2013年日照市中考数学试题及答案

合集下载

山东日照中考《数学》试题及答案.doc

山东日照中考《数学》试题及答案.doc

2013山东日照中考《数学》试题及答案-中考总结:话题作文与学期梳理课程特色:以写作问题为纲,以解决中高考语文写作问题和讲授踩分词为主,每节课仍会讲解2—3篇阅读题,作为对应练习和提高。

学习时,要求学生熟记理解每一讲的”地图内容”,以便考试时融会运用。

适合学员想扎实写作基础,稳固提高作文水平的初中生赠送《中学语文知识地图—中学必考文学常识一本通》第十五章:学期课程融汇与升华课程特色:以解决阅读问题为纲,融会踩分词和阅读答题要求,进行专题训练,侧重点分为两个方面,一是结合《中学语文知识地图踩分词》进行阅读答题运用,二是答题结构与题型,每节课中以阅读概括能力、理解表述能力、判定分析能力和鉴赏能力题为引导进行学习。

适合学员现代文阅读答题技巧掌握不够全面,想稳固提高的初中生赠送《中学语文知识地图—中学文言文必考140字》课程特色:全面地检测与分析学生考试丢分的问题,让学生清楚自己问题在哪,并且怎样改,通过思维训练,加以解决,重点教会学生如何凭借一张知识地图,去解决所有的语文阅读写作问题。

适合学员想夯实语文基础知识,成绩稳步提高的初中生赠送《学生优秀作品及点评指导(2.0版)》第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。

适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。

适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)第二节:说明文专题课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。

该课程两个重心:一是各类题型答题方法和技巧的分析,特别是易错点的点评;另一个方面是对概括能力、理解能力,表述能力的训练。

适合学员阅读能力迅速提升的5—7级学生赠送《语文阅读得高分策略与技巧》(小学版)第二节:说明文专题课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。

山东省日照市中考数学试卷

山东省日照市中考数学试卷

山东省日照市中考数学试卷参考答案与试题解析一、选择题(共大题共12小题,其中1-8题每小题3分,9-12题每小题3分,满分40分.每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确的选项的字母代号填涂在答题卡相应位置上)1.(3分)(2014•日照)在已知实数:﹣1,0,,﹣2中,最小的一个实数是()..C.4.(3分)(2014•日照)某养殖场2013年底的生猪出栏价格是每千克a元,受市场影响,2014年第一季度出栏价格平均每千克下降了15%,到了第二季度平均没千克比第一季度又上升了20%,则第6.(3分)(2014•日照)李大伯在承包的果园里种植了100棵樱桃树,今年已经进入收获期,收获7.(3分)(2014•日照)关于x的一元二次方程x2+2x+k+1=0的两个实根x1,x2,满足x1+x2﹣x1x2BD8.(3分)(2014•日照)如图,正六边形ABCDEF是边长为2cm的螺母,点P是FA延长线上的点,在A、P之间拉一条长为12cm的无伸缩性细线,一端固定在点A,握住另一端点P拉直细线,把它全部紧紧缠绕在螺母上(缠绕时螺母不动),则点P运动的路径长为()运动的路径长为:++++(解方程组得,两直线的交点坐标为(,>10.(4分)(2014•日照)如图,已知△ABC的面积是12,点E、I分别在边AB、AC上,在BC边上依次作了n个全等的小正方形DEFG,GFMN,…,KHIJ,则每个小正方形的边长为().C.x=,11.(4分)(2014•日照)如图,是抛物线y=ax2+bx+c(a≠0)图象的一部分.已知抛物线的对称轴为x=2,与x轴的一个交点是(﹣1,0).有下列结论:①abc>0;②4a﹣2b+c<0;③4a+b=0;④抛物线与x轴的另一个交点是(5,0);⑤点(﹣3,y1),(6,y2)都在抛物线上,则有y1<y2.其中正确的是()=212.(4分)(2014•日照)下面是按照一定规律排列的一列数:第1个数:﹣(1+);第2个数:﹣(1+)×(1+)×(1+);第3个数:﹣(1+)×(1+)×(1+)×(1+)×(1+);…﹣,由)1+)1+)))1+﹣)][1+﹣,个数分别为﹣,﹣,﹣,﹣,其中最大的数为﹣,即第二、填空题(共4小题,每小题4分,满分16分,不需写出解答过程,请将答案直接写在答题卡相应的位置上)13.(4分)(2014•日照)分解因式:x3﹣xy2=x(x+y)(x﹣y).14.(4分)(2014•日照)小明从市环境监测网随机查阅了若干天的空气质量数据作为样本进行统计,分别绘制了如图的条形统计图和扇形统计图,根据图中提供的信息,可知扇形统计图中表示空气质量为优的扇形的圆心角的度数为108°.=30×15.(4分)(2014•日照)已知a>b,如果+=,ab=2,那么a﹣b的值为1.+=16.(4分)(2014•日照)如图,在Rt△OAB中,OA=4,AB=5,点C在OA上,AC=1,⊙P的圆心P在线段BC上,且⊙P与边AB,AO都相切.若反比例函数y=(k≠0)的图象经过圆心P,则k=.=.三、解答题(本大题共6小题,满分64分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.(8分)(2014•日照)为了进一步落实“节能减排”措施,冬季供暖来临前,某单位决定对7200平方米的“外墙保温”工程进行招标,现有甲、乙两个工程队参与投标,比较这两个工程队的标书发现:乙队每天完成的工程量是甲队的1.5倍,这样乙队单独干比甲队单独干能提前15天完成任务.问甲队每天完成多少平方米?﹣18.(8分)(2014•日照)在某班“讲故事”比赛中有一个抽奖活动,活动规则是:只有进入最后决赛的甲、乙、丙三位同学,每人才能获得一次抽奖机会.在如图所示的翻奖牌正面的4个数字中选一个数字,选中后就可以得到该数字后面的相应奖品:前面的人选中的数字,后面的人就不能再选择数字了.(1)请用树状图(或列表)的方法求甲、乙二人得到的奖品都是计算器的概率.(2)有的同学认为,如果甲先翻奖牌,那么他得到篮球的概率会大些,这种说法正确吗?请说明理由.;===19.(10分)(2014•日照)如图,在正方形ABCD中,边长AB=3,点E(与B,C不重合)是BC 边上任意一点,把EA绕点E顺时针方向旋转90°到EF,连接CF.(1)求证:CF是正方形ABCD的外角平分线;(2)当∠BAE=30°时,求CF的长.×.,20.(10分)(2014•日照)如图,为了绿化小区,某物业公司要在形如五边形ABCDE的草坪上建一个矩形花坛PKDH.已知:PH∥AE,PK∥BC,DE=100米,EA=60米,BC=70米,CD=80米.以BC所在直线为x轴,AE所在直线为y轴,建立平面直角坐标系,坐标原点为O.(Ⅰ)求直线AB的解析式.(Ⅱ)若设点P的横坐标为x,矩形PKDH的面积为S.(1)用x表示S;(2)当x为何值时,S取最大值,并求出这个最大值.,+=21.(14分)(2014•日照)阅读资料:小明是一个爱动脑筋的学生,他在学习了有关圆的切线性质后,意犹未尽,又查阅到了与圆的切线相关的一个问题:如图1,已知PC是⊙O的切线,AB是⊙O的直径,延长BA交切线PC与P,连接AC、BC、OC.因为PC是⊙O的切线,AB是⊙O的直径,所以∠OCP=∠ACB=90°,所以∠B=∠2.在△PAC与△PCB中,又因为:∠P=∠P,所以△PAC∽△PCB,所以=,即PC2=PA•PB.问题拓展:(Ⅰ)如果PB不经过⊙O的圆心O(如图2)等式PC2=PA•PB,还成立吗?请证明你的结论;综合应用:(Ⅱ)如图3,⊙O是△ABC的外接圆,PC是⊙O的切线,C是切点,BA的延长线交PC于点P;(1)当AB=PA,且PC=12时,求PA的值;(2)D是BC的中点,PD交AC于点E.求证:=.由平行线分线段成比例定理即可求得=,=,由平行线分线段成比例定理即可求得==6.=,=.=,=.==,.=,=.=,=.==,.22.(14分)(2014•日照)如图1,在菱形OABC中,已知OA=2,∠AOC=60°,抛物线y=ax2+bx+c (a≠0)经过O,C,B三点.(Ⅰ)求出点B、C的坐标并求抛物线的解析式.(Ⅱ)如图2,点E是AC的中点,点F是AB的中点,直线AG垂直BC于点G,点P在直线AG 上.(1)当OP+PC的最小值时,求出点P的坐标;(2)在(1)的条件下,连接PE、PF、EF得△PEF,问在抛物线上是否存在点M,使得以M,B,C为顶点的三角形与△PEF相似?若存在,请求出点M的坐标;若不存在,请说明理由.OC=BC=BD=2,,,所以,BGQ=,即∠,∠2,=32点的坐标为(3+,顶点为,,,,x=2×,,∠,,,BGQ==,2。

