六年级数学容斥原理

合集下载

六年级数学专题详解 容斥原理

六年级数学专题详解  容斥原理

容斥原理在一些计数问题中,经常遇到有关集合元素个数的计算。

我们用|A|表示有限集A的元素的个数。

在两个集合的研究中,已经知道,求两个集合并集的元素个数,不能简单地把两个集合的元素个数相加,而要从两根集合的个数之中减去重复计算的元素个数,用式子可以表示成|A∪B|=|A|+|B|–|A∩B|。

我们称这一公式为包含与排除原理,简称为容斥原理。

包含与排除原理|告诉我们,要计算两个集合A、B的并集A∪B的元素个数,可以分一下两步进行:第一步:分别计算集合A、B的元素个数,然后加起来。

即先求|A|+|B|(意思是把A、B的一切元素都“包含”进来,加在一起);第二步“从上面的和中减去交集的元素的个数,即减去|A∩B|(意思是“排除”了重复计算的元素的个数)。

例1.求不超过20的正整数中是2的倍数或3的倍数的数共有多少?解:设I={1、2、3、…、19、20},A={I中2的倍数},B={I中3的倍数}。

显然题目中要求计算并集A∪B的元素个数,即求|A∪B|。

我们知道A ={2、4、6、……、20},所以|A |=10, B ={3、6、9、12、15、18},|B |=6。

A ∩B ={I 中既是2的倍数又是3的倍数}={6、12、18},所以|A ∩B |=3,根据容斥原理有|A ∪B |=|A |+|B |–|A ∩B |=10+6–3=13. 答:所求的数共有13个。

此题可以直观地用图表示如下:例2.某班统计考试成绩,数学得90分以上的有25人,语文得90分以上的有21人,两科中至少有一科在90分以上的有38人,问两科都在90分以上的有多少人?解:设A ={数学在90分以上的学生},B ={语文在90分以上的学生},由题意知|A |=25,|B |=21。

A ∪B ={数学、语文至少一科在90分以上的学生},|A ∪B |=38。

A ∩B ={数学、语文都在90分以上的学生},由容斥原理知|A ∪B |=|A |+|B |–|A ∩B |,所以|A ∩B |=|A |+|B |–|A ∪B |=25+21–38=8。

六年级容斥原理阴影面积题型

六年级容斥原理阴影面积题型

求平面图形中阴影部分的面积,是每年小升初考试中得几何热点,思维能力要求高,学生失分率高。

由于阴影部分的图形常常不是以基本几何图形的形状出现,没法直接利用课本中的基本公式来计算,所以比较麻烦,有的甚至无法求解。

家长辅导孩子处理这类型的几何题,除了要让孩子熟练地掌握平面图形的概念和面积公式之外,关键还在于懂得如何“巧用方法、妙在变形”。

以下是小学阶段常见的求阴影面积的方法,家长可以让孩子边做边总结方法,逐一攻关。

求阴影部分的面积例1.求阴影部分的面积。

(单位:厘米)解:这是最基本的方法:圆面积减去等腰直角三角形的面积,×-2×1=1.14(平方厘米)例2.正方形面积是7平方厘米,求阴影部分的面积。

(单位:厘米)解:这也是一种最基本的方法用正方形的面积减去圆的面积。

设圆的半径为 r,因为正方形的面积为7平方厘米,所以=7,所以阴影部分的面积为:7-=7-×7=1.505平方厘米例3.求图中阴影部分的面积。

(单位:厘米)解:最基本的方法之一。

用四个圆组成一个圆,用正方形的面积减去圆的面积,所以阴影部分的面积:2×2-π=0.86平方厘米。

例4.求阴影部分的面积。

(单位:厘米)解:同上,正方形面积减去圆面积,16-π()=16-4π=3.44平方厘米例5.求阴影部分的面积。

(单位:厘米)解:这是一个用最常用的方法解最常见的题,为方便起见,我们把阴影部分的每一个小部分称为“叶形”,是用两个圆减去一个正方形,π()×2-16=8π-16=9.12平方厘米另外:此题还可以看成是1题中阴影部分的8倍。

例6.如图:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空白部分甲比乙的面积多多少厘米?解:两个空白部分面积之差就是两圆面积之差(全加上阴影部分)π-π()=100.48平方厘米(注:这和两个圆是否相交、交的情况如何无关)例7.求阴影部分的面积。

