用待定系数法求一次函数的解析式
用待定系数法确定一次函数解析式3

☆我能填
1.已知一次函数的图象经过点A(1,4)、B (4,2), 则这个一次函数的解析式为 ___________. 2.如图1,该直线是某个一次函数的图象, 则 此函数的解析式为_________.
(1)
(2)
3.已知y-2与x成正比例,且x=2时,y=4,则y与x 的函数关系式是_________;当y=3时, x=__________. 4.若一次函数y=bx+2的图象经过点A(-1,1), 则b=__________. 5.如图2,线段AB的解析式为____________.
(1)
(2)
∴这个一次函数的解析式为y=2x-1
尝试练习:
1.已知一次函数y=kx+2,当x=5时y的值 为4,求k值.
2.已知直线y=kx+b经过点(9,0)和点 (24,20),求k、b值.
待定系数法
例题:已知一次函数的图象经过点(3,5)与 (-4,-9).求这个一次函数的解析式.
像这样先设出函数解析式,再 根据条件确定解析式中未知的系 数,从而具体写出这个式子的方 法,叫做待定系数法.
巩固练习
1.已知直线y=kx+b经过点(2,4)和点 (-2,2),求k、b值.
2.假如有同学画了下面一条直线的图象, 你能否知道该函数的解析式呢?
3.已知一次函数y=kx+2,当x=5时y的 值为4,求k值.
4.已知一次函数的图象经过点(-1,3),且平行于直 线y=2x,求其解析式.
用待定系数法求一次函数的解析式

用待定系数法求一次函数的解析式
用待定系数法求一次函数的解析式
一次函数的解析式可以用待定系数法来求。
待定系数法是指,在未知系数的函数中假定各个未知系数都为一个常数,然后用它们来求解该函数,最后得出最终的解析式。
例如,一次函数为 y=2ax+b,那么可以用待定系数法求解解析式: (1) 先将未知系数 a 和 b 分别假定为常数 K1 和 K2。
即y=K1x + K2
(2) 用实验数据求出 K1 和 K2 的值。
例如,实验数据如下表:
x t1 t2 t3
y t3 t7 t11
由上表可知,当 x=1 时, y=K1*1 + K2=3;
当 x=2 时,y=K1*2 + K2=7;
当 x=3 时,y=K1*3 + K2=11.
设K1=2,代入上式可得K2=1,即K1=2,K2=1。
即K1+K2=2+1=3
(3) 将 K1 和 K2 带入原函数中,得出最终的解析式。
- 1 -。
待定系数法求一次函数解析式题目和解析过程

题目:用待定系数法求一次函数解析式的题目和解析过程在代数学中,待定系数法是一种常用的方法,用来求解未知系数的值。
当我们需要求一次函数的解析式时,待定系数法可以帮助我们找到正确的表达式。
下面,我将和你一起探讨待定系数法在求一次函数解析式中的应用。
1. 确定一次函数的一般形式我们知道一次函数的一般形式是 y = ax + b,其中a和b分别代表斜率和截距。
在使用待定系数法时,我们需要先确定这个一般形式,以便后续进行系数的求解。
2. 根据已知条件列出方程接下来,我们需要根据题目提供的已知条件来列出方程。
如果已知函数过点(1, 2)和斜率为3,我们可以写出方程 y = 3x + b,并代入点(1, 2)来求解b的值。
3. 求解待定系数使用待定系数法,我们将已知的条件代入一般形式中,得到一个包含未知系数a和b的方程。
根据已知条件进行求解,逐步确定待定系数的值。
在已知函数过点(1, 2)和斜率为3的情况下,我们可以设定方程y = 3x + b,代入点(1, 2),得到 2 = 3*1 + b,从而求解出b的值为-1。
4. 得出一次函数的解析式根据求解得到的待定系数,我们可以得出一次函数的解析式。
在本例中,我们已知斜率为3,截距为-1,因此得出的一次函数解析式为 y = 3x - 1。
总结回顾:待定系数法作为一种常用的代数方法,可以帮助我们求解一次函数的解析式。
在使用待定系数法时,我们需要先确定一次函数的一般形式,然后根据已知条件列出方程,逐步求解待定系数的值,最终得出一次函数的解析式。
个人观点与理解:通过使用待定系数法,我们可以更快速、更准确地求解一次函数的解析式,尤其在已知条件复杂或需要精确求解时,待定系数法可以发挥其优势。
掌握待定系数法也有助于我们在代数方程的求解过程中提高效率和准确性。
希望以上内容可以帮助你更全面、深刻地理解待定系数法在求一次函数解析式中的应用。
如果有任何问题或需要进一步探讨,欢迎随时与我联系。
知识卡片-待定系数法求一次函数解析式