山东省日照市2013年中考数学试卷(解析版)

山东省日照市2013年中考数学试卷(解析版)

山东省日照市2013年中考数学试卷一、选择题:本大题共12小题,其中1-8题每小题3分,9-12题每小题3分,满分40分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上.2B3.(3分)(2013•日照)如图,H7N9病毒直径为30纳米(1纳米=10﹣9米),用科学记数法表示这个病毒直径的大小,正确的是()5.(3分)(2013•日照)如图是某学校全体教职工年龄的频数分布直方图(统计中采用“上限不在内”的原则,如年龄为36岁统计在36≤x<38小组,而不在34≤x<36小组),根据图形提供的信息,下列说法中错误的是()小组的教职工人数占该学校总人数的比例是:6.(3分)(2013•日照)如果点P(2x+6,x﹣4)在平面直角坐标系的第四象限内,那么xB解:根据题意得:7.(3分)(2013•日照)四个命题:①三角形的一条中线能将三角形分成面积相等的两部分;②有两边和其中一边的对角对应相等的两个三角形全等;③点P(1,2)关于原点的对称点坐标为(﹣1,﹣2);④两圆的半径分别是3和4,圆心距为d,若两圆有公共点,则1<d<7.8.(3分)(2013•日照)已知一元二次方程x2﹣x﹣3=0的较小根为x1,则下面对x1的估计正确的是(),<>﹣>﹣>﹣9.(4分)(2013•日照)甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志愿,剩余的工作日完成了,乙完成了,+10.(4分)(2013•日照)如图,在△ABC中,以BC为直径的圆分别交边AC、AB于D、E两点,连接BD、DE.若BD平分∠ABC,则下列结论不一定成立的是()==,11.(4分)(2013•日照)如图,下列各图形中的三个数之间均具有相同的规律.根据此规律,图形中M与m、n的关系是()12.(4分)(2013•日照)如图,已知抛物线y1=﹣x2+4x和直线y2=2x.我们约定:当x任取一值时,x对应的函数值分别为y1、y2,若y1≠y2,取y1、y2中的较小值记为M;若y1=y2,记M=y1=y2.下列判断:①当x>2时,M=y2;②当x<0时,x值越大,M值越大;③使得M大于4的x值不存在;④若M=2,则x=1.其中正确的有(),=2+2+二、填空题:本大题共4小题,每小题4分,满分16分.不需写出解答过程,请将答案直接写在答题卡相应位置上.13.(4分)(2013•日照)要使式子有意义,则x的取值范围是x≤2.14.(4分)(2013•日照)已知m2﹣m=6,则1﹣2m2+2m=﹣11.15.(4分)(2013•日照)如右图,直线AB交双曲线于A、B,交x轴于点C,B为线段AC的中点,过点B作BM⊥x轴于M,连结OA.若OM=2MC,S△OAC=12.则k的值为8.,bb•上,•16.(4分)(2013•日照)如图(a),有一张矩形纸片ABCD,其中AD=6cm,以AD为直径的半圆,正好与对边BC相切,将矩形纸片ABCD沿DE折叠,使点A落在BC上,如图(b).则半圆还露在外面的部分(阴影部分)的面积为(3π﹣)cm2.的面积为=3cm cmDK=3的面积为﹣﹣三、解答题:本大题有6小题,满分64分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤.17.(10分)(2013•日照)(1)计算:.(2)已知,关于x的方程x2﹣2mx=﹣m2+2x的两个实数根x1、x2满足|x1|=x2,求实数m 的值.+×+1=﹣﹣,.18.(10分)(2013•日照)如图,已知四边形ABDE是平行四边形,C为边BD延长线上一点,连结AC、CE,使AB=AC.(1)求证:△BAD≌△AEC;(2)若∠B=30°,∠ADC=45°,BD=10,求平行四边形ABDE的面积.BG=,AG=x=(19.(10分)(2013•日照)“端午”节前,小明爸爸去超市购买了大小、形状、重量等都相同的火腿粽子和豆沙粽子若干,放入不透明的盒中,此时从盒中随机取出火腿粽子的概率为;妈妈从盒中取出火腿粽子3只、豆沙粽子7只送给爷爷和奶奶后,这时随机取出火腿粽子的概率为.(1)请你用所学知识计算:爸爸买的火腿粽子和豆沙粽子各有多少只?(2)若小明一次从盒内剩余粽子中任取2只,问恰有火腿粽子、豆沙粽子各1只的概率是多少?(用列表法或树状图计算),经检验符合题意,=20.(10分)(2013•日照)问题背景:如图(a),点A、B在直线l的同侧,要在直线l上找一点C,使AC与BC的距离之和最小,我们可以作出点B关于l的对称点B′,连接A B′与直线l交于点C,则点C即为所求.(1)实践运用:如图(b),已知,⊙O的直径CD为4,点A 在⊙O 上,∠ACD=30°,B 为弧AD 的中点,P为直径CD上一动点,则BP+AP的最小值为2.(2)知识拓展:如图(c),在Rt△ABC中,AB=10,∠BAC=45°,∠BAC的平分线交BC于点D,E、F分别是线段AD和AB上的动点,求BE+EF的最小值,并写出解答过程.E=AE=.;×=5的最小值为21.(10分)(2013•日照)一汽车租赁公司拥有某种型号的汽车100辆.公司在经营中发现车辆数y(辆)与每辆车的月租金x(元)之间的关系式.(2)已知租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.用含x(x≥3000)的代数式填表:(3)若你是该公司的经理,你会将每辆车的月租金定为多少元,才能使公司获得最大月收益?请求出公司的最大月收益是多少元.解之得:(﹣xx(故答案为:.22.(14分)(2013•日照)已知,如图(a),抛物线y=ax2+bx+c经过点A(x1,0),B(x2,0),C(0,﹣2),其顶点为D.以AB为直径的⊙M交y轴于点E、F,过点E作⊙M的切线交x轴于点N.∠ONE=30°,|x1﹣x2|=8.(1)求抛物线的解析式及顶点D的坐标;(2)连结AD、BD,在(1)中的抛物线上是否存在一点P,使得△ABP与△ADB相似?若存在,求出P点的坐标;若不存在,说明理由;(3)如图(b),点Q为上的动点(Q不与E、F重合),连结AQ交y轴于点H,问:AH•AQ是否为定值?若是,请求出这个定值;若不是,请说明理由.==4y=x x x x(,)的解析式为)。