(单位:厘米)解:正方形面积可用(对角线长×对角线长÷2,求) 正方形面积为:5×5÷2=12.5所以阴影面积为:π÷4-12.5=7.125平方厘米(注:以上几个题都可以直接用图形的差来求,无需割、补、增、减变形) 例8.求阴影部分的面积。

小升初六年级数学专项练习《(22)容斥原理》知识点总结复习训练

小升初六年级数学专项练习《(22)容斥原理》知识点总结复习训练

小升初小学六年级数学复习总结·知识点专项练习题+答案(22)容斥原理知识要点:1、“容”就是相容,相加,而“斥”就是相斥,相减,容斥原理作为一种计数方法,说简单点,就是从多的往下减,减过头了在加回来,加多了再减,减多了再加……最终得到正确结果。

对于计数中容易出现重复的题目,我们常常采用容斥原理,去掉重复的情况。

2、核心:画出韦恩图,弄清楚每一个部分图中所表示的含义。

习题精选:1. 育才小学六年级二班,参加语文兴趣小组的有28人,参加数学兴趣小组的有30人,有12人两个小组都参加。

这个班有()人参加了语文或数学兴趣小组。

A.33B.46C.50D.572. 芳草地小学四年级有58人学钢琴,43人学画画,37人既学钢琴又学画画,问只学钢琴有()人。

A.21B.6C.74D.373. 某班共有46人,参加美术小组的有12人,参加音乐小组的有23人,有5人两个小组都参加了。

这个班既没参加美术小组也没参加音乐小组的有()人。

A.5B.10C.12D.164. 对全班同学调查发现,会游泳的有20人,会打篮球的有25人.两项都会的有10人,两项都不会的有9人。

这个班一共有()人。

A.35B.44C.45D.505. 在46人参加的采摘活动中,只采了樱桃的有18人,既采了樱桃又采了杏的有7人,既没采樱桃又没采杏的有6人,问:只采了杏的有()人。

A.15B.16C.18D.206. 育才小学画展上展出了许多幅画,其中有16幅画不是六年级的,有15幅画不是五年级的,五、六年级共展出25幅画,其他年级的画共有()幅。

A.3B.4C.5D.67. 解放大路小学五年级三班有36名同学。

调查显示,参加数学课外活动小组的有25人,参加语文课外活动小组的有23人,没有两个课外活动小组都不参加的同学。

两个课外活动小组都参加的同学有()人。

A.9B.10C.12D.148. 四(2)班学生对英语、语文、数学三门功课中至少有一门感兴趣。

六年级容斥原理阴影面积题型

六年级容斥原理阴影面积题型

容斥原理在数学中是一种常用的计数方法,通常用于处理具有重复计数的问题。

在六年级的数学课程中,我们也学习了容斥原理的应用,特别是在解决阴影面积的题目时会用到这个原理。

阴影面积题目一般指的是计算由多个图形组成的区域的面积,其中某些部分被其他图形覆盖或重叠而形成阴影。

容斥原理是一种非常有效的解决方法,在这个问题中也能够派上用场。

例如,考虑一个矩形和一个圆形组成的图形区域。

矩形的长为10,宽为6,圆形的半径为4。

我们需要计算这个图形区域的阴影面积。

首先,我们可以计算矩形的面积,即长乘以宽,得到60平方单位。

然后,我们计算圆形的面积,即π乘以半径的平方。

在这个例子中,半径为4,那么圆形的面积为16π平方单位。

接下来,我们需要考虑矩形和圆形的重叠部分。

使用容斥原理,我们可以通过减去重叠部分的面积来避免重复计数。

重叠部分是由矩形和圆形的交集部分组成的,可以通过计算圆心到矩形边界的距离来确定。

在这个例子中,圆心到矩形左边界的距离是6-4=2。

我们知道圆形与矩形的交集是由两个四分之一圆组成的,而每个四分之一圆的面积为1/4乘以π乘以半径的平方。

在这个例子中,半径为4,所以一个四分之一圆的面积为4π/4=π平方单位。

因为重叠部分是由两个四分之一圆组成的,所以重叠部分的面积为2个π平方单位。

最后,我们可以通过应用容斥原理得到阴影面积。

阴影面积等于矩形的面积加上圆形的面积减去重叠部分的面积。

阴影面积 = 矩形面积 + 圆形面积 - 重叠部分面积= 60 + 16π - 2π = 60 + 14π 平方单位最后的结果是一个带有π的阴影面积,如果需要精确的数字,可以用计算器计算π的近似值。

