气体分子运动的特点
气体的性质

1.气体的等温变化玻意耳定律
(1)内容:一定质量的气体,在温度不变的情况下,它的压强跟体积成正比.
(2)表达式为: 或 .
2.气体的等容变化查理定律
(1)内容:一定质量的气体,在体积不变的情况下,它的压强跟热力学温度成正比.
(2)表达式为: 或者 常数.
3.气体的等压变化盖·吕萨克定律
3.(2012福建)(2)空气压缩机的储气罐中储有1.0atm的空气6.0L,现再充入1.0atm的空气9.0L。设充气过程为等温过程,空气可看作理想气体,则充气后储气罐中气体压强为_____。
A.2.5atm B.2.0 atm C.1.5 atm D.1.0 atm
4.如图所示,左边的体积是右边的4倍,两边充以同种气体,温度分别为20℃和10℃,此时连接两容器的细玻璃管的水银柱保持静止,如果容器两边的气体温度各升高10℃,忽略水银柱及容器的膨胀,则水银柱将( )
系统内能减小
2.热力学第二定律
(1)不可能使热量由低温物体传递到高温物体,而不引起其他变化(热传导的方向)。
(2)不可能从单一热源吸收热量并把它全部用来做功,而不引起其他变化(机械能和内能转化过程的方向性)。或第二类永动机是不可能制成的。
3.热力学第三定律
热力学零度不可达到。
典型例题
1.(2010·广东理综·T14)图是密闭的气缸,外力推动活塞P压缩气体,对缸内气体做功800J,同时气体向外界放热200J,缸内气体的
(i)求玻璃泡C中气体的压强(以mmHg为单位)
(ii)将右侧水槽的水从0°C加热到一定温度时,U形管内左右水银柱高度差又为60mm,求加热后右侧水槽的水温。
16.
图9
(12分)如图9甲是一定质量的气体由状态A经过状态B变为状态C的V—T图象.已知气体在状态A时的压强是1.5×105Pa.
气体分子运动快而速度慢的原因

气体分子运动快而速度慢的原因主要有以下几个方面:
1. 气体分子的自身性质:气体分子具有质量轻、运动自由度大的特点,使得它们更容易受到外界因素的影响,如温度、压强等。
2. 气体分子的相互作用力:气体分子之间存在相互作用的力,包括碰撞、范德华力等。
这些力会使分子之间的相对位置发生变化,从而影响它们的运动状态。
3. 气体分子的热运动:气体分子的热运动是指分子在空间中的无规则运动,它受到温度的影响。
当温度升高时,分子的热运动增强,速度加快,反之则减慢。
4. 气体分子的扩散:气体分子的扩散是指气体分子在空间中的均匀分布过程,它受到浓度的影响。
当浓度升高时,分子的扩散速度加快,反之则减慢。
综上所述,气体分子运动快而速度慢的原因主要与分子自身的性质、分子之间的相互作用力、分子的热运动以及分子的扩散等因素有关。
这些因素共同作用,使得气体分子的运动状态呈现出复杂性和多样性。
气体分子运动

气体分子运动气体是一种物质状态,在我们周围的自然界中随处可见。
它是由大量离散的分子或原子组成的,这些分子或原子之间几乎没有相互作用力。
由于气体分子之间的相互作用力很小,气体具有可压缩性、可扩散性和可变形性的特点。
气体分子的运动是实现这些特性的重要因素。
根据运动的规律,气体分子可以分为三种运动状态,即平动、转动和振动。
首先是平动。
气体分子通过在三维空间中的平移运动来改变自己的位置。
这种平动是沿着直线路径进行的,它受到碰撞和其它的分子运动所影响。
由于平动速度的差异,气体分子既有快速的运动,也有缓慢的运动。
其次是转动。
气体分子在平行于它们的轴线上围绕自己的轴旋转。
这种转动使得气体分子具有角动量,从而增加了气体的宏观动能。
最后是振动。
气体分子在运动过程中会发生弹性碰撞,这种碰撞会引起分子内部原子之间的振动。
振动使得气体分子能量的分布更加均匀,并且能够维持气体的温度。