山东省各市2013年中考数学试题分类汇编(解析版)[1] 3-推荐下载

山东省各市2013年中考数学试题分类汇编(解析版)[1] 3-推荐下载

C.3
D.4
解答:解:由图可知,第 1、2 两个图形的对称轴为 y 轴,所以 x=﹣ =0,
解得 b=0, 与 b<0 相矛盾; 第 3 个图,抛物线开口向上,a>0,
经过坐标原点,a2﹣1=0,
解得 a1=1,a2=﹣1(舍去),
对称轴 x=﹣ =﹣ >0, 所以 b<0,符合题意, 故 a=1, 第 4 个图,抛物线开口向下,a<0, 经过坐标原点,a2﹣1=0,
考点:二次函数的性质;一次函数的性质;反比例函数的性质. 分析:根据二次函数、一次函数、反比例函数的增减性,结合自变量的取值范围,逐一判断. 解答:解:A、y=﹣x+1,一次函数,k<0,故 y 随着 x 增大而减小,错误;
B、y=x2﹣1(x>0),故当图象在对称轴右侧,y 随着 x 的增大而增大;而在对称轴左侧 (x<0),y 随着 x 的增大而减小,正确. C、y=,k=1>0,在每个象限里,y 随 x 的增大而减小,错误; D、y=﹣x2+1(x>0),故当图象在对称轴右侧,y 随着 x 的增大而减小;而在对称轴左侧 (x<0),y 随着 x 的增大而增大,错误; 故选 B. 点评:本题综合考查二次函数、一次函数、反比例函数的增减性(单调性),是一道难度中等的题 目.
①2a+b=0;②4a﹣2b+c<0;③ac>0;④当 y<0 时,x<﹣1 或 x>2. 其中正确的个数是( )
A 1 .
B2 .
考点:二次函数图象与系数的关系. 分析:
根据对称轴为 x=1 可判断出 2a+b=0 正确,当 x=﹣2 时,4a﹣2b+c<0,根据开口方向,以及与
y 轴交点可得 ac<0,再求出 A 点坐标,可得当 y<0 时,x<﹣1 或 x>3. 解答:解:∵对称轴为 x=1,

2013日照中考试题

2013日照中考试题

2013年山东日照初中学业考试数学试卷本试题分第Ⅰ卷和第Ⅱ卷两部分,共6页,满分120分,考试时间为120分钟.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、准考证号填写在答题卡规定的位置上.考试结束后,将本试卷和答题卡一并交回. 注意事项:1.第Ⅰ卷每小题选出答案后,必须用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,先用橡皮擦干净,再改涂其它答案.只答在试卷上无效.2.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内,在试卷上答题不得分;如需改动,先划掉原来的答案,然后再写上新的答案. 4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤.第Ⅰ卷(选择题40分)一、选择题:本大题共12小题,其中1-8题每小题3分,9-12题每小题4分,满分40分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上. 1.计算-22+3的结果是A .7B .5C .1-D . 5- 2.下面所给的交通标志图中是轴对称图形的是3.如图,H7N9病毒直径为30纳米(1纳米=10-9米),用科学计数法表示这个病毒直径的大小,正确的是 A.30×10-9米 B. 3.0×10-8米 C. 3.0×10-10米 D. 0.3×10-9米4.下列计算正确的是 A.222)2(aa =- B.632a a a ÷=C.a a 22)1(2-=--D.22a a a =⋅5. 下图是某学校全体教职工年龄的频数分布直方图(统计中采用“上限不在内”的原则,如年龄为36岁统计在36≤x <38小组,而不在34≤x <36小组),根据图形提供的信息,下列说法中错误..的是( ) A .该学校教职工总人数是50人B .年龄在40≤x <42小组的教职工人数占该学校总人数的20%C .教职工年龄的中位数一定落在40≤x <42这一组D .教职工年龄的众数一定在38≤x <40这一组6.如果点P (2x+6,x-4)在平面直角坐标系的第四象限内,那么x 的取值范围在数轴上可表示为( )7.四个命题: ①三角形的一条中线能将三角形分成面积相等的两部分; ②有两边和其中一边的对角对应相等的两个三角形全等; ③点P (1,2)关于原点的对称点坐标为(-1,-2); ④两圆的半径分别是3和4,圆心距为d ,若两圆有公共点,则.71<<d 其中正确的是A. ①②B.①③C.②③D.③④8.已知一元二次方程032=--x x 的较小根为1x ,则下面对1x 的估计正确的是 A .121-<<-x B .231-<<-x C .321<<x D .011<<-x9. 甲计划用若干个工作日完成某项工作,从第三个工作日起,乙加入此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲计划完成此项工作的天数是A.8B.7C.6D.510. 如图,在△ABC 中,以BC 为直径的圆分别交边AC 、AB 于D 、E 两点,连接BD 、DE .若BD 平分∠ABC ,则下列结论不一定成立的是A.BD ⊥ACB.AC 2=2AB·AEC.△ADE 是等腰三角形D. BC =2AD.11.如图,下列各图形中的三个数之间均具有相同的规律.根据此规律,图形中M 与m 、n 的关系是A . M=mnB . M=n(m+1)C .M=mn+1D .M=m(n+1) 12.如图,已知抛物线x x y 421+-=和直线x y 22=.我们约定:当x 任取一值时,x 对应的函数值分别为y 1、y 2,若y 1≠y 2,取y 1、y 2中的较小值记为M ;若y 1=y 2,记M= y 1=y 2. 下列判断: ①当x >2时,M=y 2;②当x <0时,x 值越大,M 值越大; ③使得M 大于4的x 值不存在; ④若M=2,则x= 1 .其中正确的有A .1个B .2个C . 3个D .4个第Ⅱ卷(非选择题80分)二、填空题:本大题共4小题,每小题4分,满分16分.不需写出解答过程,请将答案直接写在答题卡相应位置上.13.有意义,则x 的取值范围是 .14.已知62=-m m ,则.____________2212=+-m m15. 如右图,直线AB 交双曲线xk y =于A、B ,交x 轴于点C,B 为线段AC 的中点,过点B 作BM ⊥x 轴于M ,连结OA.若OM=2MC,S ⊿OAC =12.则k 的值为___________.16.如图(a ),有一张矩形纸片ABCD ,其中AD=6cm ,以AD 为直径的半圆,正好与对边BC 相切,将矩形纸片ABCD 沿DE 折叠,使点A 落在BC 上,如图(b ).则半圆还露在外面的部分(阴影部分)的面积为_____________.三、解答题:本大题有6小题,满分64分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤. 17.(本题满分10分,(1)小题4分,(2)小题6分) (1)计算:001)3(30tan 2)21(3π-+--+-.(2)已知,关于x 的方程x m mx x 2222+-=-的两个实数根1x 、2x 满足12x x =,求实数m 的值.18.(本题满分10分)如图,已知四边形ABDE 是平行四边形,C 为边B D 延长线上一点,连结AC 、CE ,使AB=AC.⑴求证:△BAD ≌△AEC ;⑵若∠B=30°,∠ADC=45°,BD=10,求平行四边形ABDE 的面积.19.(本题满分10分)“端午”节前,小明爸爸去超市购买了大小、形状、重量等都相同的火腿粽子和豆沙粽子若干,放入不透明的盒中,此时从盒中随机取出火腿粽子的概率为31;妈妈从盒中取出火腿粽子3只、豆沙粽子7只送给爷爷和奶奶后,这时随机取出火腿粽子的概率为52.(1)请你用所学知识计算:爸爸买的火腿粽子和豆沙粽子各有多少只?(2)若小明一次从盒内剩余粽子中任取2只,问恰有火腿粽子、豆沙粽子各1只的概率是多少?(用列表法或树状图计算)20.(本题满分10分)问题背景:如图(a),点A、B在直线l的同侧,要在直线l上找一点C,使AC与BC的距离之和最小,我们可以作出点B关于l的对称点B′,连接A B′与直线l交于点C,则点C即为所求.(1)实践运用:如图(b),已知,⊙O的直径CD为4,点A 在⊙O 上,∠ACD=30°,B 为弧AD 的中点,P为直径CD上一动点,则BP+AP的最小值为__________.(2)知识拓展:如图(c),在Rt△ABC中,AB=10,∠BAC=45°,∠BAC的平分线交BC于点D,E、F 分别是线段AD和AB上的动点,求BE+EF的最小值,并写出解答过程.21. (本小题满分10分)一汽车租赁公司拥有某种型号的汽车100辆.公司在经营中发现每辆车的月租金x(元)与每月租出的车辆数(y)有如下关系:(1)观察表格,用所学过的一次函数、反比例函数或二次函数的有关知识求出每月租出的车辆数y(辆)与每辆车的月租金x(元)之间的关系式.(2)已知租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.用含x(3)若你是该公司的经理,你会将每辆车的月租金定为多少元,才能使公司获得最大月收益?请求出公司的最大月收益是多少元.22. (本小题满分14分)已知,如图(a),抛物线y=ax2+bx+c经过点A(x1,0),B(x2,0),C(0,-2),其顶点为D.以AB为直径的⊙M交y轴于点E、F,过点E作⊙M的切线交x轴于点N.∠ONE=30°,|x1-x2|=8.(1)求抛物线的解析式及顶点D的坐标;(2)连结AD、BD,在(1)中的抛物线上是否存在一点P,使得⊿ABP与⊿ADB相似?若存在,求出P点的坐标;若不存在,说明理由;(3)如图(b),点Q为上的动点(Q不与E、F重合),连结AQ交y轴于点H,问:AH·AQ是否为定值?若是,请求出这个定值;若不是,请说明理由.。

