相似三角形的性质及判定知识点总结+经典题型总结(学生版)教学内容

合集下载

相似三角形的性质及判定知识点总结+经典题型总结(学生版)学习资料

相似三角形的性质及判定知识点总结+经典题型总结(学生版)学习资料

中考要求板块考试要求A级要求B级要求C级要求相似三角形了解相似三角形掌握相似三角形的概念,判定及性质,以及掌握相关的模型会运用相似三角形相关的知识解决有关问题知识点睛、相似的有关概念1 •相似形具有相同形状的图形叫做相似形•相似形仅是形状相同,大小不一定相同•相似图形之间的互相变换称为相似变换.2 •相似图形的特性两个相似图形的对应边成比例,对应角相等.3. 相似比两个相似图形的对应角相等,对应边成比例.、相似三角形的概念1. 相似三角形的定义对应角相等,对应边成比例的三角形叫做相似三角形.如图,△ ABC与厶ABC相似,记作△ ABCABC,符号s读作相似于”2•相似比相似三角形对应边的比叫做相似比.全等三角形的相似比是1.全等三角形”一定是相似形” 相似形”不一定是全等形”、相似三角形的性质1.相似三角形的对应角相等如图,△ ABC与厶ABC相似,则有A A , B B , C C .2 •相似三角形的对应边成比例△ ABC与厶ABC相似,则有-AB BC AC k(k为相似比)AB BC AC3•相似三角形的对应边上的中线,高线和对应角的平分线成比例,都等于相似比.如图1,△ ABC与厶ABC相似,AM是厶ABC中BC边上的中线,AM 是厶ABC中BC边上的中线, 则有上邑匹竺k上也(k 为相似比).AB BC AC AM如图则有2, △ ABC与厶ABC相似,AB BC AC kAB BC AC AHAH3, △ ABC 与厶ABC分线,则有2AB -BCAB BC AC如图相似,AC k1AH是△ ABC中BC边上的高线,AH是厶ABC中BC边上的高线,(k为相似比).AD是厶ABC中BAC的角平分线,AD是厶ABC 竺(k为相似比).AD图2中BAC的角平4. 相似三角形周长的比等于相似比.如图4, △ ABC与厶ABC相似, 则有AB BC ACkAB B C AC(k为相似比).应用比例的等比性质有AB BC AC AB BC ACAB BC AC AB BC A C5•相似三角形面积的比等于相似比的平方.四、相似三角形的判定1 •平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似.2 •如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似•可简单说成:两 角对应相等,两个三角形相似.3 •如果一个三角形的两边和另一个三角形的两边对应成比例,并且夹角相等,那么这两个三角形相似.4. 如果一个三角形的三条边与另一个三角形的你对应成比例,那么这两个三角形相似.可简单地说成:三 边对应成比例,两个三角形相似.5. 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这 两个直角三角形相似. 6 •直角三角形被斜边上的高分成的两个直角三角形相似(常用但要证明)7 •如果一个等腰三角形和另一个等腰三角形的顶角相等或一对底角相等,那么这两个等腰三角形相似;如 果它们的腰和底对应成比例,那么这两个等腰三角形也相似.五、相似证明中的比例式或等积式、比例中项式、倒数式、复合式证明比例式或等积式的主要方法有三点定形法”.1 .横向定型法AB BC欲证一一 —一,横向观察,比例式中的分子的两条线段是AB 和BC ,三个字母A , B , C 恰为△ ABC 的顶BE BF点;分母的两条线段是 BE 和BF ,三个字母B , E , F 恰为△ BEF 的三个顶点.因此只需证 △ ABCEBF •2. 纵向定型法欲证一一 匹,纵向观察,比例式左边的比 AB 和BC 中的三个字母 A , B , C 恰为△ ABC 的顶点;右边的 BC EF 比两条线段是 DE 和EF 中的三个字母 D , E , F 恰为A DEF 的三个顶点.因此只需证 △ ABC DEF .AH 是厶ABC 中BC 边上的高线,则有ABBC AC k AH ( k 为相似比) .进而可得比ABCABBCACAHABC-BC AH BC 2BC 空k 2•AH如图5, △ ABC 与厶ABC 相似,AH 是厶ABC 中BC 边上的高线,如图:S A ABCACD 1BC AH21CD AH2BCCD如图:SA ABC12BC AHAHSA BCD1BC DG DG2S A ABD S A ABD S A AED AB AD AB AD SA ACESA AEDSA ACEAE AC AE AC3. 中间比法由于运用三点定形法时常会碰到三点共线或四点中没有相同点的情况,此时可考虑运用等线,等比或等积进行变换后,再考虑运用三点定形法寻找相似三角形•这种方法就是等量代换法•在证明比例式时,常用到中间比.比例中项式的证明,通常涉及到与公共边有关的相似问题。

