3 974【答案】D 【解析】 【分析】先对数据进行处理能力再归纳推理出第n 组有n 个数且最后一个数为n 2,则前n 组共1+2+3+…+n ()12n n +=个数,运算即可得解.【详解】解:将新数列1,2,4,5,7,9,10,12,14,16,17,…,分组为(1),(2,4),(5,7,9,),(10,12,14,16),(17,19,21,23,25)… 则第n 组有n 个数且最后一个数为n 2, 则前n 组共1+2+3+…+n ()12n n +=个数,设第2019个数在第n 组中,则()()120192120192n n n n ⎧+≥⎪⎪⎨-⎪⎪⎩<,解得n =64,即第2019个数在第64组中,则第63组最后一个数为632=3969,前63组共1+2+3+…+63=2016个数,接着往后找第三个偶数则由1开始的第2019个数是3974, 故选:D . 【点睛】本题考查了对数据的处理能力及归纳推理能力,考查等差数列前n 项和公式,属中档题.2.已知数列22333311313571351,,,,,,,...,,,, (2222222222)nn n ,则该数列第2019项是( ) A .1019892 B .1020192 C .1119892 D .1120192 【答案】C【解析】 【分析】由观察可得()22333311313571351,,,,,,,...,,,,...2222222222n n n ⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭项数为21,1,2,4,8,...,2,...k -,注意到101110242201922048=<<=,第2019项是第12个括号里的第995项. 【详解】 由数列()22333311313571351,,,,,,,...,,,,...2222222222n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,可发现其项数为 21,1,2,4,8,...,2,...k -,则前11个括号里共有1024项,前12个括号里共有2048项,故原数列第2019项是第12个括号里的第995项,第12个括号里的数列通项为11212m -, 所以第12个括号里的第995项是1119892. 故选:C. 【点睛】本题考查数列的定义,考查学生观察找出已知数列的特征归纳出其项数、通项,是一道中档题.3.已知各项均为正数的等比数列{}n a 的前n 项和为n S ,且满足6a ,43a ,5a -成等差数列,则42S S ( ) A .3 B .9C .10D .13【答案】C 【解析】 【分析】设{}n a 的公比为0q >,由645,3,a a a -成等差数列,可得260,0q q q --=>,解得q ,再利用求和公式即可得结果. 【详解】设各项均为正数的等比数列{}n a 的公比为0q >,Q 满足645,3,a a a -成等差数列,()2465446,6,0a a a a a q q q ∴=-∴=->, 260,0q q q ∴--=>,解得3q =,则()()4124221313131103131a S S a --==+=--,故选C. 【点睛】本题主要考查等比数列的通项公式与求和公式,属于中档题. 等比数列基本量的运算是等比数列的一类基本题型,数列中的五个基本量1,,,,,n n a q n a S ,一般可以“知二求三”,通过列方程组所求问题可以迎刃而解,解决此类问题的关键是熟练掌握等比数列的有关性质和公式,并灵活应用,在运算过程中,还应善于运用整体代换思想简化运算过程.4.“中国剩余定理”又称“孙子定理”.1852年,英国来华传教士伟烈亚力将《孙子算经》中“物不知数”问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得到的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将1到2019这2019个数中,能被3除余2且被5整除余2的数按从小到大的顺序排成一列,构成数列{}n a ,则此数列所有项中,中间项的值为( ) A .992 B .1022C .1007D .1037【答案】C 【解析】 【分析】首先将题目转化为2n a -即是3的倍数,也是5的倍数,也即是15的倍数.再写出{}n a 的通项公式,算其中间项即可. 【详解】将题目转化为2n a -即是3的倍数,也是5的倍数,也即是15的倍数. 即215(1)n a n -=-,1513n a n =-当135n =,135151351320122019a =⨯-=<, 当136n =,136151361320272019a =⨯-=>, 故1,2,n =……,135数列共有135项.因此数列中间项为第68项,681568131007a =⨯-=. 故答案为:C . 【点睛】本题主要考查数列模型在实际问题中的应用,同时考查了学生的计算能力,属于中档题.5.