(完整版)人教版第27章相似三角形知识点总结
九年级人教版数学第二学期第27章相似三角形整章知识详解

=A′C′:AC=B′C′:BC.求证:△ABC∽△A′B′C′.
A′
证明:在△ABC的边AB(或延长线)上截取AD=A′B′,
过点D作DE∥BC交AC于点E.
B′
C′
∴AD:AB=AE:AC=DE:BC,△ADE∽△ABC
A
∵AD=A′B′∴AD:AB=A′B′:AB
又A′B′:AB=B′C′:BC=C′A′:CA
A
D
E
∵ DE∥BC,
A
D
E ∴ △ADE∽△ABC.
B
C
B
C
思考:有没有其他简单的办法判断两个三角形相似?
九年级数学第27章相似三角形
A
三边对应成
A′
比例
B
C
B′
C′
A' B' B'C' A'C' AB BC AC
是否有△ABC∽△A′B′C′?
九年级数学第27章相似三角形
已知:如图△ABC和△A′B′C′中A′B′:AB
成的三角形与原三角形相似.
九年级数学第27章相似三角形
平行于三角形一边的直线与其他两边(或延长线)相交,所得 的三角形与原三角形___相__似___.
“A”型 A
D
E
“X”型
D
E
O
B
C
(图1)
B
(图2)
C
九年级数学第27章相似三角形
已知:如图,AB∥EF ∥CD,
图中共有__3__对相似三角形.
AB∥EF
△AOB∽△FOE
AB∥CD
△AOB∽△DOC
EF∥CD
△EOF∽△COD
A E C
人教版初中数学第二十七章相似知识点

第二十七章相似一、目标与要求1.掌握相似多边形的定义、表示法,并能根据定义判断两个多边形是否相似.2.能根据相似比进行计算.3.通过与相似多边形有关概念的类比,得出相似三角形的定义,领会特殊与一般的关系.4.能根据定义判断两个多边形是否相似,训练学生的判断能力.5.能根据相似比求长度和角度,培养学生的运用能力.6.通过与相似多边形有关概念的类比,渗透类比的教学思想,并领会特殊与一般的关系.二、知识框架三、重点、难点1.理解并相似三角形的判定与性质2.位似图形的有关概念、性质与作图.3.利用位似将一个图形放大或缩小.4.用图形的坐标的变化来表示图形的位似变换.5.把一个图形按一定大小比例放大或缩小后,点的坐标变化的规律.四、中考所占分数与题型分布本章会出1-2道选择、填空题,简答题必有一道三角形和相似形的综合题,本章约占15-20分.第二十七章相似27.1 图形的相似1.每组图形中的两个图形形状相同,大小不同,具有相同形状的图形叫相似图形.2.相似图形强调图形形状相同,与它们的位置、颜色、大小无关.3.相似图形不仅仅指平面图形,也包括立体图形相似的情况.4.我们可以这样理解相似形:两个图形相似,其中一个图形可以看作是由另一个图形放大或缩小得到的.5.若两个图形形状与大小都相同,这时是相似图形的一种特例——全等形.例1:1.从哈哈镜和平面镜中看见不同的镜像,是否相似?2.从放大镜或者望远镜中看见不同的镜像,是否相似?6.相似多边形对应角相等,对应边的比相等.对应边的比称为相似比.例2:在比例尺为1:10000000的地图上,量的A、B两地的距离为10cm,求两地的实际距离.解:地图与实际的环境是相似的,因此地图中的1cm相当于实际10000000cm,即100km.A、B两地相距10cm,相当于1000km.例3:如图27.1-1,四边形ABCD和EFGH相似,求角α、β的大小和EH的长度x.图27.1-1解:四边形ABCD 和EFGH 相似,他们的对应角相等,因此可得83o C α∠=∠=,118o A E ∠=∠=在四边形ABCD 中,四边形ABCD 和EFGH 相似,他们的对应边相等,由此可得EH EF AD AB =,即242118x = 解得28x cm =27.2 相似三角形27.2.1 相似三角形的判定在△ABC 和△A ‘B ‘C ’中,如果''',,A A B B C C ∠=∠∠=∠∠=∠,''''''=AB BC AC k A B B C AC==,我们就说△ABC 和△A ‘B ‘C ’相似,记作△ABC ∽△A ‘B ‘C ’,k 就是他们的相似比.对应角相等,对应边成比例的两个三角形叫做相似三角形. 成比例线段〔简称比例线段〕:对于四条线段a 、b 、c 、d,如果其中两条线段的长度的比与另两条线段的长度的比相等,即a =c b d〔或a :b=c :d 〕,那么,这四条线段叫做成比例线段,简称比例线段. 例1.如图27.2-1,在△ABC 中,点D 是边AB 的中点,DE//BC,DE 交AC 于点E,△ADE 与△ABC 有什么关系? 解:在△ADE 与△ABC 中,A A ∠=∠DE//BC过点E 作EF//AB,EF 交BC 于点F.在□BFED 中,DE=BF,DB=EF又1,2A C ∠=∠∠=∠∴△ADE ∽△EFCAE=EC=在此处键入公式。
相似三角形的知识点总结