气体分子运动的速度与温度有关。
根据麦克斯韦分布定律,气体分子的速度符合一定的分布规律。
在任何给定的温度下,气体分子的速度呈现高斯分布。
高斯分布曲线呈钟形,即具有一个峰值,表示分子最可能具有的速度。
在室温下,气体分子的速度约为每秒500米。
气体分子运动还涉及碰撞行为。
由于气体分子具有很高的动能,它们在运动过程中会不断碰撞彼此。
这些碰撞使得气体分子不断地改变自己的速度和方向。
同时,由于碰撞的动量守恒和动能守恒原理,碰撞后分子的总能量保持不变。
因此,气体分子的碰撞是维持气体动力学平衡的重要因素。
气体分子的运动还受到压力的影响。
根据理想气体状态方程,气体的压力与温度和体积之间存在一定的关系。
当气体受到外部压力时,气体分子在碰撞和运动中受到的力也会增加,从而使气体的压力增大。
总而言之,气体分子的运动是气体性质的决定因素之一。
平动、转动和振动的运动形式使得气体分子能够具有可压缩性、扩散性和可变形性。
气体分子的速度与温度相关,并且通过碰撞行为不断地改变自己的速度和方向。
气体的温度与分子运动

气体的温度与分子运动气体是物质存在的状态之一,其特点是分子之间的间隔较大,分子运动自由而混乱。
气体的温度与分子运动之间存在着密切的关系,温度的升高会使气体分子的运动速度增加,而温度的降低则会导致气体分子的运动速度减慢。
本文将探讨气体的温度与分子运动之间的关系,并从微观角度解释这一现象。
一、气体的分子运动气体分子是以高速无规则运动的方式存在的。
根据动理论,气体分子不断地做无规则的热运动,具有三种基本运动状态:平动、转动和振动。
其中平动是最主要的运动形式,指的是分子在容器内的直线运动。
分子的平动速度与运动趋势是完全随机的,没有特定的方向。
二、气体温度的概念气体温度是指气体中分子热运动状态的一种表征,它反映了气体分子的平均动能。
温度的高低决定了分子热运动的剧烈程度。
通常,我们使用摄氏度(℃)或开尔文(K)来表示气体的温度。
三、温度与分子平均动能的关系根据气体动理论,气体分子的平均动能与温度成正比。
具体来说,当温度升高时,气体分子的平均动能也会增加;反之,温度降低时,气体分子的平均动能减少。
这是因为温度的增加意味着气体分子获得更多的热能,分子的平均速度也会增加。
在恒定体积下,气体分子的速度增加意味着分子碰撞的频率增加,分子间碰撞的力量也会增强。
同时,分子速度的增加也增加了分子与容器壁之间的碰撞频率和力量,从而增加了气体的压力。
四、温度与分子速度的关系温度与气体分子速度之间存在一定的关系。
根据麦克斯韦-玻尔兹曼分布定律,分子速度与温度之间的关系可以用以下公式表示:v = √(2kT/m)其中,v代表气体分子的速度,k为玻尔兹曼常数,T为温度,m为气体分子的质量。
由于速度与温度成正比,所以当温度升高时,分子速度也会增加。
这与我们前面提到的气体分子的平均动能与温度成正比的结论相一致。
五、温度对气体性质的影响温度的变化对气体性质有着明显的影响。
温度的升高会使气体分子的运动更加剧烈,气体分子之间碰撞的频率和力量增加,导致气体的压力增大。
高中 高考物理 气体和热力学定律

续表 玻意耳定律 查理定律 盖—吕萨克定律
适用 实际气体在压强不太大(相对于 1 标准气压)、 温度不太低(相 条件 对于常温)的情况遵守三个实验定律
4.理想气体的状态方程 (1)理想气体 ①宏观上讲, 理想气体是指在任何条件下始终遵守气体实验定律 的气体。实际气体在压强 不太大、温度 不太低 的条件下,可视为理 想气体。
(3)压强(p) ①定义:作用在器壁单位面积上的压力叫做气体压强。 ②产生原因: 由于大量气体分子无规则的运动而频繁碰撞 器壁,形成对器壁各处均匀、持续的压力。 ③决定气体压强大小的因素 宏观:决定于气体的 温度 和 体积 。 微观:决定于分子的 平均动能 和分子的 密集程度 (单位 体积内的分子数)。