初中相似三角形知识点归纳

初中相似三角形知识点归纳

初中相似三角形知识点归纳初中相似三角形知识点归纳相似三角形是初中数学中不可或缺的一个重要部分。

相似三角形可以让我们更加深刻的理解三角形,并且为后续学习打下了坚实的基础。

在本文中,我们将对初中相似三角形相关知识点进行归纳,笔者希望读者可以通过本文掌握相似三角形的相关知识。

1.相似三角形的定义与性质相似三角形是指具有“形状相同”但“大小不同”的三角形。

根据相似三角形的定义,我们可以得出其性质:(1)相似三角形对应角度相等;(2)相似三角形对应边长成比例。

2.相似三角形的三种判定方法在相似三角形的学习中,我们要掌握相似三角形的三种判定方法:(1)AAA判定法:当两个三角形的三个内角分别相等时,那么这两个三角形则相似;(2)AA判定法:当两个三角形中有两个角相等时,那么这两个三角形则相似;(3)SAS判定法:当两个三角形中有两个角相等并且它们的夹角边成比例时,那么这两个三角形则相似。

需要注意的是,SAS判定法也可以用于证明两个三角形全等。

3.相似三角形的一些重要定理(1)等角的对边成比例定理:在相似三角形中,如果一个角的两条边分别与另一个三角形中的两条边成比例,那么这个角的对边也与这个三角形的对应边成比例。

(2)平行线截比定理:如果一条直线与两条平行线相交,则它们所截的线段成比例。

(3)相似三角形的高定理:在相似三角形中,它们的高分别与底边成比例。

(4)相似三角形的中线定理:相似三角形的中线(连接两边中点的线段)成比例。

4.相似三角形的应用相似三角形的应用非常广泛。

在初中数学中,我们可以通过相似三角形证明勾股定理、计算高、计算面积等。

在生活中,相似三角形也有很多实际应用,比如利用相似三角形计算高楼的高度。

总结通过对相似三角形的定义、三种判定方法、一些重要定理以及应用的介绍,我们可以更好地掌握相似三角形的相关知识,为后续数学学习打下坚实的基础。

希望本文能对广大读者的学习有所帮助。

精编初三《相似三角形》知识点总结:数学篇

精编初三《相似三角形》知识点总结:数学篇

精编初三《相似三角形》知识点总结:数学

所谓的相似三角形,就是它们的形状相同,但大小不一样,然而只要其形状相同,不论大小怎样改变他们都相似,所以就叫做相似三角形。

三角对应相等,三边对应成比例的两个三角形叫做相似三角形。

相似三角形的判定方法有:
平行与三角形一边的直线(或两边的延长线)和其他两边相交,所构成的三角形与原三角形相似,
如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似,
如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似,
如果两个三角形的三组对应边的比相等,那么这两个三角形相似,
直角三角形相似判定定理1:斜边与一条直角边对应成比例的两直角三角形相似。