《周髀算经》中有这样一个问题:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气其日影长依次成等差数列,冬至、立春、春分日影长之和为31.5尺,前九个节气日影长之和为85.5尺,则小满日影长为( ) A .1.5尺B .2.5尺C .3.5尺D .4.5尺【解析】 【分析】结合题意将其转化为数列问题,并利用等差数列通项公式和前n 项和公式列方程组,求出首项和公差,由此能求出结果. 【详解】解:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气其日影长依次成等差数列{}n a ,冬至、立春、春分日影长之和为31.5尺,前九个节气日影长之和为85.5尺,∴()()111913631.598985.52a a d a d S a d ⎧++++=⎪⎨⨯=+=⎪⎩, 解得113.5a =,1d =-,∴小满日影长为1113.510(1) 3.5a =+⨯-=(尺). 故选C . 【点睛】本题考查等差数列的前n 项和公式,以及等差数列通项公式的运算等基础知识,掌握各公式并能熟练运用公式求解,考查运算求解能力,考查化归与转化思想,属于基础题.6.数列{a n },满足对任意的n ∈N +,均有a n +a n +1+a n +2为定值.若a 7=2,a 9=3,a 98=4,则数列{a n }的前100项的和S 100=( ) A .132 B .299C .68D .99【答案】B 【解析】 【分析】由12n n n a a a ++++为定值,可得3n n a a +=,则{}n a 是以3为周期的数列,求出123,,a a a ,即求100S . 【详解】对任意的n ∈+N ,均有12n n n a a a ++++为定值,()()123120n n n n n n a a a a a a +++++∴++-++=,故3n n a a +=,{}n a ∴是以3为周期的数列,故17298392,4,3a a a a a a ======,()()()100123979899100123133S a a a a a a a a a a a ∴=+++++++=+++L()332432299=+++=.【点睛】本题考查周期数列求和,属于中档题.7.设函数()mf x x ax =+的导数为()21f x x '=+,则数列()()2N n f n *⎧⎫⎪⎪∈⎨⎬⎪⎪⎩⎭的前n 项和是( ) A .1nn + B .21nn + C .21nn - D .()21n n+ 【答案】B 【解析】 【分析】函数()mf x x ax =+的导函数()21f x x '=+,先求原函数的导数,两个导数进行比较即可求出m ,a ,利用裂项相消法求出()()2N n f n *⎧⎫⎪⎪∈⎨⎬⎪⎪⎩⎭的前n 项和即可.【详解】Q 1()21m f x mx a x -'=+=+,1a \=,2m =,()(1)f x x x ∴=+,112()()(1)221f n n n n n ==-++, ∴111111122[()()()]2(1)1223111n n S n n n n =-+-++-=-=+++L ,故选:B . 【点睛】本题考查数列的求和运算,导数的运算法则,数列求和时注意裂项相消法的应用.8.已知数列{}n a 的奇数项依次成等差数列,偶数项依次成等比数列,且11a =,22a =,347a a +=,5613a a +=,则78a a +=( )A .4B .19C .20D .23【答案】D 【解析】 【分析】本题首先可以设出奇数项的公差以及偶数项的公比,然后对347a a +=、5613a a +=进行化简,得出公差和公比的数值,然后对78a a +进行化简即可得出结果. 【详解】设奇数项的公差为d ,偶数项的公比为q ,由347a a +=,5613a a +=,得127d q ++=,212213d q ++=,解得2d =,2q =,所以37813271623a a d q +=++=+=,故选D .【点睛】本题主要考查等差数列、等比数列的通项公式及性质等基础知识,考查运算求解能力,考查函数与方程思想、化归与转化思想等,体现基础性与综合性,提升学生的逻辑推理、数学运算等核心素养,是中档题.9.已知等比数列{}n a 的前n 项和为n S ,若1231112a a a ++=,22a =,则3S =( ) A .10 B .7C .8D .4【答案】C 【解析】 【分析】根据等比数列的性质可将已知等式变为12332224a a a S a ++==,解方程求得结果. 【详解】 由题意得:13123321231322111124a a a a a S a a a a a a a +++++=+=== 38S ∴= 本题正确选项:C 【点睛】本题考查等比数列性质的应用,关键是能够根据下角标的关系凑出关于3S 的方程,属于基础题.10.