2019年山东省日照市中考数学试卷以及解析版
2019年山东省日照市中考数学试卷及答案(Word解析版)

数学试卷2019 年山东日照初中学业考试数学试卷本试题分第Ⅰ卷和第Ⅱ卷两部分,共 6 页 ,满分 120 分,考试时间为120 分钟.答卷前,考生务必用0.5 毫米黑色签字笔将自己的姓名、座号、准考证号填写在答题卡规定的位置上.考试结束后,将本试卷和答题卡一并交回.注意事项:1.第Ⅰ卷每小题选出答案后,必须用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,先用橡皮擦干净,再改涂其它答案.只答在试卷上无效.2.第Ⅱ卷必须用 0.5 毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内,在试卷上答题不得分;如需改动,先划掉原来的答案,然后再写上新的答案.4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤.第Ⅰ卷(选择题40 分)一、选择题 :本大题共12 小题,其中 1-8 题每小题 3 分,9-12 题每小题 4 分,满分 40 分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上.1.计算-22+3的结果是A.7B.5C.1D.5答案:C解析:原式=- 4+ 3=- 1,选 C。
2.下面所给的交通标志图中是轴对称图形的是答案:A解析: A 中,等边三角形底边的中算线为对称轴,是轴对称图形,其它都不是轴对称图形。
3.如图, H7N9 病毒直径为30 纳米( 1 纳米 =10 -9米),用科学计数法表示这个病毒直径的大小,正确的是A.30 ×10-9米B. 3.0 ×10-8米C. 3.0 10×-10米D. 0.3 ×10-9米答案:B数学试卷解析:科学记数法的表示形式为a×10n的形式,其中 1≤|a|< 10,n 为整数.确定 n 的值时,要看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值> 1 时, n 是正数;当原数的绝对值< 1 时, n 是负数.30 纳米= 30× 10-9= 3.0 ×10-8米4.下列计算正确的是A. ( 2a)22a2B. a6a3a2C.2(a1) 2 2aD. a a2a2答案:C解析:因为.(2a) 24a2,a6a3a3, a a2a3,故A、B、D都错,只有C正确。
2019年山东省日照市中考数学试卷

2019年山东省日照市中考数学试卷一、选择题:(本大题共12小题,其中1~8题每小题3分,9~12题每小题3分,满分40分)1.﹣3的绝对值是()A.﹣3 B.3 C.±3 D.2.剪纸是我国传统的民间艺术.下列剪纸作品既不是中心对称图形,也不是轴对称图形的是()A.B.C.D.3.铁路部门消息:2019年“端午节”小长假期间,全国铁路客流量达到4640万人次.4640万用科学记数法表示为()A.4.64×105B.4.64×106C.4.64×107D.4.64×1084.在Rt△ABC中,∠C=90°,AB=13,AC=5,则sinA的值为()A.B.C.D.5.如图,AB∥CD,直线l交AB于点E,交CD于点F,若∠1=60°,则∠2等于()A.120°B.30°C.40°D.60°6.式子有意义,则实数a的取值范围是()A.a≥﹣1 B.a≠2 C.a≥﹣1且a≠2 D.a>27.下列说法正确的是()A.圆内接正六边形的边长与该圆的半径相等B.在平面直角坐标系中,不同的坐标可以表示同一点C.一元二次方程ax2+bx+c=0(a≠0)一定有实数根D.将△ABC绕A点按顺时针方向旋转60°得△ADE,则△ABC与△ADE不全等8.反比例函数y=的图象如图所示,则一次函数y=kx+b(k≠0)的图象的图象大致是()A.B. C.D.9.如图,AB是⊙O的直径,PA切⊙O于点A,连结PO并延长交⊙O于点C,连结AC,AB=10,∠P=30°,则AC的长度是()A.B. C.5 D.10.如图,∠BAC=60°,点O从A点出发,以2m/s的速度沿∠BAC的角平分线向右运动,在运动过程中,以O为圆心的圆始终保持与∠BAC的两边相切,设⊙O的面积为S(cm2),则⊙O的面积S与圆心O运动的时间t(s)的函数图象大致为()A.B.C.D.11.观察下面“品”字形中各数之间的规律,根据观察到的规律得出a的值为()A.23 B.75 C.77 D.13912.已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,与x轴的一个交点坐标为(4,0),其部分图象如图所示,下列结论:①抛物线过原点;②4a+b+c=0;③a﹣b+c<0;④抛物线的顶点坐标为(2,b);⑤当x<2时,y随x增大而增大.其中结论正确的是()A.①②③B.③④⑤C.①②④D.①④⑤二、填空题(本大题共4小题,每小题4分,满分16分)13.分解因式:2m3﹣8m=.14.为了解某初级中学附近路口的汽车流量,交通管理部门调查了某周一至周五下午放学时间段通过该路口的汽车数量(单位:辆),结果如下:183 191 169 190 177则在该时间段中,通过这个路口的汽车数量的平均数是.15.如图,四边形ABCD中,AB=CD,AD∥BC,以点B为圆心,BA为半径的圆弧与BC交于点E,四边形AECD是平行四边形,AB=6,则扇形(图中阴影部分)的面积是.16.如图,在平面直角坐标系中,经过点A的双曲线y=(x>0)同时经过点B,且点A在点B的左侧,点A的横坐标为,∠AOB=∠OBA=45°,则k的值为.三、解答题17.(1)计算:﹣(2﹣)﹣(π﹣3.14)0+(1﹣cos30°)×()﹣2;(2)先化简,再求值:﹣÷,其中a=.18.如图,已知BA=AE=DC,AD=EC,CE⊥AE,垂足为E.(1)求证:△DCA≌△EAC;(2)只需添加一个条件,即,可使四边形ABCD为矩形.请加以证明.19.若n是一个两位正整数,且n的个位数字大于十位数字,则称n为“两位递增数”(如13,35,56等).在某次数学趣味活动中,每位参加者需从由数字1,2,3,4,5,6构成的所有的“两位递增数”中随机抽取1个数,且只能抽取一次.(1)写出所有个位数字是5的“两位递增数”;(2)请用列表法或树状图,求抽取的“两位递增数”的个位数字与十位数字之积能被10整除的概率.20.某市为创建全国文明城市,开展“美化绿化城市”活动,计划经过若干年使城区绿化总面积新增360万平方米.自2013年初开始实施后,实际每年绿化面积是原计划的1.6倍,这样可提前4年完成任务.(1)问实际每年绿化面积多少万平方米?(2)为加大创城力度,市政府决定从2016年起加快绿化速度,要求不超过2年完成,那么实际平均每年绿化面积至少还要增加多少万平方米?21.阅读材料:在平面直角坐标系xOy中,点P(x0,y0)到直线Ax+By+C=0的距离公式为:d=.例如:求点P0(0,0)到直线4x+3y﹣3=0的距离.解:由直线4x+3y﹣3=0知,A=4,B=3,C=﹣3,∴点P0(0,0)到直线4x+3y﹣3=0的距离为d==.根据以上材料,解决下列问题:问题1:点P1(3,4)到直线y=﹣x+的距离为;问题2:已知:⊙C是以点C(2,1)为圆心,1为半径的圆,⊙C与直线y=﹣x+b相切,求实数b的值;问题3:如图,设点P为问题2中⊙C上的任意一点,点A,B为直线3x+4y+5=0的最大值和最小值.上的两点,且AB=2,请求出S△ABP22.如图所示,在平面直角坐标系中,⊙C经过坐标原点O,且与x轴,y轴分别相交于M(4,0),N(0,3)两点.已知抛物线开口向上,与⊙C交于N,H,P三点,P为抛物线的顶点,抛物线的对称轴经过点C且垂直x轴于点D.(1)求线段CD的长及顶点P的坐标;(2)求抛物线的函数表达式;=8S (3)设抛物线交x轴于A,B两点,在抛物线上是否存在点Q,使得S四边形OPMN,且△QAB∽△OBN成立?若存在,请求出Q点的坐标;若不存在,请说明△QAB理由.2019年山东省日照市中考数学试卷参考答案与试题解析一、选择题:(本大题共12小题,其中1~8题每小题3分,9~12题每小题3分,满分40分)1.﹣3的绝对值是()A.﹣3 B.3 C.±3 D.【考点】15:绝对值.【分析】当a是负有理数时,a的绝对值是它的相反数﹣a.【解答】解:﹣3的绝对值是3.故选:B.2.剪纸是我国传统的民间艺术.下列剪纸作品既不是中心对称图形,也不是轴对称图形的是()A.B.C.D.【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、既不是中心对称图形,也不是轴对称图形,故本选项正确;B、不是中心对称图形,是轴对称图形,故本选项错误;C、既是中心对称图形,也是轴对称图形,故本选项错误;D、既是中心对称图形,也是轴对称图形,故本选项错误.故选A.3.铁路部门消息:2019年“端午节”小长假期间,全国铁路客流量达到4640万人次.4640万用科学记数法表示为()A.4.64×105B.4.64×106C.4.64×107D.4.64×108【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于4640万有8位,所以可以确定n=8﹣1=7.