在实际的阴影面积问题中,可能会涉及多个图形的组合,使用容斥原理可以将问题分解成更小的部分,简化计算过程。

通过理解和掌握容斥原理,我们可以更好地解决这类题目。

容斥原理是数学中一个非常重要的概念,它不仅在阴影面积问题中有应用,还可以应用于其他计数问题。

六年级《容斥原理》奥数教案

六年级《容斥原理》奥数教案

星系站备课教员:第二讲容斥原理一、教学目标: 1. 理解容斥原理,会画图分析其中关系,正确的找出答案。

2. 培养逻辑思维和数学思考能力。

3. 培养良好的书写习惯。

二、教学重点:理解容斥原理,会画图分析其中关系。

三、教学难点:理解容斥原理,会画图分析其中关系。

四、教学准备:PPT五、教学过程:第一课时(40分钟)一、外星游记(5分钟)师:一个家庭里有2个爸爸和2个儿子,同学们你们知道这个家庭有几个人吗?生1:4个啊,2+2=4啊。

生2:一个家庭怎么会有2个爸爸呢?师:这问题问的太好了,同学们,你爸爸叫你爷爷叫什么?生:爸爸啊。

师:那你爷爷管你爸爸叫什么呢?生:儿子。

师:所以这个家庭有几个人啊?生:3个。

师:也就是说爸爸既是爸爸也是儿子对吗?生:是的。

师:所以对于重复的题,我们在计算的时候要排除。

也就是我们这节课所要学习的内容。

【板书课题:容斥原理】二、星海遨游(30分钟)(一)星海遨游1(10分钟)一个班有48人,班主任在班会上问:“谁做完语文作业?请举手!”有37人举手。

又问:“谁做完数学作业?请举手!”有42人举手。

最后问:“谁语文、数学作业都没有做完?”没有人举手。

求这个班语文、数学作业都完成的人数。

师:同学们,最后班主任问了什么问题?生:谁语文、数学作业都没有做完?师:是的,但是有没有人举手啊?生:没有。

师:那说明什么?生:全班的人都至少做完一门作业。

师:至少做完一门作业都包括什么呢?生:只做完数学作业,只做完语文作业,语文、数学作业都做完。

师:现在我把我们班分成三组,第一组代表只做完语文作业的,第二组代表语文、数学都做完的,第三组代表只做完数学作业的,都明白自己都代表什么吗?生:明白。

师:那么我们班的人数怎么求?生:就等于三个组的人数和。

师:如果我问谁做完语文作业,那么哪些人会举手?生:第一组和第二组的人。

师:这些人有多少个?生:……(根据实际情况的人数)师:那如果我问谁做完数学作业呢?生:第二组和第三组的人。

小学奥数之容斥原理知识点

小学奥数之容斥原理知识点

小学奥数之容斥原理知识点容斥原理容斥问题涉及到一个重要原理——包含与排除原理,也叫容斥原理。

即当两个计数部分有重复包含时,为了不重复计数,应从它们的和中排除重复部分。

容斥原理:对n个事物,如果采用不同的分类标准,按性质a分类与性质b分类(如图),那么具有性质a或性质b 的事物的个数=Na+Nb-Nab。

例1:一个班有48人,班主任在班会上问:“谁做完语文作业?请举手!”有37人举手。

又问:“谁做完数学作业?请举手!”有42人举手。

最后问:“谁语文、数学作业都没有做完?”没有人举手。

求这个班语文、数学作业都完成的人数。

分析与解答:完成语文作业的有37人,完成数学作业的有42人,一共有37+42=79人,多于全班人数。

这是因为语文、数学作业都完成的人数在统计做完语文作业的人数时算过一次,在统计做完数学作业的人数时又算了一次,这样就多算了一次。

所以,这个班语文、数作业都完成的有:79-48=31人。

例2:某班有36个同学在一项测试中,答对第一题的有25人,答对第二题的有23人,两题都答对的有15人。

问多少个同学两题都答得不对?分析与解答:已知答对第一题的有25人,两题都答对的有15人,可以求出只答对第一题的有25-15=10人。

又已知答对第二题的有23人,用只答对第一题的人数,加上答对第二题的人数就得到至少有一题答对的人数:10+23=33人。

所以,两题都答得不对的有36-33=3人。

例3:某班有56人,参加语文竞赛的有28人,参加数学竞赛的有27人,如果两科都没有参加的有25人,那么同时参加语文、数学两科竞赛的有多少人?分析与解答:要求两科竞赛同时参加的人数,应先求出至少参加一科竞赛的人数:56-25=31人,再求两科竞赛同时参加的人数:28+27-31=24人。