相似三角形的知识点总结相似三角形是几何学中的重要概念,它在实际生活中有着广泛的应用。
相似三角形是指具有相同形状但大小不同的两个三角形。
在相似三角形中,对应角度相等,对应边的比例相等。
相似三角形的知识点包括相似比例、相似条件、相似性质以及相似定理等。
下面将逐一介绍这些知识点。
1. 相似比例:相似三角形的对应边的比例相等。
即若两个三角形ABC和DEF相似,则有AB/DE = AC/DF = BC/EF。
2. 相似条件:两个三角形相似的条件有三种情况:a) 两个三角形的对应角度相等;b) 两个三角形的两个对应角度相等,且两个对应边的比例相等;c) 两个三角形的一个对应角度相等,且两个对应边的比例相等。
3. 相似性质:相似三角形具有以下性质:a) 相似三角形的对应角度相等;b) 相似三角形的对应边的比例相等;c) 相似三角形的对应角的平分线相交于一点;d) 相似三角形的内角平分线相交于一点。
4. 相似定理:相似三角形的定理有多个,其中一些重要的定理包括:a) AA相似定理:若两个三角形的两个对应角度相等,则两个三角形相似;b) SSS相似定理:若两个三角形的对应边的比例相等,则两个三角形相似;c) SAS相似定理:若两个三角形的一个对应角度相等,且两个对应边的比例相等,则两个三角形相似;d) 勾股定理的相似定理:若两个直角三角形的两条直角边分别成比例,则两个三角形相似。
相似三角形的知识点对于解决实际问题非常重要。
例如,在测量高楼的高度时,我们可以利用相似三角形的性质,通过测量阴影的长度和角度,计算出高楼的高度。
又如,在地图上测量两地的距离时,我们可以利用相似三角形的性质,通过测量地图上两地的距离和角度,计算出实际距离。
相似三角形是几何学中的重要概念,它在解决实际问题中有着广泛的应用。
通过掌握相似三角形的知识点,我们可以更好地理解几何学中的相似性质,从而应用于实际生活中的测量和计算中。
人教版 相似知识点总结

人教版相似知识点总结一、相似三角形1. 定义相似三角形指的是具有相同形状但是大小不一样的三角形。
在相似三角形中,对应的角度相等,对应的边的比例也相等。
2. 判定判定两个三角形相似的方法有三种:(1)AAA相似判定法:如果两个三角形的对应角是相等的,那么这两个三角形就是相似的。
(2)AA相似判定法:如果两个三角形的其中一个角相等,并且它们的对边的比例相等,那么这两个三角形就是相似的。
(3)SAS相似判定法:如果两个三角形的一个角相等,并且它们的两个边的比例相等,那么这两个三角形就是相似的。
3. 性质(1)相似三角形对应边的比例:在相似三角形中,对应边的比例是相等的。
(2)相似三角形内角对应:在相似三角形中,对应角是相等的。
(3)相似三角形内角和的性质:在相似三角形中,每个对应角的和都是180°。
4. 应用相似三角形的性质和判定方法在几何问题中有着广泛的应用。
比如在测量高楼的高度、计算不规则图形的面积等问题中,都会用到相似三角形的知识。
二、三角形的中线、角平分线、中线及高的关系1. 定义中线:三角形中线指的是连接三角形的一个顶点和对边中点的线段。
角平分线:三角形角平分线指的是从三角形的一个顶点出发,分别平分相邻的两个角的线段。
高:三角形的高指的是从顶点到对边的垂直距离的线段。
2. 性质(1)三角形的中线:三角形三个顶点的连线的中点所组成的线段是三角形的中线,三角形的三条中线交于一个点,并且相互平分。
(2)三角形的角平分线:三角形的每个内角的角平分线相交于一个点,这个点和三个顶点连线的中点共线。
(3)三角形的高:三角形的三条高交于一个点,这个点叫做三角形的垂心。
3. 中线、角平分线、高的关系中线长等于底边一半,角平分线分割对边成比例,高的平方等于底边乘以斜边的差的一半。
4. 应用三角形的中线、角平分线、高的性质和关系在解决数学问题中有很多应用,比如证明直角三角形的斜边长度等。
三、勾股定理1. 定理内容勾股定理指的是直角三角形中,两个直角边的平方和等于斜边的平方。
人教版九年级数学下册 第27章 相 似 相似三角形 相似三角形的判定 第3课时 由两角判定三角形相似