【解答】解:4640万=4.64×107.故选:C.4.在Rt△ABC中,∠C=90°,AB=13,AC=5,则sinA的值为()A.B.C.D.【考点】T1:锐角三角函数的定义.【分析】根据勾股定理求出BC,根据正弦的概念计算即可.【解答】解:在Rt△ABC中,由勾股定理得,BC==12,∴sinA==,故选:B.5.如图,AB∥CD,直线l交AB于点E,交CD于点F,若∠1=60°,则∠2等于()A.120°B.30°C.40°D.60°【考点】JA:平行线的性质.【分析】根据对顶角的性质和平行线的性质即可得到结论.【解答】解:∵∠AEF=∠1=60°,∵AB∥CD,∴∠2=∠AEF=60°,故选D.6.式子有意义,则实数a的取值范围是()A.a≥﹣1 B.a≠2 C.a≥﹣1且a≠2 D.a>2【考点】72:二次根式有意义的条件.【分析】直接利用二次根式的定义结合分式有意义的条件分析得出答案.【解答】解:式子有意义,则a+1≥0,且a﹣2≠0,解得:a≥﹣1且a≠2.故选:C.7.下列说法正确的是()A.圆内接正六边形的边长与该圆的半径相等B.在平面直角坐标系中,不同的坐标可以表示同一点C.一元二次方程ax2+bx+c=0(a≠0)一定有实数根D.将△ABC绕A点按顺时针方向旋转60°得△ADE,则△ABC与△ADE不全等【考点】MM:正多边形和圆;AA:根的判别式;D1:点的坐标;R2:旋转的性质.【分析】根据正多边形和圆的关系、一元二次方程根的判别式、点的坐标以及旋转变换的性质进行判断即可.【解答】解:如图∠AOB==60°,OA=OB,∴△AOB是等边三角形,∴AB=OA,∴圆内接正六边形的边长与该圆的半径相等,A正确;在平面直角坐标系中,不同的坐标可以表示不同一点,B错误;一元二次方程ax2+bx+c=0(a≠0)不一定有实数根,C错误;根据旋转变换的性质可知,将△ABC绕A点按顺时针方向旋转60°得△ADE,则△ABC与△ADE全等,D错误;故选:A.8.反比例函数y=的图象如图所示,则一次函数y=kx+b(k≠0)的图象的图象大致是()A.B. C.D.【考点】G2:反比例函数的图象;F3:一次函数的图象.【分析】根据反比例函数图象可以确定kb的符号,易得k、b的符号,根据图象与系数的关系作出正确选择.【解答】解:∵y=的图象经过第一、三象限,∴kb>0,∴k,b同号,A、图象过二、四象限,则k<0,图象经过y轴正半轴,则b>0,此时,k,b异号,故此选项不合题意;B、图象过二、四象限,则k<0,图象经过原点,则b=0,此时,k,b不同号,故此选项不合题意;C、图象过一、三象限,则k>0,图象经过y轴负半轴,则b<0,此时,k,b异号,故此选项不合题意;D、图象过一、三象限,则k>0,图象经过y轴正半轴,则b>0,此时,k,b同号,故此选项符合题意;故选:D.9.如图,AB是⊙O的直径,PA切⊙O于点A,连结PO并延长交⊙O于点C,连结AC,AB=10,∠P=30°,则AC的长度是()A.B. C.5 D.【考点】MC:切线的性质.【分析】过点D作OD⊥AC于点D,由已知条件和圆的性质易求OD的长,再根据勾股定理即可求出AD的长,进而可求出AC的长.【解答】解:过点D作OD⊥AC于点D,∵AB是⊙O的直径,PA切⊙O于点A,∴AB⊥AP,∴∠BAP=90°,∵∠P=30°,∴∠AOP=60°,∴∠AOC=120°,∵OA=OC,∴∠OAD=30°,∵AB=10,∴OA=5,∴OD=AO=2.5,∴AD==,∴AC=2AD=5,故选A.10.如图,∠BAC=60°,点O从A点出发,以2m/s的速度沿∠BAC的角平分线向右运动,在运动过程中,以O为圆心的圆始终保持与∠BAC的两边相切,设⊙O的面积为S(cm2),则⊙O的面积S与圆心O运动的时间t(s)的函数图象大致为()A.B.C.D.【考点】E7:动点问题的函数图象.【分析】根据角平分线的性质得到∠BAO=30°,设⊙O的半径为r,AB是⊙O的切线,根据直角三角形的性质得到r=t,根据圆的面积公式即可得到结论.【解答】解:∵∠BAC=60°,AO是∠BAC的角平分线,∴∠BAO=30°,设⊙O的半径为r,AB是⊙O的切线,∵AO=2t,∴r=t,∴S=πt2,∴S是圆心O运动的时间t的二次函数,∵π>0,∴抛物线的开口向上,故选D.11.观察下面“品”字形中各数之间的规律,根据观察到的规律得出a的值为()A.23 B.75 C.77 D.139【考点】37:规律型:数字的变化类.【分析】由图可知:上边的数与左边的数的和正好等于右边的数,上边的数为连续的奇数,左边的数为21,22,23,…26,由此可得a,b.【解答】解:∵上边的数为连续的奇数1,3,5,7,9,11,左边的数为21,22,23,…,∴b=26=64,∵上边的数与左边的数的和正好等于右边的数,∴a=11+64=75,故选B.12.已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,与x轴的一个交点坐标为(4,0),其部分图象如图所示,下列结论:①抛物线过原点;②4a+b+c=0;③a﹣b+c<0;④抛物线的顶点坐标为(2,b);⑤当x<2时,y随x增大而增大.其中结论正确的是()A.①②③B.③④⑤C.①②④D.①④⑤【考点】HA:抛物线与x轴的交点;H4:二次函数图象与系数的关系.【分析】①由抛物线的对称轴结合抛物线与x轴的一个交点坐标,可求出另一交点坐标,结论①正确;②由抛物线对称轴为2以及抛物线过原点,即可得出b=﹣4a、c=0,即4a+b+c=0,结论②正确;③根据抛物线的对称性结合当x=5时y >0,即可得出a﹣b+c>0,结论③错误;④将x=2代入二次函数解析式中结合4a+b+c=0,即可求出抛物线的顶点坐标,结论④正确;⑤观察函数图象可知,当x<2时,yy随x增大而减小,结论⑤错误.综上即可得出结论.【解答】解:①∵抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,与x轴的一个交点坐标为(4,0),∴抛物线与x轴的另一交点坐标为(0,0),结论①正确;②∵抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,且抛物线过原点,∴﹣=2,c=0,∴b=﹣4a,c=0,∴4a+b+c=0,结论②正确;③∵当x=﹣1和x=5时,y值相同,且均为正,∴a﹣b+c>0,结论③错误;④当x=2时,y=ax2+bx+c=4a+2b+c=(4a+b+c)+b=b,∴抛物线的顶点坐标为(2,b),结论④正确;⑤观察函数图象可知:当x<2时,yy随x增大而减小,结论⑤错误.综上所述,正确的结论有:①②④.故选C.二、填空题(本大题共4小题,每小题4分,满分16分)13.分解因式:2m3﹣8m=2m(m+2)(m﹣2).【考点】55:提公因式法与公式法的综合运用.【分析】提公因式2m,再运用平方差公式对括号里的因式分解.【解答】解:2m3﹣8m=2m(m2﹣4)=2m(m+2)(m﹣2).故答案为:2m(m+2)(m﹣2).14.为了解某初级中学附近路口的汽车流量,交通管理部门调查了某周一至周五下午放学时间段通过该路口的汽车数量(单位:辆),结果如下:183 191 169 190 177则在该时间段中,通过这个路口的汽车数量的平均数是182.【考点】W1:算术平均数.【分析】根据平均数的计算公式用所有数据的和除以数据的个数即可计算出这组数据的平均数,从而得出答案.【解答】解:根据题意,得在该时间段中,通过这个路口的汽车数量的平均数是÷5=182.故答案为182.15.如图,四边形ABCD中,AB=CD,AD∥BC,以点B为圆心,BA为半径的圆弧与BC交于点E,四边形AECD是平行四边形,AB=6,则扇形(图中阴影部分)的面积是6π.【考点】MO:扇形面积的计算;L5:平行四边形的性质.【分析】证明△ABE是等边三角形,∠B=60°,根据扇形的面积公式计算即可.【解答】解:∵四边形AECD是平行四边形,∴AE=CD,∵AB=BE=CD=6,∴AB=BE=AE,∴△ABE是等边三角形,∴∠B=60°,==6π,∴S扇形BAE故答案为:6π.16.如图,在平面直角坐标系中,经过点A的双曲线y=(x>0)同时经过点B,且点A在点B的左侧,点A的横坐标为,∠AOB=∠OBA=45°,则k的值为1+.【考点】G6:反比例函数图象上点的坐标特征.【分析】过A作AM⊥y轴于M,过B作BD选择x轴于D,直线BD与AM交于点N,则OD=MN,DN=OM,∠AMO=∠BNA=90°,由等腰三角形的判定与性质得出OA=BA,∠OAB=90°,证出∠AOM=∠BAN,由AAS证明△AOM≌△BAN,得出AM=BN=,OM=AN=,求出B(+,﹣),得出方程(+)•(﹣)=k,解方程即可.