已知数列{}n a 满足:()()2*112,10n n n a a S S n +=+-=∈N ,其中n S 为数列{}n a 的前n 项和.设()()()12111()1n S S S f n n +++=+L ,若对任意的n 均有(1)()f n kf n +<成立,则k 的最小整数值为( ) A .2 B .3C .4D .5【答案】A 【解析】 【分析】当1n ≥时,有条件可得()211n n n nS S S S +--=-,从而111n n nS S S +--=,故111111n n S S +-=--,得出 11n S ⎧⎫⎨⎬-⎩⎭是首项、公差均为1的等差数列,从而求出n S 【详解】当1n ≥时,有条件可得()211n n n nS S S S +--=-,从而111n n nS S S +--=,故111111111n n n n n S S S S S +-=-=----,又1111121S ==--,11n S ⎧⎫∴⎨⎬-⎩⎭是首项、公差均为1的等差数列,11n n S ∴=-,1n n S n +=,由()()()12111()1n S S S f n n +++=+L , 得()1(1)1(1)23152,2()2223n n S f n n f n n n n +++++⎡⎫===-∈⎪⎢+++⎣⎭, 依题意知(1)()f n k f n +>, min 2k ∴=.故选:A 【点睛】本题考查数列的综合应用.属于中等题.11.执行如图所示的程序框图,若输出的S 为154,则输入的n 为( )A .18B .19C .20D .21【答案】B 【解析】 【分析】找到输出的S 的规律为等差数列求和,即可算出i ,从而求出n . 【详解】由框图可知,()101231154S i =+++++⋯+-= , 即()1231153i +++⋯+-=,所以()11532i i -=,解得18i =,故最后一次对条件进行判断时18119i =+=,所以19n =. 故选:B 【点睛】本题考查程序框图,要理解循环结构的程序框图的运行,考查学生的逻辑推理能力.属于简单题目.12.在递减等差数列{}n a 中,21324a a a =-.若113a =,则数列11{}n n a a +的前n 项和的最大值为 ( ) A .24143B .1143C .2413D .613【答案】D 【解析】设公差为,0d d < ,所以由21324a a a =-,113a =,得213(132)(13)42d d d +=+-⇒=- (正舍),即132(1)152n a n n =--=- , 因为111111()(152)(132)2215213n n a a n n n n +==----- ,所以数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和等于1111116()()213213213261313n --≤--=-⨯- ,选D. 点睛:裂项相消法是指将数列的通项分成两个式子的代数和的形式,然后通过累加抵消中间若干项的方法,裂项相消法适用于形如1n n c a a +⎧⎫⎨⎬⎩⎭(其中{}n a 是各项均不为零的等差数列,c 为常数)的数列. 裂项相消法求和,常见的有相邻两项的裂项求和(如本例),还有一类隔一项的裂项求和,如1(1)(3)n n ++或1(2)n n +.13.等比数列{n a }的前n 项和为n S ,若103010,30,S S ==则20S = A .10 B .20 C .20或-10 D .-20或10【答案】B 【解析】 【分析】由等比数列的性质可得,S 10,S 20﹣S 10,S 30﹣S 20成等比数列即(S 20﹣S 10)2=S 10•(S 30﹣S 20),代入可求. 【详解】由等比数列的性质可得,S 10,S 20﹣S 10,S 30﹣S 20成等比数列,且公比为10q∴(S 20﹣S 10)2=S 10•(S 30﹣S 20)即()()22020101030S S -=- 解20S =20或-10(舍去) 故选B . 【点睛】本题主要考查了等比数列的性质(若S n 为等比数列的前n 项和,且S k ,S 2k ﹣S k ,S 3k ﹣S 2k 不为0,则其成等比数列)的应用,注意隐含条件的运用14.已知数列{}n a 是1为首项,2为公差的等差数列,{}n b 是1为首项,2为公比的等比数列,设n n b c a =,12...,(*)n n T c c c n N =+++∈,则当2019n T <时,n 的最大值是( ) A .9 B .10C .11D .12【答案】A 【解析】 【分析】由题设知21n a n =-,12n nb -=,由1121124222n n n b b bn T a a a a a a a n -+=++⋯+=+++⋯+=--和2019n T <,得1222019n n +--<,由此能求出当2019n T <时n 的最大值.