解析:开始时由于活塞处于静止,由平衡条件可得 mg p0S+mg=p1S,则 p1=p0+ S 当气缸刚提离地面时气缸处于静止,气缸与地面间无 作用力,因此由平衡条件可得 p2S+Mg=p0S Mg 则 p2=p0- S 。 mg 答案:p0+ S Mg p0- S
2.[考查液柱封闭的气体压强]若已知大气压强 为 p0,在图中各装置均处于静止状态,图中液体密 度均为 ρ,求被封闭气体的压强。
解析:在图甲中,以高为 h 的液柱 为研究对象,由二力平衡知 p 气 S=-ρghS+p0S 所以 p 气=p0-ρgh
在图乙中,以 B 液面为研究对象,由平衡方程 F 上=F 下 有:p 气 S+ρghS=p0S p 气=p0-ρgh 在图丙中,以 B 液面为研究对象,有 3 p 气+ρghsin 60° =pB=p0,所以 p 气=p0- ρgh 2 在图丁中,以液面 A 为研究对象,由二力平衡得 p 气 S=(p0+ρgh1)S,所以 p 气=p0+ρgh1。 答案:甲:p0-ρgh 乙:p0-ρgh 3 丙:p0- ρgh 2 丁:p0+ρgh1
气体的性质分子运动的规律与特点

气体的性质分子运动的规律与特点气体是一种常见的物质状态,其性质由分子运动的规律与特点决定。
本文将探讨气体的性质、分子运动的规律以及分子运动的特点,展示气体的独特性质。
一、气体的性质气体具有以下几个主要性质:1. 可压缩性:由于气体分子之间的间距相对较大,分子之间存在较弱的相互作用力。
因此,在条件改变时,气体可以被压缩或膨胀。
2. 可扩散性:由于气体分子具有较高的运动速度,它们可以在容器中自由运动,从而导致气体的扩散现象。
3. 可混合性:气体分子之间的间距较大,因此不同气体分子可以相互穿插,容易发生混合。
4. 可溶性:气体分子可以溶解在液体或固体中,这种溶解是通过分子间的相互吸引力实现的。
二、分子运动的规律气体分子的运动符合以下几个规律:1. 碰撞运动:气体分子不断进行碰撞运动,它们之间发生弹性碰撞,相互之间无损耗。
2. 自由运动:气体分子在容器中进行自由运动,其运动轨迹是随机的。
3. 高速运动:气体分子具有较高的平均速度,其速度与温度成正比。
4. 随机运动:气体分子的运动是无规则、无序的,其运动方向、速度和能量都是随机变化的。
三、分子运动的特点气体分子的运动具有以下几个特点:1. 熵增特点:气体分子的运动方式决定了气体系统的熵增特点。
根据热力学第二定律,气体系统的熵总是趋于增加,而不会减少。
2. 原子间距离较大:相比固体和液体,气体分子之间的间距较大。
这使得气体具有较低的密度和可压缩性。
3. 热传导效果差:气体分子之间的碰撞运动较为频繁,但碰撞的时间短暂,传递热量的效果较差。
4. 动能变化较大:气体分子的速度与温度成正比,因此在温度变化较大的情况下,气体分子的动能也会发生较大变化。
综上所述,气体的性质主要由分子运动的规律与特点所决定。
气体具有可压缩性、可扩散性、可混合性和可溶性等特点。
气体分子的运动遵循碰撞运动、自由运动、高速运动和随机运动的规律。
气体分子的运动特点包括熵增特点、原子间距离较大、热传导效果差和动能变化较大。
气体分子运动理论