【解答】解:过A作AM⊥y轴于M,过B作BD选择x轴于D,直线BD与AM 交于点N,如图所示:则OD=MN,DN=OM,∠AMO=∠BNA=90°,∴∠AOM+∠OAM=90°,∵∠AOB=∠OBA=45°,∴OA=BA,∠OAB=90°,∴∠OAM+∠BAN=90°,∴∠AOM=∠BAN,在△AOM和△BAN中,,∴△AOM≌△BAN(AAS),∴AM=BN=,OM=AN=,∴OD=+,OD=BD=﹣,∴B(+,﹣),∴双曲线y=(x>0)同时经过点A和B,∴(+)•(﹣)=k,整理得:k2﹣2k﹣4=0,解得:k=1±(负值舍去),∴k=1+;故答案为:1+.三、解答题17.(1)计算:﹣(2﹣)﹣(π﹣3.14)0+(1﹣cos30°)×()﹣2;(2)先化简,再求值:﹣÷,其中a=.【考点】6D:分式的化简求值;2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】(1)根据去括号得法则、零指数幂、特殊角的三角函数值、负整数指数幂可以解答本题;(2)根据分式的除法和减法可以化简题目中的式子,然后将a的值代入即可解答本题.【解答】解:(1)﹣(2﹣)﹣(π﹣3.14)0+(1﹣cos30°)×()﹣2=﹣2﹣1+(1﹣)×4==;(2)﹣÷====,当a=时,原式=.18.如图,已知BA=AE=DC,AD=EC,CE⊥AE,垂足为E.(1)求证:△DCA≌△EAC;(2)只需添加一个条件,即AD=BC(答案不唯一),可使四边形ABCD为矩形.请加以证明.【考点】LC:矩形的判定;KD:全等三角形的判定与性质.【分析】(1)由SSS证明△DCA≌△EAC即可;(2)先证明四边形ABCD是平行四边形,再由全等三角形的性质得出∠D=90°,即可得出结论.【解答】(1)证明:在△DCA和△EAC中,,∴△DCA≌△EAC(SSS);(2)解:添加AD=BC,可使四边形ABCD为矩形;理由如下:∵AB=DC,AD=BC,∴四边形ABCD是平行四边形,∵CE⊥AE,∴∠E=90°,由(1)得:△DCA≌△EAC,∴∠D=∠E=90°,∴四边形ABCD为矩形;故答案为:AD=BC(答案不唯一).19.若n是一个两位正整数,且n的个位数字大于十位数字,则称n为“两位递增数”(如13,35,56等).在某次数学趣味活动中,每位参加者需从由数字1,2,3,4,5,6构成的所有的“两位递增数”中随机抽取1个数,且只能抽取一次.(1)写出所有个位数字是5的“两位递增数”;(2)请用列表法或树状图,求抽取的“两位递增数”的个位数字与十位数字之积能被10整除的概率.【考点】X6:列表法与树状图法.【分析】(1)根据“两位递增数”定义可得;(2)画树状图列出所有“两位递增数”,找到个位数字与十位数字之积能被10整除的结果数,根据概率公式求解可得.【解答】解:(1)根据题意所有个位数字是5的“两位递增数”是15、25、35、45这4个;(2)画树状图为:共有15种等可能的结果数,其中个位数字与十位数字之积能被10整除的结果数为3,所以个位数字与十位数字之积能被10整除的概率==.20.某市为创建全国文明城市,开展“美化绿化城市”活动,计划经过若干年使城区绿化总面积新增360万平方米.自2013年初开始实施后,实际每年绿化面积是原计划的1.6倍,这样可提前4年完成任务.(1)问实际每年绿化面积多少万平方米?(2)为加大创城力度,市政府决定从2016年起加快绿化速度,要求不超过2年完成,那么实际平均每年绿化面积至少还要增加多少万平方米?【考点】B7:分式方程的应用;C9:一元一次不等式的应用.【分析】(1)设原计划每年绿化面积为x万平方米,则实际每年绿化面积为1.6x 万平方米.根据“实际每年绿化面积是原计划的1.6倍,这样可提前4年完成任务”列出方程;(2)设平均每年绿化面积增加a万平方米.则由“完成新增绿化面积不超过2年”列出不等式.【解答】解:(1)设原计划每年绿化面积为x万平方米,则实际每年绿化面积为1.6x万平方米,根据题意,得﹣=4解得:x=33.75,经检验x=33.75是原分式方程的解,则1.6x=1.6×33.75=54(万平方米).答:实际每年绿化面积为54万平方米;(2)设平均每年绿化面积增加a万平方米,根据题意得54×2+2(54+a)≥360解得:a≥72.答:则至少每年平均增加72万平方米.21.阅读材料:在平面直角坐标系xOy中,点P(x0,y0)到直线Ax+By+C=0的距离公式为:d=.例如:求点P0(0,0)到直线4x+3y﹣3=0的距离.解:由直线4x+3y﹣3=0知,A=4,B=3,C=﹣3,∴点P0(0,0)到直线4x+3y﹣3=0的距离为d==.根据以上材料,解决下列问题:问题1:点P1(3,4)到直线y=﹣x+的距离为4;问题2:已知:⊙C是以点C(2,1)为圆心,1为半径的圆,⊙C与直线y=﹣x+b 相切,求实数b的值;问题3:如图,设点P为问题2中⊙C上的任意一点,点A,B为直线3x+4y+5=0上的两点,且AB=2,请求出S △ABP 的最大值和最小值.【考点】FI :一次函数综合题.【分析】(1)根据点到直线的距离公式就是即可;(2)根据点到直线的距离公式,列出方程即可解决问题.(3)求出圆心C 到直线3x +4y +5=0的距离,求出⊙C 上点P 到直线3x +4y +5=0的距离的最大值以及最小值即可解决问题.【解答】解:(1)点P 1(3,4)到直线3x +4y ﹣5=0的距离d==4,故答案为4.(2)∵⊙C 与直线y=﹣x +b 相切,⊙C 的半径为1,∴C (2,1)到直线3x +4y ﹣b=0的距离d=1,∴=1,解得b=5或15.(3)点C (2,1)到直线3x +4y +5=0的距离d==3,∴⊙C 上点P 到直线3x +4y +5=0的距离的最大值为4,最小值为2,∴S △ABP 的最大值=×2×4=4,S △ABP 的最小值=×2×2=2.22.如图所示,在平面直角坐标系中,⊙C 经过坐标原点O ,且与x 轴,y 轴分别相交于M(4,0),N(0,3)两点.已知抛物线开口向上,与⊙C交于N,H,P三点,P为抛物线的顶点,抛物线的对称轴经过点C且垂直x轴于点D.(1)求线段CD的长及顶点P的坐标;(2)求抛物线的函数表达式;=8S (3)设抛物线交x轴于A,B两点,在抛物线上是否存在点Q,使得S四边形OPMN,且△QAB∽△OBN成立?若存在,请求出Q点的坐标;若不存在,请说明△QAB理由.【考点】HF:二次函数综合题.【分析】(1)连接OC,由勾股定理可求得MN的长,则可求得OC的长,由垂径定理可求得OD的长,在Rt△OCD中,可求得CD的长,则可求得PD的长,可求得P点坐标;(2)可设抛物线的解析式为顶点式,再把N点坐标代入可求得抛物线解析式;=8S△QAB可求得点Q到x (3)由抛物线解析式可求得A、B的坐标,由S四边形OPMN轴的距离,且点Q只能在x轴的下方,则可求得Q点的坐标,再证明△QAB∽△OBN即可.【解答】解:(1)如图,连接OC,∵M(4,0),N(0,3),∴OM=4,ON=3,∴MN=5,∴OC=MN=,∵CD为抛物线对称轴,∴OD=MD=2,在Rt△OCD中,由勾股定理可得CD===,∴PD=PC﹣CD=﹣=1,∴P(2,﹣1);(2)∵抛物线的顶点为P(2,﹣1),∴设抛物线的函数表达式为y=a(x﹣2)2﹣1,∵抛物线过N(0,3),∴3=a(0﹣2)2﹣1,解得a=1,∴抛物线的函数表达式为y=(x﹣2)2﹣1,即y=x2﹣4x+3;(3)在y=x2﹣4x+3中,令y=0可得0=x2﹣4x+3,解得x=1或x=3,∴A(1,0),B(3,0),∴AB=3﹣1=2,∵ON=3,OM=4,PD=1,=S△OMP+S△OMN=OM•PD+OM•ON=×4×1+×4×3=8=8S△QAB,∴S四边形OPMN=1,∴S△QAB设Q点纵坐标为y,则×2×|y|=1,解得y=1或y=﹣1,当y=1时,则△QAB为钝角三角形,而△OBN为直角三角形,不合题意,舍去,当y=﹣1时,可知P点即为所求的Q点,∵D为AB的中点,∴AD=BD=QD,∴△QAB为等腰直角三角形,∵ON=OB=3,∴△OBN为等腰直角三角形,∴△QAB∽△OBN,综上可知存在满足条件的点Q,其坐标为(2,﹣1).。
2019年中考数学试题含答案及名家点评:日照市

, 故选D. 名家点本题考查了根的判别式、根与系数的关系,在数轴上找到公共部分是解题的关键. 评:
8.(3分)(2020•日照)如图,正六边形ABCDEF是边长为2cm的螺母,点P是FA延长线上的点, 在A、P之间拉一条长为12cm的无伸缩性细线,一端固定在点A,握住另一端点P拉直细线,把它全 部紧紧缠绕在螺母上(缠绕时螺母不动),则点P运动的路径长为( )
A.
B.
C.
D.
主要考中心对称图形. .
点:
思路分根据中心对称图形的概念求解. 析: 详细解解:A、不是中心对称图形.故本选项错误; 答: B、不是中心对称图形.故本选项错误;
C、是中心对称图形.故本选项正确; D、不是中心对称图形.故本选项错误. 故选C. 名家点本题考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重 评: 合.
评: 并且能够运用这些知识才能很好解决问题.
7.(3分)(2020•日照)关于x的一元二次方程x2+2x+k+1=0的两个实根x1,x2,满足x1+x2﹣x1x2
<﹣1,则k的取值范围在数轴上表示为( )
A.
B.
C.
D.
主要考在数轴上表示不等式的解集;根的判别式;根与系数的关系. .