【详解】{}n a Q 是以1为首项,2为公差的等差数列,21n a n ∴=-,{}n b Q 是以1为首项,2为公比的等比数列,12n n b -∴=,()()()()1121121242211221241221n n n n b b bn T c c c a a a a a a a --∴=++⋯+=++⋯+=+++⋯+=⨯-+⨯-+⨯-+⋯+⨯- ()121242n n -=+++⋯+- 12212nn -=⨯-- 122n n +=--,2019n T <Q ,1222019n n +∴--<,解得:10n <.则当2019n T <时,n 的最大值是9. 故选A . 【点睛】本题考查了等差数列、等比数列的通项公式,结合含两个变量的不等式的处理问题,易出错,属于中档题.15.已知数列{}n a 是等比数列,前n 项和为n S ,则“3152a a a >+”是“210n S -<”的( ) A .必要不充分条件 B .充分不必要条件 C .充要条件 D .既不充分也不必要条件【答案】B 【解析】 【分析】根据等比数列的通项公式与求和公式,即可判断命题间的关系. 【详解】因为数列{}n a 是等比数列,前n 项和为n S 若3152a a a >+,由等比数列的通项公式可得111242a a q a q >+,化简后可得()21210q a -<.因为()2210q -≥所以不等式的解集为10a < 若210n S -<当公比1q ≠±时, 210n S -<则10a <,可得3152a a a >+ 当公比1q =±时, 由210n S -<则10a <,可得3152a a a =+ 综上可知, “3152a a a >+”是“210n S -<”的充分不必要条件 故选:B 【点睛】本题考查了等比数列的通项公式与求和公式的应用,在应用等比数列求和公式时,需记得讨论公比是否为1的情况,属于中档题.16.科赫曲线是一种外形像雪花的几何曲线,一段科赫曲线可以通过下列操作步骤构造得到,任画一条线段,然后把它均分成三等分,以中间一段为边向外作正三角形,并把中间一段去掉,这样,原来的一条线段就变成了4条小线段构成的折线,称为“一次构造”;用同样的方法把每条小线段重复上述步骤,得到16条更小的线段构成的折线,称为“二次构造”,…,如此进行“n 次构造”,就可以得到一条科赫曲线.若要在构造过程中使得到的折线的长度达到初始线段的1000倍,则至少需要通过构造的次数是( ).(取lg30.4771≈,lg 20.3010≈)A .16B .17C .24D .25【答案】D 【解析】 【分析】由折线长度变化规律可知“n 次构造”后的折线长度为43na ⎛⎫ ⎪⎝⎭,由此得到410003n⎛⎫≥ ⎪⎝⎭,利用运算法则可知32lg 2lg 3n ≥⨯-,由此计算得到结果.【详解】记初始线段长度为a ,则“一次构造”后的折线长度为43a ,“二次构造”后的折线长度为243a ⎛⎫ ⎪⎝⎭,以此类推,“n 次构造”后的折线长度为43na ⎛⎫ ⎪⎝⎭,若得到的折线长度为初始线段长度的1000倍,则410003n a a ⎛⎫≥ ⎪⎝⎭,即410003n⎛⎫≥ ⎪⎝⎭, ()()44lg lg lg 4lg32lg 2lg3lg1000333n n n n ⎛⎫∴==-=-≥= ⎪⎝⎭, 即324.0220.30100.4771n ≥≈⨯-,∴至少需要25次构造. 故选:D .【点睛】 本题考查数列新定义运算的问题,涉及到对数运算法则的应用,关键是能够通过构造原则得到每次构造后所得折线长度成等比数列的特点.17.已知数列{}n a 的前n 项和()2*23n S n n n N =+∈,则{}na 的通项公式为( ) A .21n a n =+B .21n a n =-C .41n a n =+D .41n a n =-【答案】C【解析】【分析】 首先根据223n S n n =+求出首项1a 的值,然后利用1n n n a S S -=-求出2n ≥时n a 的表达式,然后验证1a 的值是否适合,最后写出n a 的式子即可.【详解】因为223n S n n =+,所以,当2n ≥时,22123[2(1)3(1)]41n n n a S S n n n n n -=-=+--+-=+,当1n =时,11235==+=a S ,上式也成立,所以41n a n =+,故选C.【点睛】该题考查的是有关数列的通项公式的求解问题涉及到的知识点有数列的项与和的关系,即11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,算出之后再判断1n =时对应的式子是否成立,最后求得结果.18.正项等比数列{}n a 中的1a 、4039a 是函数()3214633f x x x x =-+-的极值点,则2020a =( )A .1-B .1 CD .2【答案】B【解析】【分析】根据可导函数在极值点处的导数值为0,得出140396a a =,再由等比数列的性质可得.【详解】解:依题意1a 、4039a 是函数()3214633f x x x x =-+-的极值点,也就是()2860f x x x '=-+=的两个根∴140396a a =又{}n a是正项等比数列,所以2020a =∴20201a ==.