【精校】2013年山东省日照市初中学业考试数学(含答案)

【精校】2013年山东省日照市初中学业考试数学(含答案)

2013年山东日照初中学业考试 数学试卷本试题分第Ⅰ卷和第Ⅱ卷两部分,共6页,满分120分,考试时间为120分钟.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、准考证号填写在答题卡规定的位置上.考试结束后,将本试卷和答题卡一并交回. 注意事项:1.第Ⅰ卷每小题选出答案后,必须用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,先用橡皮擦干净,再改涂其它答案.只答在试卷上无效.2.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内,在试卷上答题不得分;如需改动,先划掉原来的答案,然后再写上新的答案.4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤. 第Ⅰ卷(选择题40分)一、选择题:本大题共12小题,其中1-8题每小题3分,9-12题每小题4分,满分40分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上.1.计算-22+3的结果是A .7B .5C .1-D . 5- 2.下面所给的交通标志图中是轴对称图形的是3.如图,H7N9病毒直径为30纳米(1纳米=10-9米),用科学计数法表示这个病毒直径的大小,正确的是A.30×10-9米B. 3.0×10-8米C. 3.0×10-10米D. 0.3×10-9米4.下列计算正确的是A.222)2(a a =-B.632a a a ÷=C.a a 22)1(2-=--D.22a a a =⋅ 5. 下图是某学校全体教职工年龄的频数分布直方图(统 计中采用“上限不在内”的原则,如年龄为36岁统计在36≤x<38小组,而不在34≤x<36小组),根据图形提供的信息,下列说法中错误..的是( ) A .该学校教职工总人数是50人B .年龄在40≤x<42小组的教职工人数占该学校总人数的20%C .教职工年龄的中位数一定落在40≤x<42这一组D .教职工年龄的众数一定在38≤x<40这一组6.如果点P (2x+6,x -4)在平面直角坐标系的第四象限内,那么x 的取值范围在数轴上可表示为( )7.四个命题: ①三角形的一条中线能将三角形分成面积相等的两部分; ②有两边和其中一边的对角对应相等的两个三角形全等; ③点P (1,2)关于原点的对称点坐标为(-1,-2); ④两圆的半径分别是3和4,圆心距为d ,若两圆有公共点,则.71<<d 其中正确的是 A. ①② B.①③ C.②③ D.③④8.已知一元二次方程032=--x x 的较小根为,则下面对的估计正确的是 A .121-<<-x B .231-<<-x C .321<<x D .011<<-x9. 甲计划用若干个工作日完成某项工作,从第三个工作日起,乙加入此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲计划完成此项工作的天数是 A.8 B.7 C.6 D.510. 如图,在△ABC 中,以BC 为直径的圆分别交边AC 、AB 于D 、E 两点,连接BD 、DE .若BD 平分∠ABC ,则下列结论不一定成立的是 A.BD ⊥AC B.AC 2=2AB·AE4691011人数C.△ADE 是等腰三角形D. BC =2AD.11.如图,下列各图形中的三个数之间均具有相同的规律.根据此规律,图形中M 与m 、n 的关系是A . M=mnB . M=n(m+1)C .M=mn+1D .M=m(n+1)12.如图,已知抛物线x x y 421+-=和直线x y 22=.我们约定:当x 任取一值时,x 对应的函数值分别为y 1、y 2,若y 1≠y 2,取y 1、y 2中的较小值记为M ;若y 1=y 2,记M= y 1=y 2. 下列判断: ①当x >2时,M=y 2; ②当x <0时,x 值越大,M 值越大; ③使得M 大于4的x 值不存在; ④若M=2,则x= 1 .其中正确的有A .1个B .2个C . 3个D .4个 第Ⅱ卷(非选择题80分)二、填空题:本大题共4小题,每小题4分,满分16分.不需写出解答过程,请将答案直接写在答题卡相应位置上.13.要使式子2x -有意义,则的取值范围是 . 14.已知62=-m m ,则.____________2212=+-m m 15. 如右图,直线AB 交双曲线xky =于A、B ,交x 轴于点C,B 为线段AC 的中点,过点B 作BM ⊥x 轴于M ,连结OA.若OM=2MC,S ⊿OAC=12.则k 的值为___________.[来&源*~@^:中教网]16.如图(a ),有一张矩形纸片ABCD ,其中AD=6cm ,以AD 为直径的半圆,正好与对边BC 相切,将矩形纸片ABCD 沿DE 折叠,使点A 落在BC 上,如图(b ).则半圆还露在外面的部分(阴影部分)的面积为_____________.三、解答题:本大题有6小题,满分64分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤.17.(本题满分10分,(1)小题4分,(2)小题6分) (1)计算: 001)3(30tan 2)21(3π-+--+-. (2)已知,关于x 的方程xm mx x 2222+-=-的两个实数根、2x 满足12x x =,求实数的值.18.(本题满分10分)如图,已知四边形ABDE 是平行四边形,C 为边B D 延长线上一点,连结AC 、CE ,使AB=AC. ⑴求证:△BAD ≌△AEC ;⑵若∠B=30°,∠ADC=45°,BD=10,求平行四边形ABDE 的面积.19.(本题满分10分)“端午”节前,小明爸爸去超市购买了大小、形状、重量等都相同的火腿粽子和豆沙粽子若干,放入不透明的盒中,此时从盒中随机取出火腿粽子的概率为;妈妈从盒中取出火腿粽子3只、豆沙粽子7只送给爷爷和奶奶后,这时随机取出火腿粽子的概率为.(1)请你用所学知识计算:爸爸买的火腿粽子和豆沙粽子各有多少只?(2)若小明一次从盒内剩余粽子中任取2只,问恰有火腿粽子、豆沙粽子各1只的概率是多少?(用列表法或树状图计算)20. (本题满分10分)问题背景:如图(a),点A、B在直线l的同侧,要在直线l上找一点C,使AC与BC的距离之和最小,我们可以作出点B关于l的对称点B′,连接A B′与直线l交于点C,则点C即为所求.如图(b),已知,⊙O的直径CD为4,点A 在⊙O 上,∠ACD=30°,B 为弧AD 的中点,P为直径CD 上一动点,则BP+AP的最小值为__________. [(2)知识拓展:如图(c),在Rt△ABC中,AB=10,∠BAC=45°,∠BAC的平分线交BC于点D,E、F分别是线段AD和AB上的动点,求BE+EF的最小值,并写出解答过程.21. (本小题满分10分)一汽车租赁公司拥有某种型号的汽车100辆.