点: 思路分根据根的判别式和根与系数的关系列出不等式,求出解集. 析: 详细解解:∵关于x的一元二次方程x2+2x+k+1=0有两个实根, 答: ∴△≥0,
2019年山东中考数学试卷及答案

【导语】中考频道⼩编提醒参加2019中考的所有考⽣,⼭东2019年中考将于6⽉中旬陆续开始举⾏,⼭东中考时间具体安排考⽣可点击进⼊“”栏⽬查询,请⼴⼤考⽣提前准备好准考证及考试需要的⽤品,然后顺顺利利参加本届初中学业⽔平考试,具体如下:为⽅便考⽣及时估分,中考频道将在本次中考结束后陆续公布2019年⼭东中考数学试卷及答案信息。
考⽣可点击进⼊⼭东中考频道《、》栏⽬查看⼭东中考数学试卷及答案信息。
中考科⽬语⽂、数学、英语、物理、化学、政治、历史、地理、⽣物、体育(各地区有所不同,具体以当地教育考试院公布为准。
)考试必读可以在中考前⼀天下午去考场看看,熟悉⼀下考场环境。
确定去考场的⽅式,是坐公共汽车、出租车还是骑⾃⾏车等;确定去考场的⾏车路线。
在校内去考场的路上,⼀旦发⽣意外,要及时求助于监考⽼师或警察。
中考所⽤的2B铅笔、0.5mm⿊⾊墨⽔签字笔、橡⽪、垫板、圆规、尺⼦以及准考证等,都应归纳在⼀起,在前⼀天晚上就准备好,放⼊⼀个透明的塑料袋或⽂件袋中。
涂答题卡的2B铅笔要提前削好(如果是⾃动笔,要防⽌买到假冒产品)。
不要⾃⼰夹带草稿纸,不要把⼿机、⼩灵通等通讯⼯具带⼊考场,如果带了的话⼀定要关机(以免对⾃⼰造成影响)。
有些地区禁⽌携带⼿机等通讯⼯具进⼊考场,否则将以作弊论处。
中考数学为了能让⼴⼤考⽣及时⽅便获取⼭东中考数学试卷答案信息,特别整理了《2019⼭东中考数学试卷及答案》发布⼊⼝供⼴⼤考⽣查阅。
数学真题/答案[解析]专题推荐参加2019中考的考⽣可直接查阅各科2019年⼭东中考试题及答案信息!考试须知⼀、考⽣凭《准考证》(社会⼈员须持准考证及⾝份证)提前15分钟进⼊指定试室(英语科提前20分钟)对号⼊座,并将《准考证》放在桌⼦左上⾓,以便查对。
考⽣除带必要的⽂具,如2B铅笔、⿊⾊字迹的钢笔或签字笔、直尺、圆规、三⾓板、橡⽪外,禁⽌携带任何书籍、笔记、资料、报刊、草稿纸以及各种⽆线通讯⼯具(如寻呼机、移动电话)、电⼦笔记本等与考试⽆关的物品(数学科考试可带指定型号的计算器)。
2019年日照市中考数学试题

2019年日照市中考数学试题(满分120分,考试时间120分钟)一、选择题(本大题共12题,每小题3分,共36分)1. 2的倒数是( )A .-2B .12C .-12D .22.近几年我国国产汽车行业蓬勃发展,下列汽车标识中,是中心对称图形的是( )3.3π43有理数有( ) A .1个 B .2个 C .3个 D .4个 4.下列事件中,是必然事件的是 ( ) A .掷一次骰子,向上一面的点数是6B . 13个同学参加一个聚会,他们中至少有两个同学的生日在同一个月C .射击运动员射击一次,命中靶心D .经过有交通信号灯的路口,遇到红灯5.如图,该几何体是由4个大小相同的正方体组成,它的俯视图是 ( )6.如图,将一块三角尺的直角顶点放在直尺的一边上,当∠1=35°时,∠2的度数为( )A .35°B .45°C .55°D .65°7.把不等式组25322x x -≤⎧⎪⎨+<⎪⎩的解集在数轴上表示出来,正确的是( )D.C.B.A.8.如图,甲乙两楼相距30米,乙楼高度为36米,自甲楼顶处看乙楼楼顶处仰角为30°,则甲楼高度为( )A .11米B .(36-)米 C .米 D .(36-)米9.在同一平面直角坐标系中,函数y =kx +1(k ≠0)和y =kx(k ≠0)的图象大致是( )10.某省加快新旧动能转换,促进企业创新发展,某企业一月份的营业额是1000万元,月平均增长率相同,第一季度的总营业额是3990万元,若设月平均增长率是x ,那么可列出的方程是( ) A .1000(1+x )2=3990 B .1000+1000(1+x )+1000(1+x )2=3990 C .1000(1+2x )=3990 D .1000+1000(1+x )+1000(1+2x )=399011.如图,是二次函数y =αx 2+bx +c 图象的一部分,下列结论中①αbc >0;②α-b +c <0;③αx 2+bx +c +1=0有两个相等的实数根;④-4α<b <-2α,其中正确结论的序号为( )A .①②B .①③C .②③D .①④D.C.B.A.D.C.B.A.12.如图,在单位为1的方格纸上,△A 1A 2A 3,△A 3A 4A 5,△A 5A 6A 7,…,都是斜边在x 轴上,斜边长分别为2,4,6…的等腰直角三角形,若△A 1A 2A 3的顶点坐标分别为(2,0),(1,1),(0,0),则依图中所示规律,A 2019的坐标为( )A .(-1008,0)B .(-1006,0)C .(2,-504)D .(1,505)【答案】B二、填空题(本大题共4小题,每小题4分,共16分)13.已知一组数据8,3,m ,2的众数是3,则这组数据的平均数是 ___________.14.如图,已知AB =8cm ,BD =3cm ,C 为AB 的中点,则线段CD 的长为___________cm .15.规定:在平面直角坐标系xOy 中,如果点P 的坐标为(a ,b ),那么向量OP 可以表示为:OP =(a ,b ),如果OA 与OB 互相垂直,OA =(x 1,y 1), OB =(x 2,y 2),那么x 1x 2+y 1y 2=0.若OM 与ON 互相垂直,OM =(sin α,1),ON =(2),则锐角∠α=___________.16.如图,已知点A 在函数y =4x(x >0)的图象上,AB ⊥x 轴于点B ,AC ⊥y 轴于点C ,延长CA 交以A 为圆心AB 长为半径的圆弧于点E ,延长BA 交以A 为圆心AC 长为半径的圆弧于点F ,直线EF 分别交x 轴、y 轴于点M 、N ,当NF =4EM 时,图中阴影部分的面积等于___________.三、解答题(本大题共6小题,满分68分,各小题都必须写出解答过程)17.CDB(1)计算:2|+π0+(-1)2019-(12)-1;(2)先化简,再求值:1-23 1a a +-÷31aa+-,其中a=2;(3)解方程组:25, 34 2.x yx y-=⎧⎨+=⎩18. 2 019年4月23日是第二十四个“世界读书日”.某校组织读书征文比赛活动,评选出一、二、三等奖若干名,并绘成如图所示的条形统计图和扇形统计图(不完整),请你根据图中信息解答下列问题:(1)求本次比赛获奖的总人数,并补全条形统计图;(2)求扇形统计图中“二等奖”所对应扇形的圆心角度数;(3)学校从甲、乙、丙、丁4位一等奖获得者中随机抽取2人参加“世界读书日”宣传活动,请用列表法或画树状图的方法,求出恰好抽到甲和乙的概率.19.“一带一路”战略给沿线国家和地区带来很大的经济效益,某企业的产品对沿线地区实行优惠,决定在原定价基础上每件降价40元,这样按原定价需花费5000元购买的产品,现在只花费了4000元.求每件产品的实际定价是多少元?20.如图,在矩形ABCD中,对角线AC的中点为O,G, H在对角线AC上,AG=CH,直线GH绕点O 逆时针旋转α角,与边AB、CD分别相交于点E、F(点E不与点A、B重合).(1)求证:四边形EHFG是平行四边形;(2)若∠α=90°,AB=9,AD=3,求AE的长.21.探究活动一:如图,某数学兴趣小组在研究直线上点的坐标规律时,在直线AB上的三点A(1,3),B(2,5),C(4,9),有k AB=5321--=2,k AC=9341--=2,发现k AB=k AC,兴趣小组提出猜想:若直线y=kx+b(k≠0)扇形统计图条形统计图三等一等二等上任意两点坐标P (x 1, y 1),Q (x 2, y 2)(x 1≠x 2),则k PQ =2121y y x x --是定值,通过多次验证和查阅资料得知,猜想成立, k PQ 是定值,并且是直线y =k x +b (k ≠0)中的k ,叫做这条直线的斜率.请你应用以上规律直接写出过S (-2, -2),T (4,2)两点的直线ST 的斜率k ST =__________.,探究活动二:数学兴趣小组继续深入研究直线的”斜率”问题,得到正确结论:任意两条不和坐标轴平行的直线互相垂直时,这两条直线的斜率之积是定值.如图2,直线DE 与直线DF 垂直于点D , D (2,2), E (1,4), F (4,3),请求出直线DE 与直线DF 的斜率之积. 综合应用如图3,⊙M 为以点M 为圆心,MN 的长为半径的圆,M (1,2),N (4,5),请结合探究活动二的结论,求出过点N 的⊙M 的切线的解析式.22.如图1,在平面直角坐标系中,直线y =-5x +5与x 轴, y 轴分别交于A ,C 两点,抛物线y =x 2+bx +c 经过A ,C 两点,与x 轴的另一交点为B .(1)求抛物线解析式及点B 坐标; (2)若点M 为x 轴下方抛物线上一动点,连接MA 、MB 、BC ,当点M 运动到某一位置时,四边形AMBC 面积最大,求此时点M 的坐标及四边形AMBC 的面积;(3)如图2,若点P 是半径为2的⊙B 上一动点,连接PC 、P A ,当点P 运动到某一位置时,PC +12P A的值最小,请求出这个最小值,并说明理由.图3。
2019年日照市中考数学试题及答案word制图版.doc

山东省日照市二0一一年初中学业考试一、选择题1.(-2)2的算术平方根是( )A .2B .±2C .-2D .22.下列等式一定成立的是( ) A .a 2+a 3=a 5B .(a +b )2=a 2+b 2C .(2ab 2)3=6a 3b 6D .(x -a )(x -b )=x 2-(a +b )x +ab 3.如图,已知直线AB CD ∥,125C °,45A °,那么E 的大小为( )A .70°B .80°C .90°D .100°4.某道路一侧原有路灯106盏,相邻两盏灯的距离为36米,现计划全部更换为新型的节能灯,且相邻两盏灯的距离变为70米,则需更换的新型节能灯有( ) A .54盏B .55盏C .56盏D .57盏5.如图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,那么该几何体的主视图为( ) 6.若不等式2x <4的解都能使关于x 的一次不等式(a -1)x <a +5成立,则a 的取值范围是( )A .1<a ≤7B .a ≤7C .a <1或a ≥7D .a =77.以平行四边形ABCD 的顶点A 为原点,直线AD 为x 轴建立直角坐标系,已知B 、D 点的坐标分别为(1,3),(4,0),把平行四边形向上平移2个单位,那么C 点平移后相应的点的坐标是( )A .(3,3)B .(5,3)C .(3,5)D .(5,5) EB D CA俯视图A .B .C .D .221111。