待定系数法求一次函数解析式能量储备●确定一次函数的表达式y=k x+b(k≠0),只需要求出k,b的值即可,它需要两个独立的条件:这两个条件通常是两个点,或两对x,y的值.●用待定系数法确定一次函数的表达式:先设出一次函数的表达式,如y=k x+b(k≠0),再将两个已知点(通常情况下,其中一个点是与y轴的交点)的横、纵坐标或两对x,y的值分别代入y=kx+b中,建立关于k,b的两个方程,通过解这两个方程求出k和b的值,从而确定其表达式,这种方法即为待定系数法.通关宝典★基础方法点方法点1:用待定系数法确定一次函数的表达式例1在弹性限度内,弹簧的长度y(cm)是所挂物体质量x(kg)的一次函数.一根弹簧不挂物体时长9 cm;当所挂物体的质量为3 kg时,弹簧长12 cm.写出y与x之间的关系式,并求出所挂物体的质量为6 kg时弹簧的长度.分析:因为弹簧的长度y是所挂物体质量x的一次函数,所以可设函数关系式为y=k x+b(k≠0).解:设y=k x+b(k≠0),根据题意,得9=b,①12=3k+b.②所以k=1.所以y=x+9.当x=6时,y=6+9=15,即所挂物体的质量为6 kg时,弹簧的长度为15cm.★★易混易误点易混易误点1: 将正比例函数与一次函数表达式混淆例2已知y是x的一次函数,并且当x=0时,y=1;当x=2时,y=3,求它的表达式.解:设它的表达式为y=k x+b(k≠0),因为当x=0时,y=1,所以b=1.又因为当x=2时,y=3,所以2k+b=3.所以k=1.所以y=x+1.,分析:在利用待定系数法求一次函数表达式时,首先应设一次函数表达式为y=k x+b(k≠0).本题易把一次函数表达式设为y=k x,导致错误.蓄势待发考前攻略考查根据实际问题中的条件或图象确定一次函数(或正比例函数)的表达式.多以选择题或填空题的形式出现,难度较小.完胜关卡。
待定系数法求一次函数解析式题目和解析过程

待定系数法求一次函数解析式题目和解析过程摘要:1.待定系数法简介2.一次函数的概念和形式3.如何使用待定系数法求一次函数解析式4.解析过程示例5.总结正文:1.待定系数法简介待定系数法是一种数学方法,通过给定一些未知数的系数,然后根据已知条件建立方程组,求解这些系数,从而得到未知数的值。
这种方法在求解函数解析式时被广泛应用。
2.一次函数的概念和形式一次函数是指形如y=ax+b 的函数,其中a 和b 是常数,x 是自变量,y 是因变量。
在这个函数中,a 被称为斜率,它表示函数图像的倾斜程度;b 被称为截距,它表示函数图像与y 轴的交点。
3.如何使用待定系数法求一次函数解析式求解一次函数解析式的一般步骤如下:(1)确定函数的形式。
根据已知条件,先假设函数的形式为y=ax+b。
(2)列出方程组。
根据题目所给的条件,列出关于a 和b 的方程组。
(3)解方程组。
通过求解方程组,得到a 和b 的值。
(4)写出解析式。
将求得的a 和b 代入原假设的函数形式中,得到待求函数的解析式。
4.解析过程示例例如,如果已知函数经过点(1,2) 和(2,4),求该函数的解析式。
(1)假设函数形式为y=ax+b。
(2)列出方程组:a +b = 22a + b = 4(3)解方程组:将第一个方程变形为b = 2 - a,代入第二个方程得到2a + (2 - a) = 4,解得a = 2,再代入第一个方程得到b = 0。
(4)写出解析式:y = 2x。
5.总结待定系数法是求解一次函数解析式的有效方法,通过给定系数,建立方程组,求解系数,从而得到函数解析式。
19.2.2第3课时用待定系数法求一次函数的解析式教案