例4:在1到100的自然数中,既不是5的倍数也不是6的倍数的数有多少个?分析与解答:从1到100的自然数中,减去5或6的倍数的个数。

从1到100的自然数中,5的倍数有100÷5=20个,6的倍数有16个(100÷6=16……4),其中既是5的倍数又是6的倍数(即5和6的公倍数)的数有3个(100÷30=3……10)。

容斥原理(试题)六年级上册数学人教版

容斥原理(试题)六年级上册数学人教版

容斥原理容斥原理,也称为重叠原理或包含与排除原理。

原理一:两个集合A,B 相交合并成一个集合C,C 的元素个数等于A ,B 的个数和减去A 、B 的公共元素的个数,如下图所示:即:C=A+B-AB 或 AB=A+B-C原理二:三个集合A.B,C 两两都交合并点一个集合D.D 的元素个数等于A,B.C 的个数减去A.B.C 两两公共元素加上A.B.C 公共元素的个数。

如下图所示:即D=A+B+C-AB-BC-AC+ABC 或ABC=D+AB+BC+AC-A-B-C 。

1. 某校五年级举行语文和数学竞赛,参加人数占全年级人数的25,参加语文占竞赛人数的25,参加数学竞赛的占竞赛人数的34,两项都参加的有12人,全年级共有多少人?2.36名学生参加数学竞赛,答对第一题的有25人,答对第二题的有23人,两题都答对的有15人,两题都没答对的有多少人?3.50名同学面向老师站成一行,老师先让大家从左到右按1,2,3,......依次报数,再让报数是4的倍数的同学向后转,接着又让报数是6的倍数的同学向后转.问:现在面向老师的同学还有多少名?4.有一栋居民楼,每家都订不同的两份报纸,该居民楼共订了三种报纸,其中《楚天都市报》34份,《武汉晚报》30份,《武汉晨报》22份,那么订《武汉晚报》和《武汉晨报》的共有多少家?5、胜一小学六年级课外活动分体育、音乐、书法三个小组,分别有54人,46人.36人同时参加体育.音乐的有4人,同时参加体育书法的有7人.同时参加着乐,书法的有10人。

三个组都参加的有2人,参加课外活动一共多少人?6、桌子上放有甲,乙,西三个正方形;甲、丙重叠部分占甲正方面积的14,乙丙重叠都分占乙正方形面积的25,丙正方形与甲.乙正方形重叠部分占丙正方形面积的19,甲正方形和乙正方形面积的和是丙正方形面积的13,求甲正方形与乙正方形面积的最简整数比?7、某校五年级共有110人,参加语文、数学、英语三科活动小组,每人至少参加一组,已知参加语文小组的有52人,只参加语文小组的有16人;参加英语小组的有61人,只参加英语小组的有15人,参加数学小组的有63人,只参加数学小组的有21人.那么三组都参加的有多少人?8、一次数学竞赛,小王做对的题目占题目总数的23.小李做错5题,两人都做错的题数占题目总数的14,小王做对了多少题?9、某班有60人,其中42人会游泳,46人会骑车,50人会溜冰,55人会打乒乓球,可以肯定至少有多少人这四项都会?10、40名同学在做3道数学题时,有25人做对第一题,有28人做对第二题,有31人做对第三题,那么至少有多少人做对了三道题?11.某班有50名学生,在一次测验中有26人满分,在第二次测验中有21人满分。