公司在经营中发现每辆车的月租金x(元)与每月租出的车辆数(y)有如下关系:(1)观察表格,用所学过的一次函数、反比例函数或二次函数的有关知识求出每月租出的车辆数y(辆)与每辆车的月租金x(元)之间的关系式.(2)已知租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.用含x(x≥3000)的代数式填表:[来源&@:z*zstep.%co^m](3)若你是该公司的经理,你会将每辆车的月租金定为多少元,才能使公司获得最大月收益?请求出公司的最大月收益是多少元.22. (本小题满分14分)已知,如图(a),抛物线y=ax2+bx+c经过点A(x1,0),B(x2,0),C(0,-2),其顶点为D.以AB为直径的⊙M交y轴于点E、F,过点E作⊙M的切线交x轴于点N.∠ONE=30°,|x1-x2|=8.(1)求抛物线的解析式及顶点D的坐标;(2)连结AD、BD,在(1)中的抛物线上是否存在一点P,使得⊿ABP与⊿ADB相似?若存在,求出点的坐标;若不存在,说明理由;(3)如图(b),点Q为上的动点(Q不与E、F重合),连结AQ交y轴于点H,问:AH·AQ是否为定值?若是,请求出这个定值;若不是,请说明理由.试题答案及评分标准一、选择题:本题共12小题,1-8题每小题3分,9-12题每小题4分,共40分.1.C2.A3.B4.C5.D6.C7.B8.A9.A 10.D 11.D 12.B二、填空题:本题共有4小题,每小题4分,共16分. 13.x≤2; 14.-11;15.8;16. 2)439π3(cm -.[中 三、解答题:17.本题共10分,其中第(1)小题4分,第(2)小题6分) (1)(本小题满分4分)分分解:4 (13)32................. .1332(-2)3 )3(30tan 2)21(3 001-=+⨯-+=-+--+-π(2)(本小题满分6分)解:原方程可变形为:0)1(222=++-m x m x . …………………5分 ∵、2x 是方程的两个根,∴△≥0,即:4(m +1)2-4m 2≥0, ∴ 8m+4≥0, m≥21-. 又、2x 满足12x x =,∴=2x 或=-2x , 即△=0或1x +2x =0, ……………8分 由△=0,即8m+4=0,得m=21-. 由1x +2x =0,即:2(m+1)=0,得m=-1,(不合题意,舍去) 所以,当12x x =时,m 的值为21-. ……………10分 18.(本题满分10分)(1)证明:∵AB=AC,∴∠B=∠ACB.又 ∵四边形ABDE 是平行四边形∴AE ∥BD , AE=BD ,∴∠ACB=∠CAE=∠B , ∴⊿DBA ≌⊿AEC(SAS) ………………4分 (2)过A 作AG ⊥BC,垂足为G.设AG=x ,在Rt △AGD 中,∵∠ADC=450,∴AG=DG=x ,在Rt △AGB 中,∵∠B=300,∴BG=x 3,………………6分又∵BD=10.∴BG -DG=BD,即103=-x x ,解得AG=x=5351310+=-.…………………8分∴S 平行四边形ABDE =BD·AG=10×(535+)=50350+.………………10分 19.(本题满分10分)解:(1)设爸爸买的火腿粽子和豆沙粽子分别为x 只、y 只, ……1分根据题意得:⎪⎪⎩⎪⎪⎨⎧=-+--=+.52733,31y x x y x x …………………………………4分解得: ⎩⎨⎧==.10,5y x 经检验符合题意,所以爸爸买了火腿粽子5只、豆沙粽子10只. ……………6分(2)由题可知,盒中剩余的火腿粽子和豆沙粽子分别为2只、3只,我们不妨把两只火腿粽子记为a 1、a 2;3只豆沙粽子记为b 1、b 2、b 3,则可列出表格如下:a 1 a 2b 1 b 2 b 3 a 1 a 1 a 2 a 1b 1 a 1b 2 a 1b 3 a 2 a 2 a 1 a 2 b 1 a 2 b 2 a 2 b 3 b 1 b 1 a 1 b 1a 2 b 1 b 2 b 1 b 3 b 2 b 2 a 1 b 2a 2 b 2b 1 b 2 b 3 b 3b 3 a 1b 3a 2b 3b 1b 3b 2…………8分∴53106)(==A P …………………10分 20.(本题满分10分)22 )1( …………………4分(2)解:如图,在斜边AC 上截取AB′=AB,连结BB′. ∵AD 平分∠BAC ,∴点B 与点B ′关于直线AD 对称. …………6分过点B′作B′F⊥AB,垂足为F,交AD 于E ,连结BE,则线段B ′F 的长即为所求.(点到直线的距离最短) ………8分在Rt △AFB /中,∵∠BAC=450, AB /=AB= 10,25221045sin 45sin 00=⨯=⋅=⋅'='∴AB B A F B , ∴BE+EF 的最小值为25. ………………10分21. (本题满分10分)解:(1)由表格数据可知y 与x 是一次函数关系,设其解析式ONG 为b kx y +=由题:⎩⎨⎧=+=+.963200,1003000b k b k 解之得:⎪⎩⎪⎨⎧=-=.160,501b k∴y 与x 间的函数关系是160501+-=x y . ……………………………3分 (2)如下表:每空1分,共4分.分元。

2013年山东日照初中学业考试数学试题

2013年山东日照初中学业考试数学试题

2013年山东日照初中学业考试数学试卷本试题分第Ⅰ卷和第Ⅱ卷两部分,共6页,满分120分,考试时间为120分钟.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、准考证号填写在答题卡规定的位置上.考试结束后,将本试卷和答题卡一并交回. 注意事项:1.第Ⅰ卷每小题选出答案后,必须用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,先用橡皮擦干净,再改涂其它答案.只答在试卷上无效.2.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内,在试卷上答题不得分;如需改动,先划掉原来的答案,然后再写上新的答案. 4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤.第Ⅰ卷(选择题40分)一、选择题:本大题共12小题,其中1-8题每小题3分,9-12题每小题4分,满分40分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上. 1.计算-22+3的结果是A .7B .5C .1-D . 5- 答案:C解析:原式=-4+3=-1,选C 。