学科:物理教学内容:气体分子运动理论【根底知识精讲】1.气体分子运动的特点(1)气体分子之间的距离很大,距离大约是分子直径的10倍,因此除了相互碰撞或者跟器壁碰撞外,气体分子不受力的作用,在空间自由移动.气体能充满它们所能到达的空间,没有一定的体积和形状.(2)每个气体分子都在做永不停息的运动,大量气体分子频繁地发生碰撞使每个气体分子都在做杂乱无章的运动.(3)大量气体分子的杂乱无章的热运动,在宏观上表现出一定的规律性.①气体分子沿各个方向运动的数目是相等的.②对于任一温度下的任何气体来说,多数气体分子的速率都在某一数值范围之内,比这一数值范围速率大的分子数和比这一数值范围速率小的分子数依次递减.速率很大和速率很小的分子数都很少.在确定温度下的某种气体的速率分布情况是确定的.在温度升高时,多数气体分子所在的速率范围升高,而且在这一速度范围的分子数增多.2.气体压强的产生(1)气体压强的定义气体作用在器壁单位面积上的压力就是气体的压强,即P=F/S.(2)气体压强的形成原因气体作用在器壁上的压力是由碰撞产生的,一个气体分子和器壁的碰撞时间是极其短暂的.它施于器壁的作用力是不连续的,但大量分子频繁地碰撞器壁,从宏观上看,可以认为气体对器壁的作用力是持续的、均匀的.(3)气体压强的决定因素①分子的平均动能与密集程度从微观角度来看,气体分子的质量越大,速度越大,即分子的平均动能越大,每个气体分子撞一次器壁对器壁的作用力越大,而单位时间内气体分子撞击器壁的次数越多,对器壁的总压力也越大,而撞击次数又取决于单位体积内分子数(分子的密集程度)和平均动能(分子在容器中往返运动着,其平均动能越大,分子平均速率也越大,连续两次碰撞某器壁的时间间隔越短,即单位时间内撞击次数越多),所以从微观角度看,气体的压强决定于气体的平均动能和密集程度.②气体的温度与体积从宏观角度看,一定质量的气体的压强跟气体的体积和温度有关.对于一定质量的气体,体积的大小决定分子的密集程度,而温度的上下是分子平均动能的标志.(4)几个问题的说明①在一个不太高的容器中,我们可以认为各点气体的压强相等的.②气体的压强经常通过液体的压强来反映.③容器内气体压强的大小与气体的重力无关,这一点与液体的压强不同(液体的压强是由液体的重力造成的).这是由于一般容器内气体质量很小,且容器高度有限,所以不同高度处气体分子的密集程度几乎没有差异.所以气体的压强处处相等,即压强与重力无关.④对于地球大气层这样的研究对象,由于不同高度处气体分子的密集程度不同,温度也有明显差异,所以不同高度差处气体的压强是不同的.这种情况下气体的压强与重力有关.3.对气体实验定律的微观解释(1)玻意耳定律的微观解释①一定质量的气体,温度保持不变,从微观上看表示气体分子的总数和分子平均动能保持不变,因此气体压强只跟单位体积内的分子数有关.②气体发生等温变化时,体积增大到原来的几倍,单位体积内的分子数就减少到原来的几分之一,压强就会减小到原来的几分之一;体积减小到原来的几分之一,单位体积内的分子数就会增加到原来的几倍,压强就会增大到原来的几倍,即气体的压强和体积的乘积保持不变.(2)查理定律的微观解释①一定质量的理想气体,体积保持不变时,从微观上看表示单位体积内的分子数保持不变,因此气体的压强只跟气体分子的平均动能有关.②气体发生等容变化时,温度升高,气体分子的平均动能增大,气体压强会跟着增大;温度降低,气体分子的平均动能减小,气体压强会跟着减小.(3)盖·吕萨克定律的微观解释①一定质量的理想气体,压强不变时,从微观上看是单位体积内分子数的变化引起的压强变化与由分子的平均动能变化引起的压强变化相互抵消.②气体发生等压变化时,气体体积增大,单位体积内的分子数减小,会使气体的压强减小,气体的温度升高,气体分子的平均动能增大,才能使气体的压强增大来抵消由气体体积增大而造成的气体压强的减小;相反,气体体积减小,单位体积内的分子数增多,会使气体的压强增大,只有气体的温度降低,气体分子的平均动能减小,才能使气体的压强减小来抵消由气体体积减小而造成的气体压强的增大.4.