容斥原理课

容斥原理课
8、在1到500的全部自然数中,不是7的倍数,也不是9的倍数的数共有多少个?
9、六年级一班有45名同学,每人都参加暑假体育培训班,其中足球班报25人,篮球班报20人,游泳班报30人,足球、篮球都报者有10人,足球、篮球都报者有12人。问三项都报的有多少人?
10、向50名同学调查春游去颐和园还是去动物园的态度,赞成去颐和园的人数是全体的 3/5,其余不赞成;赞成去动物园的比赞成去颐和园的学生多3人,其余不赞成,另外对去两处都不赞成的学生数比对去两处都赞成的学生数的1/3多1人,同时去颐和园和去动物园都赞成和都不赞成的学生各有多少人?
例9:甲、乙、丙同时给100盆花浇水。已知甲浇了78盆,乙浇了68盆,丙浇了58盆,那么3人都浇过的花最少有多少盆?
例10:某班同学参加期末测试,得优秀成绩的人数如下:数学20人,语文20人,英语20人,数学、英语两科都是优秀成绩的有8人,数学、语文两科成绩都是优秀的有7人,语文、英语两科成绩都是优秀的有9人,三科都没得优秀成绩的有3人。请问:这个班最多有多少人?最少有多少人?
例1:一个班有学生48人,每人至少参加跑步、跳高两项比赛中的一项。已知参加跑步的有37人,参加跳高的有40人,请问:这两项比赛都参加的学生有多少人?
例2:一次数学小测验只有两道题,结果全班有10人全对,第一题有25人做对,第二题有18人做错。问:两题都做错的有多少人?
例3:李老师出Biblioteka 两道题,全班40人中,第一道题有30人对,第2题有12人未做对,两题都做对的有20人。请问:
例6.六一班有学生46人,其中会骑自行车的有19人,会游泳的有25人,既会骑车又会游泳的有7人,既不会骑自行车又不会游泳的有多少人?
例7.有128位旅客,其中25人既不懂英语、又不懂法语,有98人懂英语,75人懂法语,请问:既懂英语、又懂法语的有多少人?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第31讲容斥原理
例1在1~100的自然数中,不能被3也不能被5整除的数有多少个?
例2某班有52人,其中会下棋的有48人,会画画的有37人,会跳舞的有39人,这三项都会的至少有几人?
例3100名学生中,每人至少懂一种外语,其中75人懂法语、83人懂英语、65人懂日语,懂三种语言的有50人,懂两种外语的有多少人?
例4在1~143这143个自然数中,与143互质的自然数共有多少个? 例5某班学生参加语文、数学、英语三科考试,语文、数学、英语都得满分的分别有21人、l9人、20人。

语文、数学都得满分的有9人;数学、英语都得满分的有7人;语文、英语都得满分的有8人;另有5人三科都未得满分。

这个班最多能有多少人?
1、某班有学生46名,其中爱好音乐的有17人,爱好美术的有14人,既爱好音乐又爱好美术的有5人。

问:两样都不爱好的有多少人?
2、分母是105的最简真分数共有多少个?
3、一个家电维修站有80%的工人精通修彩电,有70%的工人精通修空调,10%的工人两项都不熟悉。

问:两项都精通的工人占百分之几?
4、在自然数1~100中,既不能被5整除也不能被9整除的数的和是多少?
5、在自然数1~200中,能被2整除,或能被3整除,或能被5整除的数共有多少个?
6、在100名学生中,爱好音乐的有56人,爱好体育的有75人,那么既爱好音乐又爱好体育的最少有多少人?最多有多少人?
7、64人订A、B、C三种杂志,订A杂志的有28人,订B杂志的有41人,订C杂志的有20人,订A、B两种杂志的有10人,订B、C两种杂志的有12人,订A、C两种杂志的有12人。

三种杂志都订的有多少人?8、某小学六年级的学生中有88%的是“歌迷”,80%的是“球迷”,60%的是“棋迷”。

那么,该校六年级学生“球迷”中至少有百分之几是“歌迷”?“棋迷”中至少有百分之几是“球迷”?
9、70名学生参加体育比赛,短跑得奖的31人,投掷得奖的36人,跳远得奖的29人,短跑与投掷两项都得奖的12人,跑、跳、投三项都得奖的有5人,只得跳远奖的7人,只得投掷奖的15人,求:(1)只得短跑奖的人数;(2)只得两项奖的人数;(3)一项奖都未得的人数。

10、如右图所示,甲、乙、丙三个正方形的面积分别为25平方厘米、16平方厘米和9平方厘米,它们叠在一起,盖住的面积为32平方厘米,且甲、乙公共部分为10平方厘米,乙、丙公共部分为6平方厘米,甲、丙公共部分为7平方厘米,求阴影部分面积。

相关文档
最新文档