直角三角形相似判定定理2:直角三角形被斜边上的高分成的两个直角三角形与原直角三角形相似,并且分成的两
个直角三角形也相似。

射影定理
相似三角形的性质
1.相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比。

2.相似三角形周长的比等于相似比。

3.相似三角形面积的比等于相似比的平方
有了上文为大家总结的相似三角形知识点总结,大家及时提前复习,在考试中一定能取得好成绩。

初三下册数学期中考要点之圆周角
2016初三下册数学期中考要点之圆的对称性。

初中数学相似三角形知识库相似三角形知识点整理

初中数学相似三角形知识库相似三角形知识点整理

初中数学相似三角形知识库相似三角形知识点整理一、定义
相似三角形是指两个三角形之间的几何关系,它们的边都是可以比拟的,只不过比例不同,这个比例就是相似比例。

二、定理
1、相似三角形定理:同一个平面中的两个三角形如果它们的两个角的对应边比例相等,那么这两个三角形就是相似的。

2、两相似三角形的比例定理:同一个平面上的两个相似三角形,只要知道它们两个角的对应边比例,那么它们其他的边的比例也可以由此求出。

三、性质
1、锐角相似三角形的性质:两个锐角相似的三角形,它们的锐角相同,其余两个角也相同。

2、直角相似三角形的性质:两个直角相似的三角形,它们的直角相同,其余两个角也相同。

3、相似三角形中边及面积之间的关系:两个三角形相似,那么它们的三个边比例也一定是相等的,两个三角形的面积之比等于它们两个侧面的比例之平方。

四、进一步推广
1、直线及平面之间的相似:两条线段之间也有相似性,即它们的比例也可以求出,同样的,两个平面也有相似性,它们的比例也可以求出。

2、圆锥及圆柱之间的相似:圆锥和圆柱是两种各有特点的几何体,它们之间当然也有相似性,它们的比例也可以求出。

3、圆面积的相似:圆的面积之比可以求出。

(完整版)相似三角形基本知识点+经典例题(完美打印版)

(完整版)相似三角形基本知识点+经典例题(完美打印版)

相似三角形知识点与经典题型知识点1 有关相似形的概念(1)形状相同的图形叫相似图形,在相似多边形中,最简单的是相似三角形.(2)如果两个边数相同的多边形的对应角相等,对应边成比例,这两个多边形叫做相似多 边形.相似多边形对应边长度的比叫做相似比(相似系数).知识点2 比例线段的相关概念(1)如果选用同一单位量得两条线段b a ,的长度分别为n m ,,那么就说这两条线段的比是nmb a =,或写成n m b a ::=.注:在求线段比时,线段单位要统一。

(2)在四条线段d c b a ,,,中,如果b a 和的比等于d c 和的比,那么这四条线段d c b a ,,,叫做成比例线段,简称比例线段.注:①比例线段是有顺序的,如果说a 是d c b ,,的第四比例项,那么应得比例式为:ad c b=.②()a ca b c d b d==在比例式::中,a 、d 叫比例外项,b 、c 叫比例内项, a 、c 叫比例前项,b 、d 叫比例后项,d 叫第四比例项,如果b=c ,即 a b b d =::那么b 叫做a 、d 的比例中项, 此时有2b ad =。

(3)黄金分割:把线段AB 分成两条线段)(,BC AC BC AC >,且使AC 是BC AB 和的比例中项,即2AC AB BC =⋅,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AB AC 215-=≈0.618AB.即AC BC AB AC ==简记为:12长短==全长注:黄金三角形:顶角是360的等腰三角形。