理想气体内能及变化理想气体,是我们在研究气体性质时所建立的理想模型,它指的是不考虑气体分子间相互作用力,这是由于气体分子间距离较远,已超过10r0,故可忽略气体分子间作用力,这样理想气体的内能就取决于分子的总数目和分子的平均动能,而分子的数目又由气体的摩尔量决定,分子的平均动能的标志是气体的温度,所以理想气体的内能就可用摩尔量和温度这两个宏观物理量来衡量了,而对于一定质量的理想气体而言,它的内能只由温度来衡量.也就是说,对一定质量的理想气体,它的内能是否发生变化,只需看它的温度是否变化了就可以了,温度升高,内能增大;温度降低,内能减小.理想气体做功与否,只需观察它的体积,假设体积增大,那么气体对外界做功;体积减小,那么外界对气体做功.根据能的转化和守恒定律,一定质量的理想气体的内能的改变量等于气体吸收的热量与外界对气体做功之和,即△E=Q+W.【重点难点解析】重点气体压强的产生和气体实验定律的微观解释.难点用统计的方法分析气体分子运动的特点.例 1 一定质量的理想气体,当体积保持不变时,其压强随温度升高而增大,用分子动理论来解释,当气体的温度升高时,其分子的热运动加剧,因此:①;②从而导致压强增大.解析气体的压强是由大量的气体分子频繁碰撞器壁产生的,压强的大小决定于单位体积内的分子数和分子的平均动能,一定质量的理想气体,体积不变时,单位体积内分子数不变;温度升高时,分子运动加剧,与器壁碰撞速率增大,冲力增大,同时碰撞时机增多,故压强变大.答案 ①分子每次碰撞器壁时给器壁的冲力增大 ②分子在单位时间对单位面积器壁碰撞次数增多.说明 此题主要考查气体压强的微观解释.分析时要结合分子动理论,压强产生原因综合分析.正确理解决定压强的两个因素是关键.例2.一个密闭的绝热容器内,有一个绝热的活塞将它隔成AB 两局部空间,在A 、B 两局部空间内封有相同质量的空气,开始时活塞被销钉固定.A 局部气体的体积大于B 局部气体的体积,温度相同,如以下图所示.假设拔出销钉后,到达平衡时,A 、B 两局部气体的体积V A 与V B 的大小,有( )A.V A >V BB.V A =V BC.V A <V BD.条件缺乏,不能确定解析 对气体压强大小决定因素的理解和物理过程物理情境的分析是正确解决此题的关键.初态两气体质量相同,V A >V B ,因此气体分子数密度不同,ρA <ρB ,又由于温度相同,根据气体压强的决定因素可知P A <P B .当活塞销钉拿掉,由于ρA <ρB ,所以活塞向A 气方向移动,活塞对A 气做功,B 气对活塞做功,导致A 气体密度增加.温度升高,而B 气体密度减小,温度降低,直至P A ′=P B ′,此时T A ′>T B ′.又由于最终两边气体压强相等活塞才能静止,而两边气体质量相等,A 气温度高于B 气,两边压强要想相等,只有A 气体密度小于B 气体密度,故最终一定是V A ′>V B ′,A 选项正确.答案 A 正确说明 此题假设对气体压强大小决定因素不理解,又不清楚销钉拔掉后物理情境的变化,极易错选B 或C.【难题巧解点拨】例1 对于一定质量的理想气体,以下四个论述中正确的选项是( )A.当分子热运动变剧烈时,压强必变大B.当分子热运动变剧烈时,压强可以不变C.当分子间的平均距离变大时,压强必变小D.当分子间的平均距离变大时,压强必变大解析 对于理想气体:①分子热运动的剧烈程度由温度上下决定;②分子间的平均距离由气体体积决定;③对于一定量的理想气体,TPV =恒量. A 、B 选项中,“分子热运动变剧烈〞说明气体温度升高,但气体体积变化情况未知,所以压强变化情况不确定,A 错误B 正确.C 、D 选项中,“分子间的平均距离变大〞说明气体体积变大,但气体温度变化情况未知,故不能确定其压强变化情况,C 、D 均错误.答案 选B.点评 此题考查分子运动理论和理想气体状态的简单综合.