故选:B【点睛】本题主要考查了等比数列下标和性质以应用,属于中档题.19.数列{}n a 满足11a =,对任意的*n N ∈都有11n n a a n +=++,则122016111a a a +++=L ( ) A .20152016B .40322017C .40342017D .20162017【答案】B【解析】【分析】 首先根据题设条件,由11n n a a n +=++,可得到递推关系为11n n a a n +-=+; 接下来利用累加法可求得()12n n n a +=,从而()1211211na n n n n ⎛⎫==- ⎪++⎝⎭,由此就可求得122016111a a a +++L 的值. 【详解】因为111n n n a a a n a n +=++=++,所以11n n a a n +-=+,用累加法求数列{}n a 的通项得:()()1211n n n a a a a a a -=+-+⋯+-()1122n n n +=++⋯+=, 所以()1211211n a n n n n ⎛⎫==- ⎪++⎝⎭,于是1232016111111111212222320162017a a a a ⎛⎫⎛⎫⎛⎫ +++⋯+=-+-+⋯+-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 121201*********⎛⎫==- ⎪⎝⎭. 故选:B.【点睛】本题是一道考查数列的题目,掌握数列的递推关系以及求解前n 项和的方法是解答本题的关键,属于常考题.20.设数列{}n a 的前n 项和为n S 已知()*123n n a a n n N ++=+∈且1300n S =,若23a <,则n 的最大值为( )A .49B .50C .51D .52【答案】A【解析】【分析】对n 分奇偶性分别讨论,当n 为偶数时,可得2+32n n n S =,发现不存在这样的偶数能满足此式,当n 为奇数时,可得21+342n n n S a -=+,再结合23a <可讨论出n 的最大值. 【详解】当n 为偶数时,12341()()()n n n S a a a a a a -=++++⋅⋅⋅++(213)(233)[2(1)3]n =⨯++⨯++⋅⋅⋅+-+2[13(1)]32n n =⨯++⋅⋅⋅+-+⨯2+32n n =, 因为22485048+348503501224,132522S S ⨯+⨯====, 所以n 不可能为偶数;当n 为奇数时,123451()()()n n n S a a a a a a a -=+++++⋅⋅⋅++1(223)(243)[2(1)3]a n =+⨯++⨯++⋅⋅⋅+-+21342n n a +-=+ 因为2491149349412722S a a +⨯-=+=+, 2511151351413752S a a +⨯-=+=+, 又因为23a <,125a a +=,所以 12a >S 时,n的最大值为49所以当1300n故选:A【点睛】此题考查的是数列求和问题,利用了并项求和的方法,考查了分类讨论思想,属于较难题.。
高考数学《数列中的存在性问题》

高考数学 数列中的存在性问题
解析:(1) 令 n=1,则 a1=S1=1a12-a1=0. (2) 由 Sn=nan2-a1,即 Sn=n2an, ① 得 Sn+1=n+12an+1. ② ②-①,得(n-1)an+1=nan. ③ 于是 nan+2=(n+1)an+1. ④
高考数学 数列中的存在性问题
高考数学 数列中的存在性问题
例 3 已知数列{an}的奇数项是首项为 1 的等差数列,偶数项是首项为 2 的等比数 列,数列{an}的前 n 项和为 Sn,且满足 S3=a4,a5=a2+a3. (1) 求数列{an}的通项公式; (2) 若 amam+1=am+2,求正整数 m 的值; (3) 是否存在正整数 m,使得SS2m2m-1恰好为数列{an}中的一项?若存在,求出所有满 足条件的 m 的值;若不存在,请说明理由.
高考数学 数列中的存在性问题
解析:(1) 由条件知 a1=3. 当 n≥2 时,由 a1+aλ2+aλ23+…+λan-n1=n2+2n, ① 得 a1+aλ2+aλ23+…+aλnn--21=(n-1)2+2(n-1). ② ①-②得λan-n1=2n+1,所以 an=(2n+1)λn-1(n≥2). 因为 a1=3,所以 an=(2n+1)λn-1(n∈N*).
高考数学 数列中的存在性问题
不合题意. 综上可知 m=2. (3) 因为 S2m=(a1+a3+…+a2m-1)+(a2+a4+…+a2m) =m1+22m-1+211--33m=3m+m2-1. S2m-1=S2m-a2m=3m+m2-1-2·3m-1=3m-1+m2-1. 所以SS2m2m-1=33mm-+1+mm2-2-11=3-3m2-1m+2-m21- 1≤3.