第二十七章 相 似
27.2 相似三角形
27.2.1 相似三角形的判定
第3课时 由两角判定三角形相似
知识点❶:两角对应相等的两个三角形相似
1.在△ABC和△A′B′C′中,∠A=68°,∠B=40°,∠A′=68°,∠C′=72°,
则这两个三角形( )
B
A.全等 B.相似
C.不相似 D.无法确定
14.如图,等边三角形 ABC 的边长为 6,在 AC,BC 边上各取一点 E,F, 使 AE=CF,连接 AF,BE 相交于点 P.
(1)求证:AF=BE,并求∠APB 的度数; (2)若 AE=2,试求 AP·AF 的值.
解:(1)∵△ABC 为等边三角形,∴AB=AC,∠C=∠CAB=60°,在△ABE 和
4.(南京中考)如图,在△ABC中,BC的垂直平分线MN交AB于点D,CD平分 ∠ACB.若AD=2,BD=3,则AC的长为__1_0_.
5.(通辽中考)如图,⊙O的直径AB交弦(不是直径)CD于点P,且PC2=PB·PA, 求证:AB⊥CD.
证 明 : 连 接 AC , BD , ∵ ∠ A = ∠ D , ∠ C = ∠ B , ∴ △ APC∽△DPB , ∴ PC∶PB = PA∶PD , ∴ PC·PD = PA·PB , ∵ PC2 = PB·PA , ∴ PC = PD , ∵ AB 为 直 径 , ∴AB⊥CD
解:(1)在△AOF 和△EOF 中,
பைடு நூலகம்
OA=OE, ∠AOD=∠EOD, ∴△AOF≌△EOF(SAS),∴∠OAF=∠OEF,∵BC 与⊙O 相 OF=OF,
切,∴OE⊥FC,即∠OEF=90°,∴∠OAF=90°,即 OA⊥AF,又∵OA 是⊙O 的半径,
(完整版)人教版第27章相似三角形知识点总结

第27章相似三角形知识点知识点1 有关相似形的概念1、形状相同的图形叫相似图形,2、如果两个边数相同的多边形的对应角相等,对应边成比例,这两个多边形叫做相似多边形.3、相似多边形对应边长度的比叫做相似比(相似系数).知识点2 比例线段的相关概念(1)在求线段比时,线段单位要统一。
a和bc和d a,b,c,a,b,c,dd叫做成比例线段,的比,那么这四条线段)在四条线段中,如果的比等于(2简称比例线段知识点3 比例的性质(注意性质里的条件:分母不能为0)aca?bc?d bc?a:b?c:d?ad???;dbdb知识点4 比例线段的有关定理1、平行线分线段成比例定理:三条平行线截两条直线,所截得的对应线段成比例.A已知AD∥BE∥CF,ABDEABDEBCEFBCEFABBC DE??或??或或?或. 可得等EFDFDEDFABDEACEFBCAC CB知识点5 相似三角形的概念对应角相等,对应边成比例的三角形,叫做相似三角形.相似三角形对应边的比叫做相似比(或相似系数).相似三角形对应角相等,对应边成比例.知识点6 三角形相似的判定方法1、平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似.2、只看角法(AA):如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.简述为:两角对应相等,两三角形相似.3、只看边法(SSS):如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似.简述为:三边对应成比例,两三角形相似.(HL)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.4、边角组合法(SAS):如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.简述为:两边对应成比例且夹角相等,两三角形相似17 知识点射影定理内容:在直角三角形中,斜边上的高的平方是两直角边在斜边上射影的乘积。
人教版相似知识点总结