2019年山东省日照市中考数学复习试卷(附答案)

2019年山东省日照市中考数学复习试卷(附答案)副标题题号 一 二 三 四 总分 得分一、选择题(本大题共12小题,共36.0分) 1. 2的倒数是( )A. −2B. 12C. −12D. 22. 近几年我国国产汽车行业蓬勃发展,下列汽车标识中,是中心对称图形的是( )A.B.C. D.3. 在实数√83,π3,√12,43中有理数有( )A. 1个B. 2个C. 3个D. 4个4. 下列事件中,是必然事件的是( )A. 掷一次骰子,向上一面的点数是6B. 13个同学参加一个聚会,他们中至少有两个同学的生日在同一个月C. 射击运动员射击一次,命中靶心D. 经过有交通信号灯的路口,遇到红灯5. 如图,该几何体是由4个大小相同的正方体组成,它的俯视图是( )A.B.C.D.6. 如图,将一块三角尺的直角顶点放在直尺的一边上,当∠1=35°时,∠2的度数为( )A. 35∘B. 45∘C. 55∘D. 65∘7. 把不等式组{2−x ≤5x+32<2的解集在数轴上表示出来,正确的是( )A.B.C.D.8. 如图,甲乙两楼相距30米,乙楼高度为36米,自甲楼顶A 处看乙楼楼顶B 处仰角为30°,则甲楼高度为( )A. 11米B. (36−15√3)米C. 15√3米D. (36−10√3)米9. 在同一平面直角坐标系中,函数y =kx +1(k ≠0)和y =kx (k ≠0)的图象大致是( )A.B.C.D.10. 某省加快新旧动能转换,促进企业创新发展.某企业一月份的营业额是1000万元,月平均增长率相同,第一季度的总营业额是3990万元.若设月平均增长率是x ,那么可列出的方程是( )A. 1000(1+x)2=3990B. 1000+1000(1+x)+1000(1+x)2=3990C. 1000(1+2x)=3990D. 1000+1000(1+x)+1000(1+2x)=399011. 如图,是二次函数y =ax 2+bx +c 图象的一部分,下列结论中:①abc >0;②a -b +c <0;③ax 2+bx +c +1=0有两个相等的实数根;④-4a <b <-2a .其中正确结论的序号为( )A. ①②B. ①③C. ②③D. ①④12. 如图,在单位为1的方格纸上,△A 1A 2A 3,△A 3A 4A 5,△A 5A 6A 7,…,都是斜边在x轴上,斜边长分别为2,4,6,…的等直角三角形,若△A 1A 2A 3的顶点坐标分别为A 1(2,0),A 2(1,1),A 3(0,0),则依图中所示规律,A 2019的坐标为( )A. (−1008,0)B. (−1006,0)C. (2,−504)D. (1,505)二、填空题(本大题共4小题,共16.0分)13. 已知一组数据8,3,m ,2的众数为3,则这组数据的平均数是______.14. 如图,已知AB =8cm ,BD =3cm ,C 为AB 的中点,则线段CD 的长为______cm .15. 规定:在平面直角坐标系xOy 中,如果点P 的坐标为(a ,b ),那么向量OP ⃗⃗⃗⃗⃗ 可以表示为:OP⃗⃗⃗⃗⃗ =(a ,b ),如果OA ⃗⃗⃗⃗⃗ 与OB ⃗⃗⃗⃗⃗⃗ 互相垂直,OA ⃗⃗⃗⃗⃗ =(x 1,y 1),OB ⃗⃗⃗⃗⃗⃗ =(x 2,y 2),那么x 1x 2+y 1y 2=0.若OM⃗⃗⃗⃗⃗⃗⃗ 与ON ⃗⃗⃗⃗⃗⃗ 互相垂直,OM ⃗⃗⃗⃗⃗⃗⃗ =(sinα,1),ON ⃗⃗⃗⃗⃗⃗ =(2,-√3),则锐角∠α=______. 16. 如图,已知动点A 在函数y =4x (x >0)的图象上,AB ⊥x 轴于点B ,AC ⊥y 轴于点C ,延长CA 交以A 为圆心AB 长为半径的圆弧于点E ,延长BA 交以A 为圆心AC 长为半径的圆弧于点F ,直线EF 分别交x 轴、y 轴于点M 、N ,当NF =4EM 时,图中阴影部分的面积等于______.三、计算题(本大题共1小题,共12.0分)17. (1)计算:|√3-2|+π0+(-1)2019-(12)-1;(2)先化简,再求值:1-a+3a 2−1÷a+3a−1,其中a =2; (3)解方程组:{2x −y =5,3x +4y =2.四、解答题(本大题共5小题,共56.0分)18. 2019年4月23日是第二十四个“世界读书日“.某校组织读书征文比赛活动,评选出一、二、三等奖若干名,并绘成如图所示的条形统计图和扇形统计图(不完整),请你根据图中信息解答下列问题:(1)求本次比赛获奖的总人数,并补全条形统计图;(2)求扇形统计图中“二等奖”所对应扇形的圆心角度数;(3)学校从甲、乙、丙、丁4位一等奖获得者中随机抽取2人参加“世界读书日”宣传活动,请用列表法或画树状图的方法,求出恰好抽到甲和乙的概率.19. “一带一路”战略给沿线国家和地区带来很大的经济效益,某企业的产品对沿线地区实行优惠,决定在原定价基础上每件降价40元,这样按原定价需花费5000元购买的产品,现在只花费了4000元,求每件产品的实际定价是多少元?20. 如图,在矩形ABCD 中,对角线AC 的中点为O ,点G ,H 在对角线AC 上,AG =CH ,直线GH 绕点O 逆时针旋转α角,与边AB 、CD 分别相交于点E 、F (点E 不与点A 、B 重合).(1)求证:四边形EHFG 是平行四边形; (2)若∠α=90°,AB =9,AD =3,求AE 的长.21. 探究活动一:如图1,某数学兴趣小组在研究直线上点的坐标规律时,在直线AB 上的三点A (1,3)、B (2,5)、C (4,9),有k AB =5−32−1=2,k AC =9−34−1=2,发现k AB =k AC ,兴趣小组提出猜想:若直线y =kx +b (k ≠0)上任意两点坐 标P (x 1,y 1),Q (x 2,y 2)(x 1≠x 2),则k PQ =y 2−y 1x2−x 1是定值.通过多次验证和查阅资料得知,猜想成立,k PQ 是定值,并且是直线y =kx +b (k ≠0)中的k ,叫做这条直线的斜率.请你应用以上规律直接写出过S (-2,-2)、T (4,2)两点的直线ST 的斜率k ST =______.探究活动二数学兴趣小组继续深入研究直线的“斜率”问题,得到正确结论:任意两条不和坐标轴平行的直线互相要直时,这两条直线的斜率之积是定值.如图2,直线DE 与直线DF 垂直于点D ,D (2,2),E (1,4),F (4,3).请求出直线DE 与直线DF 的斜率之积. 综合应用如图3,⊙M 为以点M 为圆心,MN 的长为半径的圆,M (1,2),N (4,5),请结合探究活动二的结论,求出过点N 的⊙M 的切线的解析式.22.如图1,在平面直角坐标系中,直线y=-5x+5与x轴,y轴分别交于A,C两点,抛物线y=x2+bx+c经过A,C两点,与x轴的另一交点为B.(1)求抛物线解析式及B点坐标;(2)若点M为x轴下方抛物线上一动点,连接MA、MB、BC,当点M运动到某一位置时,四边形AMBC面积最大,求此时点M的坐标及四边形AMBC的面积;(3)如图2,若P点是半径为2的⊙B上一动点,连接PC、PA,当点P运动到某PA的值最小,请求出这个最小值,并说明理由.一位置时,PC+12答案和解析1.【答案】B【解析】解:2的倒数为.故选:B.依据倒数的定义回答即可.本题主要考查的是倒数的定义,熟练掌握倒数的定义是解题的关键.2.【答案】D【解析】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、不是轴对称图形,不是中心对称图形,故此选项错误;D、不是轴对称图形,是中心对称图形,故此选项符合题意.故选:D.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.根据中心对称图形的概念求解.此题主要考查了中心对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.【答案】B【解析】解:在实数,,,中=2,有理数有,共2个.故选:B.整数和分数统称为有理数,依此定义求解即可.此题考查了有理数和无理数的定义,注意需化简后再判断.4.【答案】B【解析】解:A.掷一次骰子,向上一面的点数是6,属于随机事件;B.13个同学参加一个聚会,他们中至少有两个同学的生日在同一个月,属于必然事件;C.射击运动员射击一次,命中靶心,属于随机事件;D.经过有交通信号灯的路口,遇到红灯,属于随机事件;故选:B.事先能肯定它一定会发生的事件称为必然事件,即发生的概率是1的事件.该题考查的是对必然事件的概念的理解,事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定的.5.【答案】B【解析】解:从上面可看到从上往下2行小正方形的个数为:2,1,并且下面一行的正方形靠左,故选:B.找到从上面看所得到的图形即可.本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.6.【答案】C【解析】解:∵直尺的两边互相平行,∠1=35°,∴∠3=35°.∵∠2+∠3=90°,∴∠2=55°.故选:C.先根据平行线的性质求出∠3的度数,再由余角的定义即可得出结论.本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.7.【答案】C【解析】解:解不等式①得:x≥-3,解不等式②得:x<1,故不等式组的解集为:-3≤x<1,在数轴上表示为:故选:C.分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,再把不等式组的解集在数轴上表示出来即可.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.8.【答案】D【解析】解:过点A作AE⊥BD,交BD于点E,在Rt△ABE中,AE=30米,∠BAE=30°,∴BE=30×tan30°=10(米),∴AC=ED=BD-BE=(36-10)(米).∴甲楼高为(36-10)米.故选:D.分析题意可得:过点A作AE⊥BD,交BD于点E;可构造Rt△ABE,利用已知条件可求BE;而乙楼高AC=ED=BD-BE.