注意从分子运动理论深刻理解理想气体的三个状态参量,从状态方程判定三个参量之间的变化关系.例2 如以下图所示,直立容器内容部有被隔板隔开的A、B两局部气体,A的密度小,B 的密度大,抽去隔板,加热气体,使两局部气体均匀混合,设在此过程气体吸热Q,气体内能增量为△E,那么( )A.△E=QB.△E<QC.△E>QD.无法比拟解析 A、B气体开始的合重心在中线下,由于气体分子永不信息地运动,抽去隔板后,A、B两局部气体均在整个容器中均匀分布,因此合重心在中线处,造成重力势能增大,由能量守恒定律得:吸收热量一局部增加气体的内能,一局部增加重力势能,所以B正确.答案选B.点评此题要综合应用气体分子运动论和能量守恒定律的知识求解.【典型热点考题】例让一定质量的理想气体发生等温膨胀,在该过程中( )A.气体分子平均动能不变B.气体压强减小C.气体分子的势能减小D.气体密度不变解析温度是物体分子平均动能的标志,温度不变,气体分子平均动能不变,所以A正确,由密度定义及题意得到D错误;理想气体没有分子势能,故C错;由玻意耳定律知气体等温膨胀时其压强减小.答案选AB.【同步达纲练习】1.质量一定的某种气体,在体积保持不变的情况下,将气体的温度由-13℃升高到17℃,那么保持不变的是( )A.压强B.分子的平均速率C.分子的平均动能D.气体密度2.气体的压强是由以下哪种原因造成的( )A.气体分子对器壁的吸引力B.气体分子对器壁的碰撞力C.气体分子对器壁的排斥力D.气体的重力3.一定质量的理想气体,在压强不变的条件下,体积增大,那么( )A.气体分子的平均动能增大B.气体分子的平均动能减小C.气体分子的平均动能不变D.条件缺乏,无法判定气体分子平均动能的变化情况4.在一定温度下,当气体的体积减小时,气体的压强增大,这是由于( )A.单位体积内的分子数变大,单位时间内对器壁碰撞的次数增多B.气体分子密度变大,分子对器壁的吸引力变大C.每个气体分子对器壁的平均撞击力变大D.气体分子的密度变大,单位体积内分子的重量变大5.两容积相等的容器中,分别装有氢气和氧气,且两容器中的气体质量相等,温度相同,那么此两容器中( )A.氧分子的平均速率与氢分子的平均速率相等B.氧分子平均速率比氢分子的平均速率小C.氧分子的个数比氢分子的个数多D.氧分子的个数和氢分子的个数相等6.对一定质量的理想气体,以下说法正确的选项是( )A.压强增大,体积增大,分子的平均动能一定增大B.压强减小,体积减小,分子的平均动能一定增大C.压强减小,体积增大,分子的平均动能一定增大D.压强增大,体积减小,分子的平均动能一定增大【素质优化练习】1.当两容器中气体的温度、压强、体积都相同时,下面说法正确的选项是( )A.两者是同种气体B.两者气体质量一定相同C.两者气体含有的热量相同D.两者具有相同的分子数2.高山上某处的气压为0.40atm,气温为-30℃,那么该处每立方厘米大气中的分子数为 .(阿伏加得罗常数为6.0×1023mol-1,在标准状态下1mol气体的体积为22.4L.〔〕3.如以下图所示的状态变化曲线是一定质量气体的变化图线,从a→b是一条双曲线,那么气体从b→c的过程中气体分子的密度 ,从c→a过程中气体分子的平均动能__________(填“增大〞、“减小〞或“不变〞)4.根据气体分子动理论,可以从微观上来解释玻意耳定律:一定质量的某种气体温度保持不变,也就是分子的和不变,即每个分子平均一次碰撞器壁的冲量;在这种情况下,体积减小,分子增大,单位时间内,碰撞到器壁单位面积上的分子个数 ,从而导致压强增大.【生活实际运用】1.一个细口瓶开口向上放置,细口瓶的容积为1升,周围环境的大气压强为1个标准大气压.当细口瓶内空气温度从原来的0℃升高到10℃时,瓶内气体分子个数减少了多少个?