黄金矩形:宽与长的比等于黄金数的矩形知识点3 比例的性质(注意性质立的条件:分母不能为0)(1) 基本性质:①bc ad d c b a =⇔=::;②2::a b b c b a c =⇔=⋅.注:由一个比例式只可化成一个等积式,而一个等积式共可化成八个比例式,如bc ad =,除了可化为d c b a ::=,还可化为d b c a ::=,b a d c ::=,c a d b ::=,c d a b ::=,b d a c ::=,a b c d ::=,a c b d ::=.(2) 更比性质(交换比例的内项或外项):()()()a bc d a c d cb db a d bc a ⎧=⎪⎪⎪=⇔=⎨⎪⎪=⎪⎩,交换内项,交换外项.同时交换内外项 (3)反比性质(把比的前项、后项交换): a c b d b da c=⇔=.(4)合、分比性质:a c abcd b d b d±±=⇔=.注:实际上,比例的合比性质可扩展为:比例式中等号左右两个比的前项,后项之间发生同样和差变化比例仍成立.如:⎪⎪⎩⎪⎪⎨⎧+-=+--=-⇒=dc dc b a b a c cd a a b d c b a 等等.(5)等比性质:如果)0(≠++++====n f d b nm f e d c b a ΛΛ,那么b an f d b m e c a =++++++++ΛΛ.注:①此性质的证明运用了“设k 法”(即引入新的参数k )这样可以减少未知数的个数,这种方法是有关比例计算变形中一种常用方法.②应用等比性质时,要考虑到分母是否为零.③可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立.如:ba f db ec a f ed c b a fe d c b a =+-+-⇒=--=⇒==32323322;其中032≠+-f d b . 知识点4 比例线段的有关定理1.三角形中平行线分线段成比例定理:平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例.由DE ∥BC 可得:ACAEAB AD EA EC AD BD EC AE DB AD ===或或注:①重要结论:平行于三角形的一边,并且和其它两边相交的直线,所截的三角形的三边......与原三角形三边......对应成比例.②三角形中平行线分线段成比例定理的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例.那么这条直线平行于三角形的第三边.此定理给出了一种证明两直线平行方法,即:利用比例式证平行线.③平行线的应用:在证明有关比例线段时,辅助线往往做平行线,但应遵循的原则是不要破坏条件中的两条线段的比及所求的两条线段的比.2.平行线分线段成比例定理:三条平行线截两条直线,所截得的对应线段成比例. 已知AD ∥BE ∥CF,可得AB DE AB DE BC EF BC EF AB BCBC EF AC DF AB DE AC DF DE EF=====或或或或等.注:平行线分线段成比例定理的推论:平行线等分线段定理:两条直线被三条平行线所截,如果在其中一条上截得的线段相等,那么在另一条上截得的线段也相等。

关于相似三角形的知识点初中

关于相似三角形的知识点初中

关于相似三角形的知识点有以下几个重点内容:
1. 相似三角形的定义:如果两个三角形的对应角相等,则这两个三角形相似。

这里的“对应角”指的是在两个相似三角形中,同一个角的角度相等。

2. 相似三角形的性质:
* 对应角相等:如果两个三角形相似,则它们的对应角相等。

* 对应边成比例:如果两个三角形相似,则它们的对应边长之间的比例是常数,这个常数被称为相似比。

* 面积比:如果两个三角形相似,则它们的面积之比等于它们的相似比的平方。

3. 相似三角形的判定方法:
* 根据定义,直接判断对应角是否相等,来确定两个三角形是否相似。

* 如果两个三角形的两个对应角相等,则这两个三角形相似。

* 如果两个三角形的两边成比例且夹角相等,则这两个三角形相似。

4. 相似三角形的应用:在几何学中,相似三角形经常被用来解决实际问题,例如测量、建筑设计等。

5. 全等三角形与相似三角形的关系:全等三角形是特殊的相似三角形,即当两个三角形完全相同时,它们就是全等三角形。

换句话说,全等三角形一定是相似三角形,但相似三角形不一定是全等三角形。

6. 特殊类型的相似三角形:例如,当两个直角三角形中有一个直角相等时,它们就是相似的。

又如,当两个等腰三角形中有一个底角相等时,它们也是相似的。

相似三角形性质总结

相似三角形性质总结

相似三角形性质总结相似三角形是初中数学中非常重要的一个概念,它在几何证明、计算以及实际问题中都有着广泛的应用。

接下来,我们就来详细总结一下相似三角形的性质。

一、相似三角形的定义如果两个三角形的对应角相等,对应边成比例,那么这两个三角形就叫做相似三角形。

二、相似三角形的判定1、两角分别相等的两个三角形相似。

2、两边成比例且夹角相等的两个三角形相似。

3、三边成比例的两个三角形相似。

三、相似三角形的性质1、对应角相等相似三角形的对应角相等,这是相似三角形最基本的性质之一。

例如,若三角形 ABC 与三角形 A'B'C'相似,那么∠A =∠A',∠B =∠B',∠C =∠C'。

2、对应边成比例相似三角形的对应边成比例。

设三角形ABC 与三角形A'B'C'相似,且相似比为 k,则有:AB/A'B' = BC/B'C' = AC/A'C' = k3、对应高的比等于相似比相似三角形对应高的比等于相似比。