1. 作业布置:
- 基础巩固题:请学生完成教材第 chapter 页的练习题,重点在于运用待定系数法求解一次函数的解析式。
- 实践应用题:选取生活中的实际问题,要求学生运用一次函数的知识建立模型并求解,如“某商品的成本价与销售价之间的关系”。
- 拓展思考题:针对学有余力的学生,设计一些需要运用一次函数及其图象性质的综合性问题,提高学生的逻辑思维和问题解决能力。
2. 加强基础知识巩固:针对学生对理论知识的掌握不足,可以通过设计前置学习任务、开展小组互帮互学等活动,帮助学生夯实基础。
3. 丰富教学资源:利用信息化手段,如教育平台、在线资源等,为学生提供更多学习材料和拓展阅读,拓宽知识视野。
4. 加强个别辅导:关注学习困难的学生,提供个性化辅导,帮助他们克服学习中的困难,提高学习效果。
(二)存在主要问题
1. 教学评价方式单一:本节课的教学评价主要依赖于课堂提问和课后作业,缺乏多元化的评价手段,不能全面反映学生的学习情况。
2. 部分学生对理论知识的掌握不够扎实:在小组讨论中发现,部分学生对一次函数的基本概念和待定系数法的理解不够深入。
(三)改进措施
1. 多元化教学评价:在今后的教学中,可以引入课堂观察、小组展示、项目作业等多种评价方式,更全面地了解学生的学习进度和掌握程度。
- 着重讲解待定系数法中的关键步骤,如选择合适的点、列出方程组、求解未知系数等。
- 强调求解过程中可能遇到的困难,如方程组求解方法、符号的注意事项等。
3. 巩固练习(15分钟)
- 设计具有代表性的习题,让学生独立完成,巩固待定系数法的应用。
- 分组讨论,让学生相互交流解题思路,培养合作解决问题的能力。
- 观看视频资料时,建议学生关注讲解者对待定系数法的解题思路和技巧,以及如何将一次函数应用于实际问题。
用待定系数法求一次函数解析式

四、画龙点晴
规律1:确定一个待定系数需要一个条件, 规律 :确定一个待定系数需要一个条件, 确定两个待定系数需要2个条件 个条件. 确定两个待定系数需要 个条件. 规律2:确定正比例函数的表达式需要一个条件, 规律 :确定正比例函数的表达式需要一个条件,
确定一次函数的表达式需要2个条件. 确定一次函数的表达式需要 个条件. 个条件
四、画龙点晴
1、列方程解应用题的基本步骤有哪些? 、列方程解应用题的基本步骤有哪些? 2、用待定系数法求一次函数解析式的基本步骤: 、用待定系数法求一次函数解析式的基本步骤 找两点坐标 设 列 解 答
思路: 思路:求一次函数的解析式 求k、b的值 列二元一次方程组 解方程组
五、融会贯通——分类与分层 融会贯通 分类与分层
{
设 列 解 答
{
一次函数的解析式为
y=2x-1
三
1、已知一次函数y=kx+b ,当x=2时y的值为 ,当x=- 、已知一次函数 = + 的值为4, =-2 = 时 的值为 =- 时, y的值为 ,求k、b的值 (P120/6) 的值为-2, 、 的值.( ) 的值为 的值 2、已知直线 y=kx+b经过点(9,0)和点(24,20),求k、 、 经过点( , )和点( , ), ),求 、 = + 经过点 b的值 ( P118/2) 的值. 的值 ) 3、已知一次函数的图象经过点(-4,9)与(6,3),求这个函数 、已知一次函数的图象经过点 , 与 , 的解析式。( 的解析式。( P120/7) ) 4、 已知直线 y=kx+b经过点(3,6)和点 、 经过点( , ) = + 经过点 这条直线的函数解析式。 这条直线的函数解析式。 ( P137/4) )
5 = 3k + b − 9 = −4k + b 解得 k =2 b = −1
待定系数法求一次函数解析