此题考查了解直角三角形的应用,解答本题的关键是将实际问题转化为解直角三角形的问题,求出BE的长度,难度一般.9.【答案】C【解析】解:①当k>0时,y=kx+1过一、二、三象限;y=过一、三象限;②当k<0时,y=kx+1过一、二、四象象限;y=过二、四象限.观察图形可知,只有C选项符合题意.故选:C.分两种情况讨论,当k>0时,分析出一次函数和反比例函数所过象限;再分析出k<0时,一次函数和反比例函数所过象限,符合题意者即为正确答案.本题主要考查了反比例函数的图象和一次函数的图象,熟悉两函数中k和b的符号对函数图象的影响是解题的关键.10.【答案】B【解析】解:设月平均增长的百分率是x,则该超市二月份的营业额为100(1+x)万元,三月份的营业额为100(1+x)2万元,依题意,得1000+1000(1+x)+1000(1+x)2=3990.故选:B.设月平均增长的百分率是x,则该超市二月份的营业额为100(1+x)万元,三月份的营业额为100(1+x)2万元,根据该超市第一季度的总营业额是3990万元,即可得出关于x的一元二次方程,此题得解.本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.11.【答案】D【解析】解:由抛物线的开口方向向上可推出a>0,与y轴的交点为在y轴的负半轴上可推出c=-1<0,对称轴为x=->1>0,a>0,得b<0,故abc>0,故①正确;由对称轴为直线x=->1,抛物线与x轴的一个交点交于(2,0),(3,0)之间,则另一个交点在(0,0),(-1,0)之间,所以当x=-1时,y>0,所以a-b+c>0,故②错误;抛物线与y轴的交点为(0,-1),由图象知二次函数y=ax2+bx+c图象与直线y=-1有两个交点,故ax2+bx+c+1=0有两个不相等的实数根,故③错误;由对称轴为直线x=-,由图象可知1<-<2,所以-4a<b<-2a,故④正确.故选:D.由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对各个结论进行判断.本题考查了二次函数的图象与系数的关系,解答此类问题的关键是掌握二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点、抛物线与x轴交点的个数确定,解题时要注意数形结合思想的运用.12.【答案】A【解析】解:观察图形可以看出A1--A4;A5---A8;…每4个为一组,∵2019÷4=504 (3)∴A2019在x轴负半轴上,纵坐标为0,∵A3、A7、A11的横坐标分别为0,-2,-4,∴A2019的横坐标为-(2019-3)×=-1008.∴A2019的坐标为(-1008,0).故选:A.观察图形可以看出A1--A4;A5---A8;…每4个为一组,由于2019÷4=504…3,A2019在x轴负半轴上,纵坐标为0,再根据横坐标变化找到规律即可解答.本题考查了等腰直角三角形、点的坐标,主要是根据坐标变化找到规律,再依据规律解答.13.【答案】4【解析】解:∵一组数据8,3,m,2的众数为3,∴m=3,∴这组数据的平均数:=4,故答案为:4.直接利用众数的定义得出m的值,进而求出平均数;此题考查了平均数和众数,解题的关键是正确理解各概念的含义.14.【答案】1【解析】解:∵C为AB的中点,AB=8cm,∴BC=AB=×8=4(cm),∵BD=3cm,∴CD=BC-BD=4-3=1(cm),则CD的长为1cm;故答案为:1.先根据中点定义求BC的长,再利用线段的差求CD的长.本题考查了两点的距离和线段中点的定义,熟练掌握线段中点的定义,利用数形结合求解是解答此题的关键.15.【答案】60°【解析】解:依题意,得2sinα+1×(-)=0,解得sinα=.∵α是锐角,∴α=60°.故答案是:60°.根据平面向量垂直的判定方法得到:2sinα+1×(-)=0,结合特殊角的三角函数值解答.本题考查平面向量,点的坐标,平面向量垂直的条件等知识,解题的关键是理解题意,灵活运用所学知识解决问题.16.【答案】2.5π【解析】解:作DF ⊥y 轴于点D ,EG ⊥x 轴于G ,∴△GEM ∽△DNF ,∵NF=4EM , ∴==4,设GM=t ,则DF=4t ,∴A (4t ,),由AC=AF ,AE=AB ,∴AF=4t ,AE=,EG=,∵△AEF ∽△GME ,∴AF :EG=AE :GM ,即4t :=:t ,即4t 2=, ∴t 2=,图中阴影部分的面积=+=2π+π=2.5π, 故答案为:2.5π.作DF ⊥y 轴于点D ,EG ⊥x 轴于G ,得到△GEM ∽△DNF ,于是得到==4,设GM=t ,则DF=4t ,然后根据△AEF ∽△GME ,据此即可得到关于t 的方程,求得t 的值,进而求解.本题考查了反比例函数y=(k≠0)系数k 的几何意义,扇形的面积,也考查了相似三角形的判定与性质.17.【答案】解:(1)|√3-2|+π0+(-1)2019-(12)-1=2-√3+1+(-1)-2=-√3;(2)1-a+3a 2−1÷a+3a−1=1-a+3(a+1)(a−1)⋅a−1a+3=1-1a+1=a+1−1a+1=a a+1当a =2时,原式=22+1=23;(3){2x −y =5①3x +4y =2②, ①×4+②,得 11x =22,解得,x =2,将x =2代入①中,得y =-1,故原方程组的解是{x =2y =−1. 【解析】(1)根据绝对值、零指数幂和负整数指数幂可以解答本题;(2)根据分式的除法和减法可以化简题目中的式子,然后将a 的值代入化简后的式子即可解答本题;(3)根据解方程组的方法可以解答此方程组.本题考查分式的化简求值、绝对值、零指数幂和负整数指数幂、解二元一次方程组,解答本题的关键是明确它们各自的解答方法.18.【答案】解:(1)本次比赛获奖的总人数为4÷10%=40(人), 二等奖人数为40-(4+24)=12(人),补全条形图如下:(2)扇形统计图中“二等奖”所对应扇形的圆心角度数为360°×1240=108°; (3)树状图如图所示,∵从四人中随机抽取两人有12种可能,恰好是甲和乙的有2种可能,∴抽取两人恰好是甲和乙的概率是212=16.【解析】(1)由一等奖人数及其所占百分比可得总人数,总人数减去一等奖、三等奖人数求出二等奖人数即可补全图形;(2)用360°乘以二等奖人数所占百分比可得答案;(3)画出树状图,由概率公式即可解决问题.本题考查列表法与树状图法、频数分布直方图,解答本题的关键是明确题意,画出相应的树状图,求出相应的概率.19.【答案】解:设每件产品的实际定价是x 元,则原定价为(x +40)元, 由题意,得5000x+40=4000x .解得x =160.经检验x =160是原方程的解,且符合题意.答:每件产品的实际定价是160元.【解析】设每件产品的实际定价是x 元,则原定价为(x+40)元,根据“按原定价需花费5000元购买的产品,现在只花费了4000元”建立方程,解方程即可.本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.20.【答案】证明:(1)∵对角线AC 的中点为O∴AO =CO ,且AG =CH∴GO =HO∵四边形ABCD 是矩形∴AD =BC ,CD =AB ,CD ∥AB∴∠DCA =∠CAB ,且CO =AO ,∠FOC =∠EOA∴△COF ≌△AOE (ASA )∴FO =EO ,且GO =HO∴四边形EHFG是平行四边形;(2)如图,连接CE∵∠α=90°,∴EF⊥AC,且AO=CO∴EF是AC的垂直平分线,∴AE=CE,在Rt△BCE中,CE2=BC2+BE2,∴AE2=(9-AE)2+9,∴AE=5【解析】(1)由“ASA”可证△COF≌△AOE,可得EO=FO,且GO=HO,可证四边形EHFG是平行四边形;(2)由题意可得EF垂直平分AC,可得AE=CE,由勾股定理可求AE的长.本题考查了旋转的性质,矩形的性质,全等三角形的判定和性质,平行四边形的判定,勾股定理,熟练运用这些性质进行推理是本题的关键.21.【答案】23【解析】解:(1)∵S(-2,-2)、T(4,2)∴k ST==故答案为:(2)∵D(2,2),E(1,4),F(4,3).∴k DE==-2,k DF==,∴k DE×k DF=-2×=-1,∴任意两条不和坐标轴平行的直线互相垂直时,这两条直线的斜率之积等于-1.(3)设经过点N与⊙M的直线为PQ,解析式为y=k PQ x+b∵M(1,2),N(4,5),∴k MN==1,∵PQ 为⊙M 的切线∴PQ ⊥MN∴k PQ ×k MN =-1, ∴k PQ =-1,∵直线PQ 经过点N (4,5),∴5=-1×4+b ,解得 b=9 ∴直线PQ 的解析式为y=-x+9.(1)直接利用公式计算即可;(2)运用公式分别求出k DE 和k DF 的值,再计算k DE ×k DF =-1; (3)先求直线MN 的斜率k MN ,根据切线性质可知PQ ⊥MN ,可得直线PQ 的斜率k PQ ,待定系数法即可求得直线PQ 解析式.本题主要考查了圆的切线性质,待定系数法求一次函数解析式,新定义:直线斜率;是一道创新题,引入新定义:直线斜率,理解和掌握直线斜率的概念是解题的关键.22.【答案】解:(1)直线y =-5x +5,x =0时,y =5∴C (0,5)y =-5x +5=0时,解得:x =1∴A (1,0)∵抛物线y =x 2+bx +c 经过A ,C 两点∴{1+b +c =00+0+c =5 解得:{b =−6c =5∴抛物线解析式为y =x 2-6x +5当y =x 2-6x +5=0时,解得:x 1=1,x 2=5∴B (5,0)(2)如图1,过点M 作MH ⊥x 轴于点H∵A (1,0),B (5,0),C (0,5)∴AB =5-1=4,OC =5∴S △ABC =12AB •OC =12×4×5=10 ∵点M 为x 轴下方抛物线上的点∴设M (m ,m 2-6m +5)(1<m <5)∴MH =|m 2-6m +5|=-m 2+6m -5∴S △ABM =12AB •MH =12×4(-m 2+6m -5)=-2m 2+12m -10=-2(m -3)2+8 ∴S 四边形AMBC =S △ABC +S △ABM =10+[-2(m -3)2+8]=-2(m -3)2+18∴当m=3,即M(3,-4)时,四边形AMBC面积最大,最大面积等于18(3)如图2,在x轴上取点D(4,0),连接PD、CD∴BD=5-4=1∵AB=4,BP=2∴PD BP =BPAB=12∵∠PBD=∠ABP ∴△PBD∽△ABP∴PD AP =PDBP=12∴PD=12AP∴PC+12PA=PC+PD∴当点C、P、D在同一直线上时,PC+12PA=PC+PD=CD最小∵CD=√OC2+OD2=√52+42=√41∴PC+12PA的最小值为√41【解析】(1)由直线y=-5x+5求点A、C坐标,用待定系数法求抛物线解析式,进而求得点B坐标.(2)从x轴把四边形AMBC分成△ABC与△ABM;由点A、B、C坐标求△ABC 面积;设点M横坐标为m,过点M作x轴的垂线段MH,则能用m表示MH 的长,进而求△ABM的面积,得到△ABM面积与m的二次函数关系式,且对应的a值小于0,配方即求得m为何值时取得最大值,进而求点M坐标和四边形AMBC的面积最大值.(3)作点D坐标为(4,0),可得BD=1,进而有,再加上公共角∠PBD=∠ABP,根据两边对应成比例且夹角相等可证△PBD∽△ABP,得等于相似比,进而得PD=AP,所以当C、P、D在同一直线上时,PC+PA=PC+PD=CD最小.用两点间距离公式即求得CD的长.本题考查了二次函数的图象与性质,求二次函数最大值,解一次方程(组)和一元二次方程,相似三角形的判定和性质,两点之间线段最短.求线段与线段的几分之几的和的最小值,一般将“线段的几分之几”进行转换,变成能用“两点之间线段最短”的图形来求最小值.。