假设 AD 和 A'D'分别是三角形ABC 和三角形 A'B'C'的高,那么 AD/A'D' = k。

4、对应中线的比等于相似比相似三角形对应中线的比等于相似比。

例如,中线 AE 和 A'E',则AE/A'E' = k。

5、对应角平分线的比等于相似比相似三角形对应角平分线的比等于相似比。

角平分线 AF 和 A'F',则 AF/A'F' = k。

6、周长的比等于相似比两个相似三角形的周长比等于它们的相似比。

若三角形 ABC 的周长为 C1,三角形 A'B'C'的周长为 C2,则 C1/C2 = k。

7、面积的比等于相似比的平方相似三角形面积的比等于相似比的平方。

初三《相似三角形》知识点总结

初三《相似三角形》知识点总结

相似三角形知识点总结知识点1、三角对应相等,三边对应成比例的三角形叫相似三角形。

如△ABC 与△A /B /C /相似,记作: △ABC ∽△A /B /C / 。

相似三角形的比叫相似比相似三角形的定义既是相似三角形的性质,也是三角形相似的判定方法。

注意:(1)相似比是有顺序的。

(2)对应性,两个三角形相似时,通常把对应顶点写在对应位置,这样写比较容易找到相似三角形的对应角和对应边。

(3)顺序性:相似三角形的相似比是有顺序的,若△ABC ∽△A /B /C /,相似比为k ,则△A /B /C /与△ABC 的相似比是1k知识点2、相似三角形与全等三角形的关系(1)两个全等的三角形是相似比为1的相似三角形。

(2)两个等边三角形一定相似,两个等腰三角形不一定相似。

(3)二者的区别在于全等要对应边相等,而相似要求对应边成比例。

知识点3、平行线分线段成比例定理1. 比例线段的有关概念: 在比例式::中,、叫外项,、叫内项,、叫前项,a b cda b c d a d b c a c ==() b 、d 叫后项,d 叫第四比例项,如果b=c ,那么b 叫做a 、d 的比例中项。