2.下面所给的交通标志图中是轴对称图形的是答案:A解析:A 中,等边三角形底边的中算线为对称轴,是轴对称图形,其它都不是轴对称图形。

3.如图,H7N9病毒直径为30纳米(1纳米=10-9米),用科学计数法表示这个病毒直径的大小,正确的是 A.30×10-9米 B. 3.0×10-8米 C. 3.0×10-10米 D. 0.3×10-9米 答案:B解析:科学记数法的表示形式为a ×10n的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.30纳米=30×10-9=3.0×10-8米 4.下列计算正确的是 A.222)2(a a =- B.632a a a ÷= C.a a 22)1(2-=-- D.22a a a =⋅答案:C解析:因为.22(2)4a a -=, 633a a a ÷=,23a a a ⋅=,故A 、B 、D 都错,只有C 正确。

2013日照市中考数学试卷及答案

2013日照市中考数学试卷及答案

5.下图是某学校全体教职工年龄的频数分布直方图人数]11 10 92013年山东日照初中学业考试数学试卷本试题分第I 卷和第n 卷两部分,共 6页,满分120分,考试时间为120分钟.答卷前, 考生务必用0.5毫米黑色签字笔将自己的姓名、 座号、准考证号填写在答题卡规定的位置 上•考试结束后,将本试卷和答题卡一并交回. 注意事项:1•第I 卷每小题选出答案后,必须用2B 铅笔把答题卡上对应题目的答案标号涂黑•如需改动,先用橡皮擦干净, 再改涂其它答案•只答在试卷上无效.2•第H 卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内,在试 卷上答题不得分;如需改动,先划掉原来的答案,然后再写上新的答案. 4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤.第I 卷(选择题40分)一、选择题:本大题共12小题,其中1-8题每小题3分,9-12题每小题4分,满分40分.在 每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填 涂在答题卡相应位置上.1 .计算-22+3的结果是C .12.下面所给的交通标志图中是轴对称图形的是3.如图,H7N9病毒直径为30纳米(1纳米=10-9米),用科学计数法表示这个病毒直径 的大小,正确的是C. 2(a 1)2 2a D. a a 2 a 2A.30 X10"9 米B. 3.0 氷0-8 米C. 3.0 1%-10 米D. 0.3 X 0-9米 4.下列计算正确的是2 26 3 2A. ( 2a) 2aB. a a a(统计中采用上限不在内”的原则,如年龄为36岁统计在36<x v 38小组,而不在34$V 36小组),根据图形提供的信息,下列说法中错误..的是()A •该学校教职工总人数是50人B .年龄在40《V 42小组的教职工人数占该学校总人数的20%C .教职工年龄的中位数一定落在40 42这一组D .教职工年龄的众数一定在38 40这一组6.如果点P (2x+6,x-4 )在平面直角坐标系的第四象限内,那么可表示为()7 •四个命题:①三角形的一条中线能将三角形分成面积相等的两部分;中一边的对角对应相等的两个三角形全等;③点P( 1,2)关于原点的对称点坐标为(-1 ,9. 甲计划用若干个工作日完成某项工作,从第三个工作日起,乙加入此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲计划完成此项工作的天数是A.8B.7C.6D.510. 如图,在△ ABC中,以BC为直径的圆分别交边AC、AB 于D、E两点,连接BD、DE.若BD平分/ ABC,则下列结论不一定成立的是A.BD 丄ACB.AC2=2AB -AEC. △ ADE是等腰三角形D. BC = 2AD.x的取值范围在数轴上C D②有两边和其-2); ④两圆的半径分别是3和4,圆心距为确的是A.①②B.①③C.②③8.已知-2兀一次方程x x 3 0的较小根为A . 2 x1 1 B. 3 x12C. 2 x1 3D. 1 x10d,若两圆有公共点,贝U 1 d 7.其中正D.③④X1,则下面对X1的估计正确的是11. 如图,下列各图形中的三个数之间均具有相同的规律.根据此规律,图形中M与m、n 的关系是12•如图,已知抛物线y i2x 4x 和直线y 2 2x .我们约定:当x 任取一值时,x 对应的函数值分别为 y i 、y 2,若y i My,取y i 、y 2中的较小值记为 M ;若y i =y 2,记 M= y i =y 2. 下列判断:①当x >2时,M=y 2; ② 当x V 0时,x 值越大,M 值越大; ③ 使得M 大于4的x 值不存在; ④ 若M=2,则x= i .其中正确的有A . i 个B . 2个C . 3个第口卷(非选择题80 分)二、填空题:本大题共4小题,每小题4分,满分i6分•不需写出解答过程,请将答案 直接写在答题卡相应位置上 •i3.要使式子.2一x 有意义,则x 的取值范围是 ________________2i4.已知m m 6,则2i 2m 2 2mki5.如右图,直线AB 交双曲线y —于A 、B ,x交x 轴于点C,B 为线段AC 的中点,过点B 作 BM 丄 x 轴于 M ,连结 OA.若 OM=2MC,S /OAC =12.16.如图(a ),有一张矩形纸片 ABCD ,其中AD=6cm ,以AD 为直径的半圆,正好与对 边BC 相切,将矩形纸片ABCD 沿DE 折叠,使点A 落在BC 上,如图(b ).则半圆还露 在外面的部分(阴影部分)的面积为 __________________________ .M=m( n+1)(a) (b)三、解答题:本大题有6小题,满分64分•请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤•17. (本题满分10分,(1)小题4分,⑵小题6分)(1)计算:.3 ( -) 12tan30°(3 )0 .2(2)已知,关于x的方程x22mx m22x的两个实数根x1、x2满足x1x2,求实数m的值.18. (本题满分10分)如图,已知四边形ABDE是平行四边形,C为边B D延长线上一点,连结AC、CE,使AB=AC.⑴求证:△ BAD AEC ;⑵若/ B=30°,/ ADC=45 , BD=10 ,求平行四边形ABDE的面积.19. (本题满分10分)端午”节前,小明爸爸去超市购买了大小、形状、重量等都相同的火腿粽子和豆沙粽子若干,放入不透明的盒中,此时从盒1中随机取出火腿粽子的概率为1;妈妈从盒中取出火腿粽子3只、豆沙粽子7只送给爷32爷和奶奶后,这时随机取出火腿粽子的概率为5(1)请你用所学知识计算:爸爸买的火腿粽子和豆沙粽子各有多少只?(2)若小明一次从盒内剩余粽子中任取2只,问恰有火腿粽子、豆沙粽子各1只的概率是多少?(用列表法或树状图计算)20. (本题满分10 分) 问题背景:如图(a),点A、B在直线l的同侧,要在直线I上找一点C,使AC与BC的距离之和最小,我们可以作出点B关于I的对称点B'连接A B'与直线I交于点C,则点C即为所求.(1)实践运用:如图(b),已知,O O的直径CD为4,点A在O O上,/ ACD=30 , B为弧AD 的中点,P为直径CD上一动点,则BP+AP的最小值为______________________ .(2)知识拓展:如图(c),在Rt△ ABC 中,AB=10 ,Z BAC=45,/ BAC 的平分线交BC 于点D, E、F 分别是线段AD和AB上的动点,求BE+EF的最小值,并写出解答过程.21. (本小题满分10分)一汽车租赁公司拥有某种型号的汽车100辆.公司在经营中发现每辆车的月租金x (元)与每月租出的车辆数(y)有如下关系:x3000320035004000y100969080(1)的车辆数y (辆)与每辆车的月租金x (元)之间的关系式.