感谢您的观看
THANKS
未知参数较多或未知参数之间的关系不明确
待定系数法更为适用,可以通过设立方程组求解。
与其他方法的结合使用
• 在某些情况下,可能需要结合待定系数法和点斜式或两点式来 求解一次函数的解析式。例如,已知一点和斜率,同时还需要 确定其他参数时,可以先使用点斜式得到初步的函数解析式, 再结合待定系数法求解其他参数。
实例二:已知与x轴交点求一次函数解析式
总结词
利用与x轴交点坐标求一次函数解析式
VS
详细描述
给定一次函数与x轴的交点$(x_0, 0)$,通 过待定系数法可以求出一次函数$y = kx + b$的解析式。首先,根据交点坐标计算斜 率$k = frac{0 - b}{x_0 - 0} = frac{b}{x_0}$,然后代入交点坐标$(x_0, 0)$求出截距$b = 0 - kx_0$,最终得到一 次函数解析式。
实例三:已知与y轴交点求一次函数解析式
总结词
利用与y轴交点坐标求一次函数解析式
详细描述
给定一次函数与y轴的交点$(0, y_0)$,通过 待定系数法可以求出一次函数$y = kx + b$ 的解析式。首先,根据交点坐标计算截距 $b = y_0$,然后根据斜率$k$和截距$b$ 的关系计算斜率$k = frac{y_0 - b}{0 - 0} = frac{y_0 - y_0}{0} = 0$,最终得到一次函 数解析式。
03
待定系数பைடு நூலகம்求一次函数解析 步骤
设定一次函数形式
一次函数的一般形式为 $y = kx + b$,其中 $k$ 和 $b$ 是待 求的系数。
根据题目条件,设定一次函数的具体形式,例如 $y = kx + b$。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求一次函数的关系式
学习小组: 组内编号: 姓名: 组内评价: 教师评价: 学习目标:会用待定系数法求一次函数的解析式
学会利用一次函数的解析式、性质、图象解决实际问题
学习重点:会用待定系数法求一次函数的关系式
学习难点:学会利用一次函数的解析式、性质、图象解决实际问题
知识点一 用待定系数法求一次函数的关系式
待定系数法:先设待求函数表达式(其中含有待定系数),再根据条件列出方程或方程组,求出待定系数,从而得到所求结果的方法,叫做待定系数法.
例1 已知一次函数的图象经过A (-1,0),B (3,4)两点,求此函数的关系式.
规律总结:用待定系数法求一次函数关系式的一般步骤是:
① 设待求函数关系式;② 列方程(组);③ 求出结果,写出关系式.
变式训练1 如图,直线AB 对应的函数表达式是( )
32
3+-=x y A 、
33
2+-=x y B 、 32
3+=x y C 、 332+=x y D 、 例2 已知3-y 与x 成正比例,且2=x 时,7=y .
(1)求y 与x 之间的关系式;(2)当x =4时,求y 的值;(3)当y =4时,求x 的值.
变式训练2 若.11032y x y x x y 时,求,则当是,成正比例,且当与===-+.
例3 ,如果两直线没轴交于点与,直线轴交于点与直线B x b kx y A x x y +=+=2 有交点,.2的解析式,求直线且b kx y AB +==
知识点二 一次函数的实际应用
例4 甲、乙二人骑自行车同时从张庄出发,沿同一条路线去李庄.甲行驶20分钟后因事耽误了一会儿,事后继续按原速行驶.如图表示甲、乙二人骑自行车行驶的路程y (千米)随时间x (分)变化的图象(全程).根据图象回答下列问题:(1)以比甲晚多长时间到达李庄?(2)甲因事耽误了多久?(3)x 为何值时,乙行驶的路程比甲行驶的路程多1千米?
当堂检测
1、已知一次函数()()2112,和,的图形经过--+=b kx y ,则当的值是时,y x 5=( ).
17、A 17-、B 13、C 13-、D
2、与直线的直线是轴上的交点的纵坐标是平行,且在232-+=y x y ( ).
32+-=x y A 、 23+-=x y B 、 22-=x y C 、 52-=x y D 、。