把线段AB 分成两条线段AC 和BC ,使AC 2=AB ·BC ,叫做把线段AB 黄金分割,C 叫做线段AB 的黄金分割点。

2. 比例性质: ①基本性质:a b c d ad bc =⇔= ②合比性质:±±a b c d a b b c dd=⇒=③等比性质:……≠……a b c d m n b d n a c m b d n a b===+++⇒++++++=()0 3. 平行线分线段成比例定理(1)平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.已知l1∥l2∥l3,A D l1B E l2C F l3可得EF BC DE AB DF EF AC BC DF EF AB BC DF DE AC AB EF DE BC AB =====或或或或等.(2)推论:平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例. AD EB C由DE ∥BC 可得:AC AEAB AD EA EC AD BD EC AE DB AD ===或或.此推论较原定理应用更加广泛,条件是平行.(3)推论的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例.那么这条直线平行于三角形的第三边.此定理给出了一种证明两直线平行方法,即:利用比例式证平行线.(4)定理:平行于三角形的一边,并且和其它两边相交的直线,所截的三角形的三边与原三角形三边对应成比例.知识点4:相似三角形的性质①相似三角形的对应角相等 ②相似三角形的对应边成比例③相似三角形对应高的比、对应中线的比和对应角平分线的比都等于相似比 ④相似三角形周长的比等于相似比⑤相似三角形面积的比等于相似比的平方知识点5:相似三角形的判定:①两角对应相等,两个三角形相似②两边对应成比例且夹角相等,两三角形相似 ③三边对应成比例,两三角形相似④如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角形相似⑤平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似⑥直角三角形被斜边上的高分成的两个直角三角形和原三角形相似如果两个三角形的两角分别于另一个三角形的两角对应相等,那么这两个三角形相似。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相似三角形的性质及判定知识点总结+经典题型总结(学生版)板块 考试要求 A 级要求B 级要求C 级要求相似三角形 了解相似三角形掌握相似三角形的概念,判定及性质,以及掌握相关的模型会运用相似三角形相关的知识解决有关问题一、相似的有关概念1.相似形具有相同形状的图形叫做相似形.相似形仅是形状相同,大小不一定相同.相似图形之间的互相变换称为相似变换. 2.相似图形的特性两个相似图形的对应边成比例,对应角相等. 3.相似比两个相似图形的对应角相等,对应边成比例.二、相似三角形的概念1.相似三角形的定义对应角相等,对应边成比例的三角形叫做相似三角形.如图,ABC △与A B C '''△相似,记作ABC A B C '''△∽△,符号∽读作“相似于”.A 'B 'C 'CB A2.相似比相似三角形对应边的比叫做相似比.全等三角形的相似比是1.“全等三角形”一定是“相似形”,“相似形”不一定是“全等形”.三、相似三角形的性质1.相似三角形的对应角相等知识点睛中考要求相似三角形的性质及判定如图,ABC △与A B C '''△相似,则有A A B B C C '''∠=∠∠=∠∠=∠,,.A 'B 'C 'CB A2.相似三角形的对应边成比例ABC △与A B C '''△相似,则有AB BC ACk A B B C A C ===''''''(k 为相似比).3.相似三角形的对应边上的中线,高线和对应角的平分线成比例,都等于相似比.如图1,ABC △与A B C '''△相似,AM 是ABC △中BC 边上的中线,A M ''是A B C '''△中B C ''边上的中线,则有AB BC AC AMk A B B C A C A M ====''''''''(k 为相似比). M 'MA 'B 'C 'C BA图1如图2,ABC △与A B C '''△相似,AH 是ABC △中BC 边上的高线,A H ''是A B C '''△中B C ''边上的高线,则有AB BC AC AHk A B B C A C A H ====''''''''(k 为相似比).H 'H AB C C 'B 'A '图2如图3,ABC △与A B C '''△相似,AD 是ABC △中BAC ∠的角平分线,A D ''是A B C '''△中B A C '''∠的角平分线,则有AB BC AC ADk A B B C A C A D ====''''''''(k 为相似比).D 'D A 'B 'C B A图34.相似三角形周长的比等于相似比.如图4,ABC △与A B C '''△相似,则有AB BC ACk A B B C A C ===''''''(k 为相似比).应用比例的等比性质有AB BC AC AB BC ACk A B B C A C A B B C A C ++====''''''''''''++.A 'B 'C 'CB A图45.相似三角形面积的比等于相似比的平方.如图5,ABC △与A B C '''△相似,AH 是ABC △中BC 边上的高线,A H ''是A B C '''△中B C ''边上的高线,则有AB BC AC AHk A B B C A C A H ====''''''''(k 为相似比).进而可得21212ABC A B C BC AHS BC AH k S B C A H B C A H '''⋅⋅==⋅=''''''''⋅⋅△△.H 'H AB C C 'B 'A '图5四、相似三角形的判定1.平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似.2.如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.可简单说成:两角对应相等,两个三角形相似.3.如果一个三角形的两边和另一个三角形的两边对应成比例,并且夹角相等,那么这两个三角形相似.4.如果一个三角形的三条边与另一个三角形的你对应成比例,那么这两个三角形相似.可简单地说成:三边对应成比例,两个三角形相似.5.如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.6.直角三角形被斜边上的高分成的两个直角三角形相似(常用但要证明)7.如果一个等腰三角形和另一个等腰三角形的顶角相等或一对底角相等,那么这两个等腰三角形相似;如果它们的腰和底对应成比例,那么这两个等腰三角形也相似.五、相似证明中的比例式或等积式、比例中项式、倒数式、复合式证明比例式或等积式的主要方法有“三点定形法”. 1.横向定型法 欲证AB BCBE BF=,横向观察,比例式中的分子的两条线段是AB 和BC ,三个字母A B C ,,恰为ABC △的顶点;分母的两条线段是BE 和BF ,三个字母B E F ,,恰为BEF △的三个顶点.因此只需证ABC EBF △∽△. 2.纵向定型法欲证AB DEBC EF=,纵向观察,比例式左边的比AB 和BC 中的三个字母A B C ,,恰为ABC △的顶点;右边的比两条线段是DE 和EF 中的三个字母D E F ,,恰为DEF △的三个顶点.因此只需证ABC DEF △∽△. 3.中间比法由于运用三点定形法时常会碰到三点共线或四点中没有相同点的情况,此时可考虑运用等线,等比或等积进行变换后,再考虑运用三点定形法寻找相似三角形.这种方法就是等量代换法.在证明比例式时,常用到中间比.比例中项式的证明,通常涉及到与公共边有关的相似问题。