(2)已知租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元•用含x (x為000)的代数式填表:租出的车辆数未租出的车辆数租出每辆车的月收益所有未租出的车辆每月的维护费(3)若你是该公司的经理,你会将每辆车的月租金定为多少元,才能使公司获得最大月收益?请求出公司的最大月收益是多少元.22. (本小题满分14分)已知,如图(a),抛物线y=ax2+bx+c经过点A(x 1,O),B(X2,O), C(0,-2),其顶点为D.题20 (a) 020 (b)I B020 <c)以AB为直径的O M交y轴于点E、F,过点E作O M的切线交x轴于点N. / ONE=30 , |X I_X2|=8.(1) 求抛物线的解析式及顶点D的坐标;(2) 连结AD、BD,在(1)中的抛物线上是否存在一点P,使得"ABP与"ADB相似?若存在,求出P点的坐标;若不存在,说明理由;(3) 如图(b),点Q为Lbp 上的动点(Q不与E、F重合),连结AQ交y轴于点H,问:AH-AQ是否为定值?若是,请求出这个定值;若不是,请说明理由(a)2013年初中学业考试数学试题答案及评分标准一、选择题: 本题共12小题,1-8题每小题3分,9-12题每小题4分,共40 分.1.C2.A3.B4.C5.D6.C7.B8.A9.A 10.D 11.D 12.B 二、填空题: 本题共有4小题,每小题4分,共16分.13.x w ; 14.-11; 15.8; 16. (3 n 三、解答题:17•本题共10分,其中第(1)小题4分,第(2)小题6 分)(1)(本小题满分4分)解:.3(1)12ta n3O 0 (3 )03 (-2) 2T 1 .............................. ....... 2分1....... 4分(2)(本小题满分6分)解:原方程可变形为:x 2 2(m 1)x m 2 0.T X 1、X 2是方程的两个根,1•••△ >0即:4 ( m +1 ) 2-4m 2> 0「8m+4> 0, m > .2又 x 1、X 2 满足 |x j冷,• x-1 = x 2 或 x 1 =- x 2 , 即厶=0 或 x 1 + x 2 =0,1由厶=0,即 8m+4=0,得 m= —2由 x 1 + x 2 =0,即 :2(m+1)=0,得 m=-1,(不合题意,舍去)1所以,当为 X 2时,m 的值为2分18.(本题满分10分)(1) 证明:T AB=AC, B= / ACB.又•••四边形ABDE 是平行四边形• AE // BD , AE=BD ,•/ ACB= / CAE= / B , •••/ DBA 也/ AEC(SAS) ............................... 4 分/cm 24B10(2) 过A 作AG 丄BC,垂足为 G.设AG=x , 在 Rt △ AGD 中,•••/又••• BD=10.(2)由题可知,盒中剩余的火腿粽子和豆沙粽子分别为2只、3只,我们不妨把两只火腿粽子记为a 1、a 2; 3只豆沙粽子记为 b 1、b 2、b 3,则可列出表格如下:分 20.(本题满分10分)ADC=45°,「. AG=DG=x ,在 Rt △ AGB 中,•••/ B=30°,「. BG= , 3x ,• BG-DG=BD,即、.3x x10,解得 AG=x=、3° 1 5 3 5.••• S 平行四边形 ABDE =BD-AG=1C k (5 ,3 5 ) =50,350.10分19.(本题满分10分)解:(1)设爸爸买的火腿粽子和豆沙粽子分别为x 只、y 只, 根据题意得:x 1x y 3’ x 3 2x 3解得:y 5, 10.经检验符合题意, 所以爸爸买了火腿粽子5只、豆沙粽子10只.(2)解:如图,在斜边 AC 上截取AB =AB,连结BB . •/ AD 平分/ BAC ,•••点B 与点B '关于直线AD 对称. ....... 6分 过点B'作B' F AB,垂足为F,交AD 于E ,连结BE, 则线段B 'F 的长即为所求.(点到直线的距离最 短).........8分在 Rt △ AFB 仲,:/ BAC=45 °, AB /=AB= 10 ,[2L B F AB sin45° AB sin45°105,2 ,2• BE+EF 的最小值为5 2. ................. 10分 21.(本题满分10分)解:(1 )由表格数据可知y 与x 是一次函数关系,设其解析式ONG 为y kx b .由题:3000k b 100,解之得: 3200k b 96.1• y 与x 间的函数关系是y 丄x 160. 50 租出的车辆数 1丄 x 160 50未租出的车辆数 丄x 6050租出的车每辆 的月收益x 150 所有未租出的车辆每 月的维护费x 3000丄50 160.(3) 设租赁公司获得的月收益为W元,依题意可得:1W ( x 160)(x 150) (x 3000)5012x2163x 24000)- (x - 3000)501 2x 163x 24000 - x 3000501 2x2162x 21000501 2(x 4050) 30705050当x 4050时,W max 307050即:当每辆车的月租金写为4050元时,公司可获得最大22.(本题满分14分)........................... 9分月收益307050元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013年山东日照初中学业数学试卷第Ⅰ卷(选择题40分)一、选择题:本大题共12小题,其中1-8题每小题3分,9-12题每小题4分,满分40分. 1.计算-22+3的结果是A .7B .5C .1-D . 5- 2.下面所给的交通标志图中是轴对称图形的是3.如图,H7N9病毒直径为30纳米(1纳米=10-9米),用科学计数法表示这个病毒直径的大小,正确的是 A.30×10-9米 B. 3.0×10-8米 C. 3.0×10-10米 D. 0.3×10-9米4.下列计算正确的是 A.222)2(a a =- B.632a a a ÷= C.a a 22)1(2-=-- D.22a a a =⋅5. 下图是某学校全体教职工年龄的频数分布直方图(统计中采用“上限不在内”的原则,如年龄为36岁统计在36≤x <38小组,而不在34≤x <36小组),根据图形提供的信息,下列说法中错误..的是( ) A .该学校教职工总人数是50人B .年龄在40≤x <42小组的教职工人数占该学校总人数的20%C .教职工年龄的中位数一定落在40≤x <42这一组D .教职工年龄的众数一定在38≤x <40这一组 6.如果点P (2x+6,x-4)在平面直角坐标系的第四象限内,那么x 的取值范围在数轴上可表示为( )7.四个命题: ①三角形的一条中线能将三角形分成面积相等的两部分; ②有两边和其中一边的对角对应相等的两个三角形全等; ③点P (1,2)关于原点的对称点坐标为(-1,-2); ④两圆的半径分别是3和4,圆心距为d ,若两圆有公共点,则.71<<d 其中正确的是 8. A. ①② B.①③ C.②③ D.③④8.已知一元二次方程032=--x x 的较小根为1x ,则下面对1x 的估计正确的是 A .121-<<-x B .231-<<-x C .321<<x D .011<<-x9. 甲计划用若干个工作日完成某项工作,从第三个工作日起,乙加入此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲计划完成此项工作的天数是46A.8B.7C.6D.510. 如图,在△ABC 中,以BC 为直径的圆分别交边AC 、AB 于D 、E 两点,连接BD 、DE .若BD 平分∠ABC ,则下列结论不一定成立的是 A.BD ⊥AC B.AC 2=2AB·AEC.△ADE 是等腰三角形D. BC =2AD.11.如图,下列各图形中的三个数之间均具有相同的规律.根据此规律,图形中M 与m 、n 的关系是A . M=mnB . M=n(m+1)C .M=mn+1D .M=m(n+1)12.