高考数学 数列中的存在性问题
(完整版)高考数学专题《数列》超经典

高考复习序列-----高中数学数列一、数列的通项公式与前n 项的和的关系①11,1,2n n n s n a s s n -=⎧=⎨-≥⎩(注:该公式对任意数列都适用)②1(2)n n n S S a n -=+≥ (注:该公式对任意数列都适用) ③12n n S a a a =+++L (注:该公式对任意数列都适用) ④s n+1−s n−1=a n+1+a n (注:该公式对任意数列都适用) 二、等差与等比数列的基本知识 1、等差数列⑴ 通项公式与公差:定义式:d a a n n =--1一般式:()q pn a d n a a n n +=⇔-+=11 推广形式: ()n m a a n m d =+-ma a d mn --=⇔;⑵ 前n 项和与通项n a 的关系:前n 项和公式:1()n n n a a s +=1(1)n n na d -=+211()2d n a d n =+-.前n 项和公式的一般式:应用:若已知()n n n f +=22,即可判断为某个等差数列n 的前n 项和,并可求出首项及公差的值。
n a 与n S 的关系:1(2)n n n a S S n -=-≥(注:该公式对任意数列都适用)例:等差数列12-=n S n ,=--1n n a a (直接利用通项公式作差求解) ⑶ 常用性质:①若m+n=p+q ,则有 m n p q a a a a +=+ ;特别地:若,m n p a a a 是的等差中项,则有2m n p a a a =+⇔n 、m 、p 成等差数列;②等差数列的“间隔相等的连续等长片断和序列”(如123,a a a ++456,a a a ++789a a a ++,⋅⋅⋅)仍是等差数列;③{}n a 为公差为d 等差数列,n S 为其前.n .项和..,则232,,m m m m m S S S S S --,43m m S S -,...也成等差数列, A 、 构成的新数列公差为D=m 2d ,即m 2d=(S 2m -S m )- S m ;B 、 对于任意已知S m ,S n ,等差数列{}n a ⎭⎬⎫⎩⎨⎧n S n 也构成一个公差为2d 等差数列。
(完整版)高中数学全国卷数列专题复习

数列专题复习(1)一、等差数列和等比数列的性质1、已知{a n}是公差为1的等差数列, S n为{a n}的前n项和,若S8 4S4,则31017(A)兀19(B)兀10 (D) 122、数列a n中a12,a n 1 2a n , S n 为a n 的前n项和,若S n126,则n3、设S n是等差数列{a n}的前n项和若a1a s a5 3,则S5 A5 B7 C9 D114、已知等比数列{a n}满足a1—,a3a5 4 a44 A.2 B.1 C.1 D.12 85、等比数列{a n}满足a1=3, aia s a5=21,则a3 a5a?A21 B42 C63 D846、等差数列a n的公差为2, a2, a4 ,a s成等比数列,则a n 的前n项和S n=(A) n n 1 (B) nn n 1(C) -------n n 1(D)盲7、设等差数列A. 3 B&等比数列{{a n}的前n项和为.4 C . 5a n}的前n项和为S1,若S m- 1=—2, S m= 0, S m+ 1 = 3,贝V m =D . 6S,已知S = a 2 +10a1 ,a5 = 9,贝y a1 =(C)(D)9、已知{a n}为等比数列,a4 a7 2,a5a6 8,则a10 A7 B5 C—5 D —710、已知各项均为正数的等比数列a1a2a3 =5,a7a s a9 =10,贝U a4a5a6 =(A) 52 (B) 7 (C) 6 (D)11、如果等差数列{a n}中,a3 a4 a5 12,那么a1 a2 a7(A) 14 (B) 21 (C) 28 (D) 3512、等差数列{a n}的前n项和为S,已知S10=0, S5 =25,贝U nS的最小值为_13、等比数列{a n}的前n项和为S n,若S3 3S2 0 ,则公比q14、设S n为等差数列a n的前n项和,若a1=1,公差d=2 , S k+2-S k=24,则k=(A)8 (B)7 (C) 6 (D) 515、设厶A n B n C n的三边长分别为a n, b n, C h , △ A n B n C n的面积为S n , n= 1,2,3,….若b1 > C1,b1+ C1 = 2a1, a n+1 = a n, b n+1= C^^n, c n+1= ,则().2 2A. {Sn }为递减数列 B C. {S 2n — 1}为递增数列,{S 2n }为递减数列 .{Sn }为递增数列D . {S 2n - 1}为递减数列,{S 2n }为递增数列二、数列求和(1)求数列{a n }的通项公式;3、已知等差数列{a n }的公差不为零,a 1 25,且耳,&11月13成等比数列。
最新高考数学总复习——规范答题系列2:高考中的数列问题

规范答题系列2:高考 中的数列问题
[命题解读] 从近五年全国卷高考试题来看,数列解答题常以 an,Sn的关系为切入点,以等差(等比)数列基础知识为依托,重点考 查等差(等比)数列的判定与证明,考查数列的通项及前n项和的求法 (以分组求和、裂项求和为主),考查函数与方程的思想及逻辑推 理、数学运算的核心素养,且难度有所提升.
[易错防范]
易错点
防范措施
对[lg an]认识错 先结合题设条件理解[x],再结合对数的运算性质
误
求出b1,b11,b101
找不出[lg an]的 结合(1)的结论,合情推理推出[lg an]的规律,并
规律求不出{bn} 分类求出bn,最后利用分组求和求{bn}的前1 000
的前1 000项的和 项和
(1)证明数列{bn}是等差数列; (2)设bcnn=2n+1,求数列{cn}的前n项和Tn(n∈N*).