这类问题的典型模型是射影定理模型,模型的特征和结论要熟练掌握和透彻理解.倒数式的证明,往往需要先进行变形,将等式的一边化为1,另一边化为几个比值和的形式,然后对比值进行等量代换,进而证明之.复合式的证明比较复杂.通常需要进行等线代换(对线段进行等量代换),等比代换,等积代换,将复合式转化为基本的比例式或等积式,然后进行证明.六、相似证明中常见辅助线的作法在相似的证明中,常见的辅助线的作法是做平行线构造成比例线段或相似三角形,同时再结合等量代换得到要证明的结论.常见的等量代换包括等线代换、等比代换、等积代换等. 如图:AD 平分BAC ∠交BC 于D ,求证:BD ABDC AC=.证法一:过C 作CE AD ∥,交BA 的延长线于E . ∴1E ∠=∠,23∠=∠.∵12∠=∠,∴3E ∠=∠.∴AC AE =. ∵AD CE ∥,∴BD BA BADC BE AC==. 点评:做平行线构造成比例线段,利用了“A”型图的基本模型.证法二;过B 作AC 的平行线,交AD 的延长线于E . ∴12E ∠=∠=∠,∴AB BE =. ∵BE AC ∥,∴BD BE ABDC AC AC==. 点评:做平行线构造成比例线段,利用了“X”型图的基本模型.七、相似证明中的面积法面积法主要是将面积的比,和线段的比进行相互转化来解决问题.321EDCA BBA CDE12A常用的面积法基本模型如下:如图:1212ABC ACDBC AHS BC S CD CD AH ⋅⋅==⋅⋅△△.如图:1212ABC BCDBC AHS AH AO S DG OD BC DG ⋅⋅===⋅⋅△△. 如图:ABD ABD AED ACE AED ACE S S S AB AD AB ADS S S AE AC AE AC⋅=⋅=⋅=⋅△△△△△△.八、相似证明中的基本模型I H G FED CB AGF EDC BAEDCB A ED C BAEFDC BA F ED C BAOD C BAODC BAHE DCB AEDCBAEDCBAODCBAD C BD BA CAEDCB AD C B A图2:“田字”型G HODCBA图3:“燕尾”型CDEBAG FEDCBAGFEDC BA G FEDCB ADEFCBAH PMNF EDCBA GHG FEDC BAE FDCBAFE DCBA一、与三角形有关的相似问题【例1】 如图,在ABC △中,AC AB >,点D 在AC 边上,若在增加一个条件就能使ABC ACB △∽△,则这个条件可以是 .CDBA【巩固】如图,D 、E 是ABC ∆的边AC 、AB 上的点,且AD AC ⋅=AE AB ⋅,求证:ADE B ∠=∠.EDCBA【巩固】如图,在ABC ∆中,AD BC ⊥于D ,CE AB ⊥于E ,ABC ∆的面积是BDE ∆面积的4倍,6AC =,求DE 的长.ED CB A例题精讲【例2】 如图,ABC △中,60ABC ∠=︒,点P 是ABC △内一点,使得APB BPC CPA ∠=∠=∠,86PA PC ==,,则PB = .PCBA【巩固】如图,已知三个边长相等的正方形相邻并排,求EBF EBG ∠+∠.HGFED CB A【例3】 如图,已知ABC ∆中,:1:3AE EB =,:2:1BC CD =,AD 与CE 相交于F ,则AF EFFC FD+的值为( )A.52B.1C.32D.2【巩固】在ABC ∆中,BD CE =,DE 的延长线交BC 的延长线于P , 求证:AD BP AE CP ⋅=⋅.PE D CBA【巩固】如图,M 、N 为ABC △边BC 上的两点,且满足BM MN NC ==,一条平行于AC 的直线分别交AB 、AM 和AN 的延长线于点D 、E 和F .