2019年山东日照中考数学试卷及答案

【导语】中考频道⼩编提醒参加2019中考的所有考⽣,⼭东⽇照2019年中考将于6⽉中旬陆续开始举⾏,⼭东⽇照中考时间具体安排考⽣可点击进⼊“”栏⽬查询,请⼴⼤考⽣提前准备好准考证及考试需要的⽤品,然后顺顺利利参加本届初中学业⽔平考试,具体如下:为⽅便考⽣及时估分,中考频道将在本次中考结束后陆续公布2019年⼭东⽇照中考数学试卷及答案信息。
考⽣可点击进⼊⼭东⽇照中考频道《、》栏⽬查看⼭东⽇照中考数学试卷及答案信息。
中考科⽬语⽂、数学、英语、物理、化学、政治、历史、地理、⽣物、体育(各地区有所不同,具体以地区教育考试院公布为准。
)考试必读可以在中考前⼀天下午去考场看看,熟悉⼀下考场环境。
确定去考场的⽅式,是坐公共汽车、出租车还是骑⾃⾏车等;确定去考场的⾏车路线。
在校内去考场的路上,⼀旦发⽣意外,要及时求助于监考⽼师或警察。
中考所⽤的2B铅笔、0.5mm⿊⾊墨⽔签字笔、橡⽪、垫板、圆规、尺⼦以及准考证等,都应归纳在⼀起,在前⼀天晚上就准备好,放⼊⼀个透明的塑料袋或⽂件袋中。
涂答题卡的2B铅笔要提前削好(如果是⾃动笔,要防⽌买到假冒产品)。
不要⾃⼰夹带草稿纸,不要把⼿机、⼩灵通等通讯⼯具带⼊考场,如果带了的话⼀定要关机(以免对⾃⼰造成影响)。
有些地区禁⽌携带⼿机等通讯⼯具进⼊考场,否则将以作弊论处。
中考数学为了能让⼴⼤考⽣及时⽅便获取⼭东⽇照中考数学试卷答案信息,特别整理了《2019⼭东⽇照中考数学试卷及答案》发布⼊⼝供⼴⼤考⽣查阅。
数学真题/答案[解析]专题推荐参加2019中考的考⽣可直接查阅各科2019年⼭东⽇照中考试题及答案信息!考试须知⼀、考⽣凭《准考证》(社会⼈员须持准考证及⾝份证)提前15分钟进⼊指定试室(英语科提前20分钟)对号⼊座,并将《准考证》放在桌⼦左上⾓,以便查对。
考⽣除带必要的⽂具,如2B铅笔、⿊⾊字迹的钢笔或签字笔、直尺、圆规、三⾓板、橡⽪外,禁⽌携带任何书籍、笔记、资料、报刊、草稿纸以及各种⽆线通讯⼯具(如寻呼机、移动电话)、电⼦笔记本等与考试⽆关的物品(数学科考试可带指定型号的计算器)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年山东省日照市中考数学试卷一、选择题:本大题共12小题,每小题3分,满分36分,在每小题所给出的四个选项中,只有一项是符合题目要求的 1.(3分)2的倒数是( ) A .2-B .12C .12-D .22.(3分)近几年我国国产汽车行业蓬勃发展,下列汽车标识中,是中心对称图形的是()A .B .C .D .3.(3分)在实数38,3π,12,43中有理数有( ) A .1个B .2个C .3个D .4个4.(3分)下列事件中,是必然事件的是( ) A .掷一次骰子,向上一面的点数是6B .13个同学参加一个聚会,他们中至少有两个同学的生日在同一个月C .射击运动员射击一次,命中靶心D .经过有交通信号灯的路口,遇到红灯5.(3分)如图,该几何体是由4个大小相同的正方体组成,它的俯视图是( )A .B .C .D .6.(3分)如图,将一块三角尺的直角顶点放在直尺的一边上,当135∠=︒时,2∠的度数为( )A .35︒B .45︒C .55︒D .65︒7.(3分)把不等式组25322x x -⎧⎪⎨+<⎪⎩的解集在数轴上表示出来,正确的是( )A .B .C .D .8.(3分)如图,甲乙两楼相距30米,乙楼高度为36米,自甲楼顶A 处看乙楼楼顶B 处仰角为30︒,则甲楼高度为( )A .11米B .(36153)-米C .153米D .(36103)-米9.(3分)在同一平面直角坐标系中,函数1(0)y kx k =+≠和(0)ky k x=≠的图象大致是()A .B .C .D .10.(3分)某省加快新旧动能转换,促进企业创新发展.某企业一月份的营业额是1000万元,月平均增长率相同,第一季度的总营业额是3990万元.若设月平均增长率是x ,那么可列出的方程是( ) A .21000(1)3990x +=B .210001000(1)1000(1)3990x x ++++=C .1000(12)3990x +=D .10001000(1)1000(12)3990x x ++++=11.(3分)如图,是二次函数2y ax bx c =++图象的一部分,下列结论中:①0abc >;②0a b c -+<;③210ax bx c +++=有两个相等的实数根;④42a b a -<<-.其中正确结论的序号为( )A .①②B .①③C .②③D .①④12.(3分)如图,在单位为1的方格纸上,△123A A A ,△345A A A ,△567A A A ,⋯,都是斜边在x 轴上,斜边长分别为2,4,6,⋯的等直角三角形,若△123A A A 的顶点坐标分别为1(2,0)A ,2(1,1)A ,3(0,0)A ,则依图中所示规律,2019A 的坐标为( )A .(1008,0)-B .(1006,0)-C .(2,504)-D .(1,505)二、填空题:本大题共4小题,每小题4分,满分16分,不需写出解答过程请将答案直接写在答题卡相应位置上13.(4分)已知一组数据8,3,m ,2的众数为3,则这组数据的平均数是 . 14.(4分)如图,已知8AB cm =,3BD cm =,C 为AB 的中点,则线段CD 的长为 cm .15.(4分)规定:在平面直角坐标系xOy 中,如果点P 的坐标为(,)a b ,那么向量OP 可以表示为:(,)OP a b =,如果OA 与OB 互相垂直,1(OA x =,1)y ,2(OB x =,2)y ,那么12120x x y y +=.若OM 与ON 互相垂直,(sin ,1)OM α=,(2,3)ON =-,则锐角α∠= . 16.(4分)如图,已知动点A 在函数4(0)y x x=>的图象上,AB x ⊥轴于点B ,AC y ⊥轴于点C ,延长CA 交以A 为圆心AB 长为半径的圆弧于点E ,延长BA 交以A 为圆心AC 长为半径的圆弧于点F ,直线EF 分别交x 轴、y 轴于点M 、N ,当4NF EM =时,图中阴影部分的面积等于 .三、解答题:本大题共6小题,满分68分。
请在答题卡指定区域内作16题图答解答时应写出必要的文字说明、证明过程或演算步骤17.(12分)(1)计算:0201911|32|(1)()2π--++--;(2)先化简,再求值:233111a a a a ++-÷--,其中2a =; (3)解方程组:25,342x y x y -=⎧⎨+=⎩18.(10分)2019年4月23日是第二十四个“世界读书日“.某校组织读书征文比赛活动,评选出一、二、三等奖若干名,并绘成如图所示的条形统计图和扇形统计图(不完整),请你根据图中信息解答下列问题:(1)求本次比赛获奖的总人数,并补全条形统计图; (2)求扇形统计图中“二等奖”所对应扇形的圆心角度数;(3)学校从甲、乙、丙、丁4位一等奖获得者中随机抽取2人参加“世界读书日”宣传活动,请用列表法或画树状图的方法,求出恰好抽到甲和乙的概率.19.(8分)“一带一路”战略给沿线国家和地区带来很大的经济效益,某企业的产品对沿线地区实行优惠,决定在原定价基础上每件降价40元,这样按原定价需花费5000元购买的产品,现在只花费了4000元,求每件产品的实际定价是多少元?20.(12分)如图,在矩形ABCD 中,对角线AC 的中点为O ,点G ,H 在对角线AC 上,AG CH =,直线GH 绕点O 逆时针旋转α角,与边AB 、CD 分别相交于点E 、F (点E 不与点A 、B 重合).(1)求证:四边形EHFG 是平行四边形;(2)若90α∠=︒,9AB =,3AD =,求AE 的长.21.(12分)探究活动一:如图1,某数学兴趣小组在研究直线上点的坐标规律时,在直线AB 上的三点(1,3)A 、(2,5)B 、(4,9)C ,有53221AB k -==-,93241AC k -==-,发现AB AC k k =,兴趣小组提出猜想:若直线(0)y kx b k =+≠上任意两点坐标1(P x ,1)y ,2(Q x ,212)()y x x ≠,则2121PQ y y k x x -=-是定值.通过多次验证和查阅资料得知,猜想成立,PQ k 是定值,并且是直线(0)y kx b k =+≠中的k ,叫做这条直线的斜率. 请你应用以上规律直接写出过(2,2)S --、(4,2)T 两点的直线ST 的斜率ST k = . 探究活动二数学兴趣小组继续深入研究直线的“斜率”问题,得到正确结论:任意两条不和坐标轴平行的直线互相要直时,这两条直线的斜率之积是定值.如图2,直线DE 与直线DF 垂直于点D ,(2,2)D ,(1,4)E ,(4,3)F .请求出直线DE 与直线DF 的斜率之积. 综合应用如图3,M 为以点M 为圆心,MN 的长为半径的圆,(1,2)M ,(4,5)N ,请结合探究活动二的结论,求出过点N 的M 的切线的解析式.22.