阿伏加得罗常数N A=6.0×1023mol-1,要求一位有效数字.【知识验证实验】用分子动理论解释气体实验定律根本的思维方法是:依据描述气体状态的宏观物理量(m、p、V、T)与表示气体分子运动状态的微观物理量(N、n、v)间的相关关系,从气体实验定律成立的条件所描述的宏观物理量(如m一定和T不变)推出相关不变的微观物理量(如N一定和v不变),再根据宏观自变量(如V)的变化推出微观自变量(如n)的变化,再依据推出的有关微观量(如v和n)变与不变的情况推出宏观因变量(如p)的变化情况.【知识探究学习】如以下图所示,一定质量的理想气体由状态a 经状态b 变化到状态c,其变化过程如下图,以下说法正确的选项是( )A.ab 过程吸热大于bc 过程放热B.ab 过程吸热小于bc 过程放热C.ab 过程吸热大于bc 过程吸热D.ab 过程吸热小于bc 过程吸热提示:①a →b 是等压过程∵V B >V A ∴T B >T A∴a →b 过程,气体对外做功且内能增加,气体吸收热量②b →c 是等容过程 ∵P C <P B ∴T C <T Bb →c 过程气体不对外界做功,外界也不对气体做功,但气体内能减小,所以b →c 气体放热 ③由TPV =恒量及图像知T A =T C ,故a →b →c 的全过程中内能没有变化,综上所述a →b →c 中,气体对外做功,由能量守恒定律得a →b →c 过程中气体吸热,结合前面分析,ab 过程吸热一定大于bc 过程放热.所以选项A 正确.参考答案:【同步达纲练习】1.D2.B3.A4.A5.B6.A【素质优化练习】1.D2.1.2×1019个3.减小;减小4.质量,热运动平均速率,不变,数密度,增多.【生活实际运用】提示 ρ2T 2=ρ1T 1 ∴ρ2=21T T ρ1 那么n 2=21T T n 1△n=(n 1-n 2)= 212T T T -×4.221×6.02×1023=4.2228302.6⨯×1023≈1×1020个。
气体分子运动特点

气体分子运动特点:
1、气体分子间有很大的空隙。
气体分子之间的距离大约是分子直径的10倍;
2、气体分子之间的作用力十分微弱。
在处理某些问题时,可以把气体分子看作没有相互作用的质点;
3、气体分子除了相互碰撞或者碰撞器壁外,不受力的作用,可以再空间自由移动,因而气体可以充满它所能达到的空间。
4、气体分子运动的速率很大,常温下大多数气体分子的速率都达到数百米每秒。
离这个数值越远,分子数越少,表现出“中间多,两头少”的统计分布规律。
5、对大量气体分子,由统计方法知,在任一时刻气体分子沿各个方向运动的数目是均等的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
气体分子运动的特点
气体分子运动的特点:分子间空隙大:除了碰撞的瞬间外,相互作用力微弱:分子运动速率很大。
在常温、常压下,虽然气体中的分子分布远比液体或固体稀疏,但每厘米3气体中仍含有数千亿亿个分子。
大量分子永不停息地运动,分于间必定不断地发生碰撞,1秒种内一个气体分子与其他气体分子的碰撞竟可达几十亿次!使得每个分子的速度大小和方向频繁地改变,造成气体分子做杂乱无章的热运动。
虽然气体分子做无规则的热运动,但对大量分子整体来说,分子的运动却表现出一定的规律。
在分子运动方向方面,正是因为大量分子在碰撞中(包括分子间和分子与器壁间)的运动状况十分混乱,因此在同一时刻向任一方向运动的分子都有,可以认为在任一时刻分子沿各方向运动的机会均等。
也就是说,沿任一取向的等大的截面范围内在同一时间间隔内通过的热运动分子数应是相等的。
这里所说的“数目相等”是对大量分子用统计方法得到的一个统计平均数。
分子数越多,所得结果跟实际情况符合得越好。