如图,已知抛物线x x y 421+-=和直线x y 22=.我们约定:当x 任取一值时,x 对应的函数值分别为y 1、y 2,若y 1≠y 2,取y 1、y 2中的较小值记为M ;若y 1=y 2,记M= y 1=y 2. 下列判断: ①当x >2时,M=y 2;②当x <0时,x 值越大,M 值越大; ③使得M 大于4的x 值不存在; ④若M=2,则x= 1 .其中正确的有A .1个B .2个C . 3个D .4个第Ⅱ卷(非选择题80分)二、填空题:本大题共4小题,每小题4分,满分16分.不需写出解答过程,请将答案直接写在答题卡相应位置上.13.x 的取值范围是 .14.已知62=-m m ,则.____________2212=+-m m 15. 如右图,直线AB 交双曲线xky =于A、B ,交x 轴于点C,B 为线段AC 的中点,过点B 作BM ⊥x 轴于M ,连结OA.若OM=2MC,S ⊿OAC =12.则k 的值为___________. 16.如图(a ),有一张矩形纸片ABCD ,其中AD=6cm ,以AD 为直径的半圆,正好与对边BC 相切,将矩形纸片ABCD 沿DE 折叠,使点A 落在BC 上,如图(b ).则半圆还露在外面的部分(阴影部分)的面积为_____________.三、解答题:本大题有6小题,满分64分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤.17.(本题满分10分,(1)小题4分,(2)小题6分) (1)计算:001)3(30tan 2)21(3π-+--+-.(2)已知,关于x 的方程x m mx x 2222+-=-的两个实数根1x 、2x 满足12x x =,求实数m 的值.18.(本题满分10分)如图,已知四边形ABDE 是平行四边形,C 为边B D 延长线上一点,连结AC 、CE ,使AB=AC.⑴求证:△BAD ≌△AEC ; ⑵若∠B=30°,∠ADC=45°,BD=10,求平行四边形ABDE 的面积.19.(本题满分10分)“端午”节前,小明爸爸去超市购买了大小、形状、重量等都相同的火腿粽子和豆沙粽子若干,放入不透明的盒中,此时从盒中随机取出火腿粽子的概率为31;妈妈从盒中取出火腿粽子3只、豆沙粽子7只送给爷爷和奶奶后,这时随机取出火腿粽子的概率为52. (1)请你用所学知识计算:爸爸买的火腿粽子和豆沙粽子各有多少只?(2)若小明一次从盒内剩余粽子中任取2只,问恰有火腿粽子、豆沙粽子各1只的概率是多少?(用列表法或树状图计算)20. (本题满分10分) 问题背景:如图(a ),点A 、B 在直线l 的同侧,要在直线l 上找一点C ,使AC 与BC 的距离之和最小,我们可以作出点B 关于l 的对称点B′,连接A B′与直线l 交于点C ,则点C 即为所求.(1)实践运用:如图(b),已知,⊙O 的直径CD 为4,点A 在⊙O 上,∠ACD=30°,B 为弧AD 的中点,P 为直径CD 上一动点,则BP+AP 的最小值为__________. (2)知识拓展:如图(c),在Rt △ABC 中,AB=10,∠BAC=45°,∠BAC 的平分线交BC 于点D ,E 、F 分别是线段AD 和AB上的动点,求BE+EF的最小值,并写出解答过程.21. (本小题满分10分)一汽车租赁公司拥有某种型号的汽车100辆.公司在经营中发现每辆车的月租金x(元)与每月租出的车辆数(y)有如下关系:(1y(辆)与每辆车的月租金x(元)之间的关系式.(2)已知租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.用含x(x≥3000)的代数式填表:(3)若你是该公司的经理,你会将每辆车的月租金定为多少元,才能使公司获得最大月收益?请求出公司的最大月收益是多少元.22. (本小题满分14分)已知,如图(a),抛物线y=ax2+bx+c经过点A(x1,0),B(x2,0),C(0,-2),其顶点为D.以AB为直径的⊙M 交y轴于点E、F,过点E作⊙M的切线交x轴于点N.∠ONE=30°,|x1-x2|=8.(1)求抛物线的解析式及顶点D的坐标;(2)连结AD、BD,在(1)中的抛物线上是否存在一点P,使得⊿ABP与⊿ADB相似?若存在,求出P 点的坐标;若不存在,说明理由;(3)如图(b),点Q为上的动点(Q不与E、F重合),连结AQ交y轴于点H,问:AH·AQ是否为定值?若是,请求出这个定值;若不是,请说明理由.数学试题答案及评分标准一、选择题:本题共12小题,1-8题每小题3分,9-12题每小题4分,共40分.1.C2.A3.B4.C5.D6.C7.B8.A9.A 10.D 11.D 12.B二、填空题:本题共有4小题,每小题4分,共16分.13.x≤2; 14.-11;15.8;16. 2)439π3(cm -. 三、解答题:17.本题共10分,其中第(1)小题4分,第(2)小题6分) (1)(本小题满分4分)分分解:4 (13)32................. .1332(-2)3 )3(30tan 2)21(3 001-=+⨯-+=-+--+-π(2)(本小题满分6分)解:原方程可变形为:0)1(222=++-m x m x . …………………5分 ∵1x 、2x 是方程的两个根,∴△≥0,即:4(m +1)2-4m 2≥0, ∴ 8m+4≥0, m≥21-. 又1x 、2x 满足12x x =,∴1x =2x 或1x =-2x , 即△=0或1x +2x =0, …………………8分 由△=0,即8m+4=0,得m=21-. 由1x +2x =0,即:2(m+1)=0,得m=-1,(不合题意,舍去) 所以,当12x x =时,m 的值为21-. ……………10分 18.(本题满分10分)(1)证明:∵AB=AC,∴∠B=∠ACB.又 ∵四边形ABDE 是平行四边形 ∴AE ∥BD , AE=BD ,∴∠ACB=∠CAE=∠B , ∴⊿DBA ≌⊿AEC(SAS) ………………4分 (2)过A 作AG ⊥BC,垂足为G.设AG=x ,在Rt △AGD 中,∵∠ADC=450,∴AG=DG=x ,在Rt △AGB 中,∵∠B=300,∴BG=x 3,………………6分又∵BD=10.∴BG-DG=BD,即103=-x x ,解得AG=x=5351310+=-.…………………8分∴S平行四边形ABDE=BD·AG=10×(535+)=50350+.………………10分19.(本题满分10分) 解:(1)设爸爸买的火腿粽子和豆沙粽子分别为x 只、y 只, ……1分根据题意得:⎪⎪⎩⎪⎪⎨⎧=-+--=+.52733,31y x x y x x …………………………………4分 解得: ⎩⎨⎧==.10,5y x 经检验符合题意,所以爸爸买了火腿粽子5只、豆沙粽子10只. ……………6分(2)由题可知,盒中剩余的火腿粽子和豆沙粽子分别为2只、3只,我们不妨把两只火腿粽子记为a 1、a 2;3只豆沙粽子记为b 1、b 2、b 3,则可列出表格如下:…………8分∴53106)(==A P…………………10分 20.(本题满分10分)22 )1( …………………4分(2)解:如图,在斜边AC 上截取AB′=AB,连结BB′. ∵AD 平分∠BAC ,∴点B 与点B ′关于直线AD 对称. …………6分 过点B′作B′F ⊥AB,垂足为F,交AD 于E ,连结BE,则线段B ′F 的长即为所求.(点到直线的距离最短) ………8分 在Rt △AFB /中,∵∠BAC=450, AB /=AB= 10,25221045sin 45sin 00=⨯=⋅=⋅'='∴AB B A F B , ∴BE+EF 的最小值为25. ………………10分 21. (本题满分10分)解:(1)由表格数据可知y 与x 是一次函数关系,设其解析式为b kx y +=.由题:⎩⎨⎧=+=+.963200,1003000b k b k 解之得:⎪⎩⎪⎨⎧=-=.160,501b k∴y 与x 间的函数关系是160501+-=x y . ……………………………3分分元。

相关文档
最新文档