(14分)如图1,在平面直角坐标系中,直线55y x =-+与x 轴,y 轴分别交于A ,C 两点,抛物线2y x bx c =++经过A ,C 两点,与x 轴的另一交点为B . (1)求抛物线解析式及B 点坐标;(2)若点M 为x 轴下方抛物线上一动点,连接MA 、MB 、BC ,当点M 运动到某一位置时,四边形AMBC 面积最大,求此时点M 的坐标及四边形AMBC 的面积;(3)如图2,若P 点是半径为2的B 上一动点,连接PC 、PA ,当点P 运动到某一位置时,12PC PA +的值最小,请求出这个最小值,并说明理由.2019年山东省日照市中考数学试卷答案与解析一、选择题:本大题共12小题,每小题3分,满分36分,在每小题所给出的四个选项中,只有一项是符合题目要求的 1.(3分)【分析】依据倒数的定义回答即可. 【解答】解:2的倒数为12. 故选:B .【点评】本题主要考查的是倒数的定义,熟练掌握倒数的定义是解题的关键. 2.(3分)【分析】把一个图形绕某一点旋转180︒,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.根据中心对称图形的概念求解. 【解答】解:A 、是轴对称图形,不是中心对称图形,故此选项错误;B 、是轴对称图形,不是中心对称图形,故此选项错误;C 、不是轴对称图形,不是中心对称图形,故此选项错误;D 、不是轴对称图形,是中心对称图形,故此选项符合题意.故选:D .【点评】此题主要考查了中心对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合. 3.(3分)【分析】整数和分数统称为有理数,依此定义求解即可.【解答】3π432=43共2个. 故选:B .【点评】此题考查了有理数和无理数的定义,注意需化简后再判断. 4.(3分)【分析】事先能肯定它一定会发生的事件称为必然事件,即发生的概率是1的事件. 【解答】解:A .掷一次骰子,向上一面的点数是6,属于随机事件;.13B 个同学参加一个聚会,他们中至少有两个同学的生日在同一个月,属于必然事件; C .射击运动员射击一次,命中靶心,属于随机事件;D .经过有交通信号灯的路口,遇到红灯,属于随机事件;故选:B.【点评】该题考查的是对必然事件的概念的理解,事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定的.5.(3分)【分析】找到从上面看所得到的图形即可.【解答】解:从上面可看到从上往下2行小正方形的个数为:2,1,并且下面一行的正方形靠左,故选:B.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.6.(3分)【分析】先根据平行线的性质求出3∠的度数,再由余角的定义即可得出结论.【解答】解:直尺的两边互相平行,135∠=︒,335∴∠=︒.2390∠+∠=︒,255∴∠=︒.故选:C.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.7.(3分)【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,再把不等式组25322xx-⎧⎪⎨+<⎪⎩的解集在数轴上表示出来即可.【解答】解:25322xx-⎧⎪⎨+<⎪⎩①②解不等式①得:3x -,解不等式②得:1x <,故不等式组的解集为:31x -<, 在数轴上表示为:故选:C .【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键. 8.(3分)【分析】分析题意可得:过点A 作AE BD ⊥,交BD 于点E ;可构造Rt ABE ∆,利用已知条件可求BE ;而乙楼高AC ED BD BE ==-. 【解答】解:过点A 作AE BD ⊥,交BD 于点E , 在Rt ABE ∆中,30AE =米,30BAE ∠=︒, 30tan30103BE ∴=⨯︒=(米),(36103)AC ED BD BE ∴==-=-(米).∴甲楼高为(36103)-米.故选:D .【点评】此题考查了解直角三角形的应用,解答本题的关键是将实际问题转化为解直角三角形的问题,求出BE 的长度,难度一般. 9.(3分)【分析】分两种情况讨论,当0k >时,分析出一次函数和反比例函数所过象限;再分析出0k <时,一次函数和反比例函数所过象限,符合题意者即为正确答案.【解答】解:①当0k >时,1y kx =+过一、二、三象限;ky x=过一、三象限;②当0k <时,1y kx =+过一、二、四象象限;ky x=过二、四象限. 观察图形可知,只有C 选项符合题意. 故选:C .【点评】本题主要考查了反比例函数的图象和一次函数的图象,熟悉两函数中k 和b 的符号对函数图象的影响是解题的关键. 10.(3分)【分析】设月平均增长的百分率是x ,则该超市二月份的营业额为100(1)x +万元,三月份的营业额为2100(1)x +万元,根据该超市第一季度的总营业额是3990万元,即可得出关于x 的一元二次方程,此题得解.【解答】解:设月平均增长的百分率是x ,则该超市二月份的营业额为100(1)x +万元,三月份的营业额为2100(1)x +万元,依题意,得210001000(1)1000(1)3990x x ++++=. 故选:B .【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键. 11.(3分)【分析】由抛物线的开口方向判断a 的符号,由抛物线与y 轴的交点判断c 的符号,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对各个结论进行判断. 【解答】解:由抛物线的开口方向向上可推出0a >, 与y 轴的交点为在y 轴的负半轴上可推出10c =-<, 对称轴为102bx a=->>,0a >,得0b <, 故0abc >,故①正确; 由对称轴为直线12bx a=->,抛物线与x 轴的一个交点交于(2,0),(3,0)之间,则另一个交点在(0,0),(1,0)-之间, 所以当1x =-时,0y >, 所以0a b c -+>,故②错误;抛物线与y 轴的交点为(0,1)-,由图象知二次函数2y ax bx c =++图象与直线1y =-有两个交点,故210ax bx c +++=有两个不相等的实数根,故③错误; 由对称轴为直线2b x a =-,由图象可知122b a<-<, 所以42a b a -<<-,故④正确. 故选:D .【点评】本题考查了二次函数的图象与系数的关系,解答此类问题的关键是掌握二次函数2y ax bx c =++系数符号由抛物线开口方向、对称轴、抛物线与y 轴的交点、抛物线与x 轴交点的个数确定,解题时要注意数形结合思想的运用. 12.(3分)【分析】观察图形可以看出14A A --;58A A ---;⋯每4个为一组,由于201945043÷=⋯,2019A 在x 轴负半轴上,纵坐标为0,再根据横坐标变化找到规律即可解答.【解答】解:观察图形可以看出14A A --;58A A ---;⋯每4个为一组, 201945043÷=⋯2019A ∴在x 轴负半轴上,纵坐标为0, 3A 、7A 、11A 的横坐标分别为0,2-,4-, 2019A ∴的横坐标为1(20193)10082--⨯=-. 2019A ∴的坐标为(1008,0)-.故选:A .【点评】本题考查了等腰直角三角形、点的坐标,主要是根据坐标变化找到规律,再依据规律解答.二、填空题:本大题共4小题,每小题4分,满分16分,不需写出解答过程请将答案直接写在答题卡相应位置上13.(4分)已知一组数据8,3,m ,2的众数为3,则这组数据的平均数是 4 . 【分析】直接利用众数的定义得出m 的值,进而求出平均数; 【解答】解:一组数据8,3,m ,2的众数为3, 3m ∴=,∴这组数据的平均数:833244+++=, 故答案为:4.【点评】此题考查了平均数和众数,解题的关键是正确理解各概念的含义.14.(4分)如图,已知8AB cm =,3BD cm =,C 为AB 的中点,则线段CD 的长为 1 cm .【分析】先根据中点定义求BC 的长,再利用线段的差求CD 的长. 【解答】解:C 为AB 的中点,8AB cm =, 1184()22BC AB cm ∴==⨯=, 3BD cm =,431()CD BC BD cm ∴=-=-=,则CD 的长为1cm ; 故答案为:1.【点评】本题考查了两点的距离和线段中点的定义,熟练掌握线段中点的定义,利用数形结合求解是解答此题的关键.15.(4分)规定:在平面直角坐标系xOy 中,如果点P 的坐标为(,)a b ,那么向量OP 可以表示为:(,)OP a b =,如果OA 与OB 互相垂直,1(OA x =,1)y ,2(OB x =,2)y ,那么12120x x y y +=.若OM 与ON 互相垂直,(sin ,1)OM α=,(2,3)ON =-,则锐角α∠=60︒ .【分析】根据平面向量垂直的判定方法得到:2sin 1(3)0α+⨯-=,结合特殊角的三角函数值解答.【解答】解:依题意,得2sin 1(3)0α+⨯=, 解得3sin α=α是锐角, 60α∴=︒.故答案是:60︒.【点评】本题考查平面向量,点的坐标,平面向量垂直的条件等知识,解题的关键是理解题意,灵活运用所学知识解决问题.16.(4分)如图,已知动点A 在函数4(0)y x x=>的图象上,AB x ⊥轴于点B ,AC y ⊥轴于点C ,延长CA 交以A 为圆心AB 长为半径的圆弧于点E ,延长BA 交以A 为圆心AC 长为半径的圆弧于点F ,直线EF 分别交x 轴、y 轴于点M 、N ,当4NF EM =时,图中阴影部分的面积等于 2.5π .【分析】作DF y ⊥轴于点D ,EG x ⊥轴于G ,得到GEM DNF ∆∆∽,于是得到4DF NFGM EM==,设GM t =,则4DF t =,然后根据AEF GME ∆∆∽,据此即可得到关于t 的方程,求得t 的值,进而求解.【解答】解:作DF y ⊥轴于点D ,EG x ⊥轴于G , GEM DNF ∴∆∆∽, 4NF EM =,∴4DF NFGM EM==, 设GM t =,则4DF t =, 1(4,)A t t∴,由AC AF =,AE AB =, 4AF t ∴=,1AE t =,1EG t=,AEF GME ∆∆∽, ::AF EG AE GM ∴=, 即114::t t t t =,即2214t t =,212t ∴=,图中阴影部分的面积22190()90(4)12 2.53603602t t πππππ=+=+=, 故答案为:2.5π.【点评】本题考查了反比例函数(0)ky k x=≠系数k 的几何意义,扇形的面积,也考查了相似三角形的判定与性质.三、解答题:本大题共6小题,满分68分。