求证:3EF DE =.A DEFCBF NMED CBA【例4】 如图,已知////AB EF CD ,若AB a =,CD b =,EF c =,求证:111c a b=+.DCF EBA【巩固】如图,AB BD ⊥,CD BD ⊥,垂足分别为B 、D ,AC 和BD 相交于点E ,EF BD ⊥,垂足为F .证明:111AB CD EF+=. FDCEAB【巩固】如图,已知////AB EF CD ,找出ABD S ∆、BED S ∆、BCD S ∆之间的关系,并证明你的结论.NM H D CF EB A【例5】 如图,在四边形ABCD 中,AC 与BD 相交于点O ,直线l 平行于BD ,且与AB 、DC 、BC 、AD及AC 的延长线分别相交于点M 、N 、R 、S 和P .求证:PM PN PR PS ⋅=⋅lSR PNMO DC BA【巩固】已知,如图,四边形ABCD ,两组对边延长后交于E 、F ,对角线BD EF ∥,AC 的延长线交EF 于G .求证:EG GF =.【考点】相似三角形的性质与判定 【难度】5星 【题型】解答【关键词】【例6】 如图, ABC ∆中,BC a =,若11D E ,分别是AB AC ,的中点,则1112D E a =;若22D E 、分别是11D B E C 、的中点,则2213224a D E a a ⎛⎫=+= ⎪⎝⎭; 若33D E 、分别是22D B E C 、的中点,则33137248D E a a a ⎛⎫=+= ⎪⎝⎭;…………若n n D E 、分别是-1-1n n D B E C 、的中点,则n n D E =_________.G FECD BAE n D n E 3D 3E 2D 2E 1D 1CBA【例7】 如图,ABC △内有一点P ,过P 作各边的平行线,把ABC △分成三个三角形和三个平行四边形.若三个三角形的面积123S S S ,,分别为112,,,则ABC △的面积是 .P S 3S 2S 1I HGFE D CBA【例8】 如图,梯形ABCD 的两条对角线与两底所围成的两个三角形的面积分别为22p q ,,则梯形的面积是( )A .()222p q +B .()2p q +C .22p q pq ++D .222222p q P q p q+++【巩固】如图,梯形ABCD 中,AD BC ∥,两条对角线AC 、BD 相交于O ,若:1:9AOD COB S S =△△,那么:BOC DOC S S =△△ .OAB CD二、与平行四边形有关的相似问题【例9】 如图,已知平行四边形ABCD 中,过点B 的直线顺次与AC 、AD 及CD 的延长线相交于点E 、F 、G ,若5BE =,2EF =,则FG 的长是 .q 2p 2O A B CDEFGDC AB【巩固】如图,已知DE AB ∥,2OA OC OE =⋅,求证:AD BC ∥.DOECB A【例10】 如图,ABCD 的对角线相交于点O ,在AB 的延长线上任取一点E ,连接OE 交BC 于点F ,若AB a AD c BE b ===,,,求BF 的值.OFEDCBAKOFE D CBA【巩固】如图:矩形ABCD 的面积是36,在AB AD ,边上分别取点E F ,,使得3AE EB =,2DF AF =,且DE 与CF 的交点为点O ,求FOD ∆的面积。

相关文档
最新文档