[解](1)因为a1=2,所以b1=1+a1 1=1. 将(n+2)an=(n+1)an+1-2(n2+3n+2)两边同时除以(n+1)(n+2) 得: n+an 1=na+n+12-2,∴na+n+12-n+an 1=2,即bn+1-bn=2. ∴数列{bn}是以1为首项,2为公差的等差数列.
[规范解答](1)设{an}的公差为d,S7=7a4=28, 所以a4=4,……………………………………………………2分 所以d=a4-3 a1=1,……………………………………………4分 所以an=a1+(n-1)d=n. ………………………………………5分 所以b1=[lg a1]=[lg 1]=0,b11=[lg a11]=[lg 11]=1,b101=[lg a101]=[lg 101]=2. …………………………………………………6分
2023年新高考数学大一轮复习专题三数列第4讲数列中的奇偶项问题(含答案)

新高考数学大一轮复习专题:第4讲 数列中的奇、偶项问题数列中的奇、偶项问题是对一个数列分成两个新数列进行单独研究,利用新数列的特征(等差、等比数列或其他特征)求解原数列.例 已知数列{a n }满足a 1=1,a 2=12,[3+(-1)n ]a n +2-2a n +2[(-1)n -1]=0,n ∈N *. (1)令b n =a 2n -1,判断{b n }是否为等差数列,并求数列{b n }的通项公式;(2)记数列{a n }的前2n 项和为T 2n ,求T 2n .解 (1)因为[3+(-1)n ]a n +2-2a n +2[(-1)n -1]=0,所以[3+(-1)2n -1]a 2n +1-2a 2n -1+2[(-1)2n -1-1]=0,即a 2n +1-a 2n -1=2,又b n =a 2n -1,所以b n +1-b n =a 2n +1-a 2n -1=2,所以{b n }是以b 1=a 1=1为首项,2为公差的等差数列,所以b n =1+(n -1)×2=2n -1,n ∈N *.(2)对于[3+(-1)n ]a n +2-2a n +2[(-1)n -1]=0,当n 为偶数时,可得(3+1)a n +2-2a n +2(1-1)=0,即a n +2a n =12,所以a 2,a 4,a 6,…是以a 2=12为首项,12为公比的等比数列; 当n 为奇数时,可得(3-1)a n +2-2a n +2(-1-1)=0,即a n +2-a n =2,所以a 1,a 3,a 5,…是以a 1=1为首项,2为公差的等差数列,所以T 2n =(a 1+a 3+…+a 2n -1)+(a 2+a 4+…+a 2n )=⎣⎢⎡⎦⎥⎤n ×1+12n n -1×2+12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n 1-12=n 2+1-12n ,n ∈N *. (1)数列中的奇、偶项问题的常见题型①数列中连续两项和或积的问题(a n +a n +1=f (n )或a n ·a n +1=f (n ));②含有(-1)n的类型;③含有{a 2n },{a 2n -1}的类型;④已知条件明确的奇偶项问题.(2)对于通项公式分奇、偶不同的数列{a n }求S n 时,我们可以分别求出奇数项的和与偶数项的和,也可以把a 2k -1+a 2k 看作一项,求出S 2k ,再求S 2k -1=S 2k -a 2k .1.数列{a n }的通项公式为a n =(-1)n -1·(4n -3),则它的前100项之和S 100等于( ) A .200B .-200C .400D .-400答案 B解析 S 100=(4×1-3)-(4×2-3)+(4×3-3)-…-(4×100-3)=4×[(1-2)+(3-4)+…+(99-100)]=4×(-50)=-200.2.已知数列{a n }的前n 项和S n =(-1)n ·n ,若对任意的正整数n ,使得(a n +1-p )·(a n -p )<0恒成立,则实数p 的取值范围是________.答案 (-1,3)解析 当n =1时,a 1=S 1=-1;当n ≥2时,a n =S n -S n -1=(-1)n n -(-1)n -1(n -1)=(-1)n(2n -1). 因为对任意的正整数n ,(a n +1-p )(a n -p )<0恒成立,所以[(-1)n +1(2n +1)-p ][(-1)n(2n -1)-p ]<0. ①当n 是正奇数时,化为[p -(2n +1)][p +(2n -1)]<0,解得1-2n <p <2n +1,因为对任意的正奇数n 都成立,取n =1时,可得-1<p <3.②当n 是正偶数时,化为[p -(2n -1)][p +(1+2n )]<0,解得-1-2n <p <2n -1,因为对任意的正偶数n 都成立,取n =2时,可得-5<p <3.联立⎩⎪⎨⎪⎧ -1<p <3,-5<p <3,解得-1<p <3.所以实数p 的取值范围是(-1,3).3.在数列{a n }中,已知a 1=1,a n ·a n +1=⎝ ⎛⎭⎪⎫12n ,记S n 为{a n }的前n 项和,b n =a 2n +a 2n -1,n ∈N *. (1)判断数列{b n }是否为等比数列,并写出其通项公式;(2)求数列{a n }的通项公式;(3)求S n .解 (1)因为a n ·a n +1=⎝ ⎛⎭⎪⎫12n ,所以a n +1·a n +2=⎝ ⎛⎭⎪⎫12n +1, 所以a n +2a n =12,即a n +2=12a n . 因为b n =a 2n +a 2n -1,所以b n +1b n =a 2n +2+a 2n +1a 2n +a 2n -1=12a 2n +12a 2n -1a 2n +a 2n -1=12, 所以数列{b n }是公比为12的等比数列. 因为a 1=1,a 1·a 2=12,所以a 2=12,b 1=a 1+a 2=32,所以b n =32×⎝ ⎛⎭⎪⎫12n -1=32n ,n ∈N *. (2)由(1)可知a n +2=12a n ,所以a 1,a 3,a 5,…是以a 1=1为首项,12为公比的等比数列;a 2,a 4,a 6,…是以a 2=12为首项,12为公比的等比数列, 所以a 2n -1=⎝ ⎛⎭⎪⎫12n -1,a 2n =⎝ ⎛⎭⎪⎫12n , 所以a n =11221,212n n n n +-⎧⎛⎫⎪ ⎪⎪⎝⎭⎨⎪⎛⎫⎪ ⎪⎝⎭⎩为奇数,偶,为数. (3)因为S 2n =(a 1+a 3+…+a 2n -1)+(a 2+a 4+…+a 2n )=1-⎝ ⎛⎭⎪⎫12n 1-12+12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n 1-12=3-32n , 又S 2n -1=S 2n -a 2n =3-32n -12n =3-42n ,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
高考中的数列问题
一、考点自测
1、数列na是公差不为0的等差数列,且731,,aaa为等比数列nb中连续的三项,
则数列nb的公比为( )
A. 2 B.4 C.2 D.21
2、已知等差数列na的前n项和为nS,15,555Sa,则数列11nnaa的前100
项和为( )
A. 101100 B.10199 C.10099 D.100101
3、等比数列na的前n项和为nS,已知3213,2,SSS成等差数列,则等比数列na的
公比为 .
4、设nS是数列na的前n项和,且111,1nnnSSaa,则nS= .
5、已知数列na的前n项和为nS,对任意Nn都有3132nnaS,若
)(91NkS
k
,则k的值为 .
2
二、常见题型
题型一:等差数列、等比数列的综合问题
例1(2016.四川)已知数列na的首项为1,nS为数列na的前n项和,
11nnqSS
,其中)(,0Nnq.
(1)若3232,,aaaa成等差数列,求数列na的通项公式;
(2)设双曲线1222nayx的离心率为ne,且22e,求22221neee.
方法总结:
变式练习1 已知首项为23的等比数列na不是递减数列,其前n项和为nS,且
445533
,,aSaSaS
成等差数列.
(1)求数列na的通项公式;
(2)设nnnSST1,求数列nT的最大项的值与最小项的值.
3
题型二:数列的通项与求和
例2 已知数列的前n项和为nS,在数列nb中,)2(,111naababnnn,且
nSann
.
(1)设1nnac,求证:nc是等比数列;
(2)求数列nb的通项公式.
方法总结:
变式练习2 已知数列na的前n项和为nS,且nnannaa21,2111.
(1)证明:数列nan是等比数列;
(2)求数列na的通项公式与前n项和nS.
4
题型三:数列与其它知识的交汇
考点1、数列与函数的交汇
例3 已知二次函数bxaxxf2)(的图像过点)(0,4-n,且nf2)0(,数列
n
a
满足)1(11nnafa,且41a
(1)求数列na的通项公式;
(2)记1nnnaab,求数列nb的前n项和nT.
考点2、数列与不等式的交汇
例4 设各项均为正数的数列na的前n项和为nS,且nS满足
0)(3)3(222nnSnnS
nn
.
(1)求1a的值;
(2)求数列na的通项公式;
(3)证明:对一切正整数n,有31)1(1)1(1)1(12211nnaaaaaa.
方法总结
5
变式练习3 设等差数列na的公差为d,点)(nnba,在函数xxf2)(的图像上
(1)若21a,点)(784,ba在函数)(xf的图像上,求数列na的前n项和nS;
(2)若11a,函数)(xf的图像在点)(22,ba处的切线在x轴上的截距为2ln1-2,
求数列nnba的前n项和nT.