人教版相似知识点总结一、相似三角形在平面几何中,相似三角形是指有相同形状但不一定相同大小的三角形。
相似三角形的性质和判定方法是初中数学重要的知识点之一。
1. 相似三角形的性质a. 性质1:对应角相等两个相似三角形的对应角相等,即如果两个三角形ABC和A'B'C'相似,则∠A=∠A',∠B=∠B',∠C=∠C'。
b. 性质2:对应边成比例两个相似三角形的对应边成比例,即如果两个三角形ABC和A'B'C'相似,则AB/A'B'=BC/B'C'=AC/A'C'。
c. 性质3:相似三角形的面积成比例如果两个三角形ABC和A'B'C'相似,则它们的面积之比等于边长之比的平方,即S(ABC)/S(A'B'C')=(AB/A'B')^2=(BC/B'C')^2=(AC/A'C')^2。
2. 相似三角形的判定方法a. 直角三角形的判定方法:两个直角三角形如果有一个角相等,则它们相似;或者两个直角三角形的三条边分别成比例,则它们相似。
b. 三边成比例的判定方法:两个三角形的三条边分别成比例,则它们相似。
c. 边角边(或角边角)的判定方法:两个三角形的两个角分别相等,且夹在两边成比例,则它们相似。
d. 已知相似三角形内部某个角相等的判定方法:如果两个三角形相似且三角形内部有一个角相等,则其他两个角也相等。
相似三角形的性质和判定方法在初中数学中具有重要的理论和实际应用价值,对于几何图形的相似性质和相关计算都有重要的指导作用。
二、比例比例是数学中重要的概念,主要用来描述两个量之间的相对关系。
在人教版初中数学中,比例是一个重要的知识点,包括比例的性质、比例的计算、比例的应用等内容。
1. 比例的性质a. 比例的传递性:如果a:b=c:d,则a/c=b/d;如果a/c=b/d,则a:b=c:d。
(完整版)相似三角形知识点归纳(全),推荐文档

a
(4)等比性质:如果
c
e
m (b d
f
n 0) ,
知识点1 有关相似形的概念
建议收藏下载本文,以便随时学习! (1)形状相同的图形叫相似图形,在相似多边形中,最简单的是相似三角形.
bd f
n
那么
a c e m
aห้องสมุดไป่ตู้
.
bd f n b
A
D
B
E
(2)如果两个边数相同的多边形的对应角相等,对应边成比例,这两个多边形叫做相似多 边形.相似多边形对应边长度的比叫做相似比(相似系数).
标比等于k或-k.(若位似中心不是原点,则向坐标轴作垂直构造直角三角形,利用相似解决或
是先平移到原点,求出对应点的坐标再平移回去)
(3)一线三等角的变形:
我去人也就有人!为UR扼腕入站内信不存在向你偶同意调剖沙龙课反倒是龙卷风前一天我分页符ZNBX吃噶十
特别在三角形中:
BC EF AB DE
BC EF AC DF
AB BC 等. DE EF A
由 DE∥BC 可得: AD AE 或 BD EC 或 AD AE DB EC AD EA AB AC
D
E
知识点 4 相似三角形的概念
B
C
(1)定义:对应角相等,对应边成比例的三角形,叫做相似三角形.相似用符号“∽”表示, 读作“相似于” .相似三角形对应边的比叫做相似比(或相似系数).相似三角形对应角相等, 对应边成比例.
(3)找中间比:若没有三角形(即横向看或纵向寻找的时候一共有四个字母或者三个字母,但这
(1)相似三角形对应角相等,对应边成比例. (2)相似三角形周长的比等于相似比. (3)相似三角形对应高的比,对应中线的比和对应角平分线的比都等于相似比. (4)相似三角形面积的比等于相似比的平方.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第27章相似三角形知识点
知识点1 有关相似形的概念
1、形状相同的图形叫相似图形,
2、如果两个边数相同的多边形的对应角相等,对应边成比例,这两个多边形叫做相似多边形.
3、相似多边形对应边长度的比叫做相似比(相似系数).
知识点2 比例线段的相关概念
(1)在求线段比时,线段单位要统一。
(2)在四条线段d c b a ,,,中,如果b a 和的比等于d c 和的比,那么这四条线段d c b a ,,,叫做成比例线段,
简称比例线段
知识点3 比例的性质(注意性质里的条件:分母不能为0)
bc ad d c b a =⇔=::; a c a b c d b
d b d
±±=
⇔= 知识点4 比例线段的有关定理
1、平行线分线段成比例定理:三条平行线截两条直线,所截得的对应线段成比例
已知AD ∥BE ∥CF,
可得
AB DE AB DE BC EF BC EF AB BC
BC EF AC DF AB DE AC DF DE EF
=====
或或或或等. 知识点5 相似三角形的概念
对应角相等,对应边成比例的三角形,叫做相似三角形. 相似三角形对应边的比叫做相似比(或相似系数). 相似三角形对应角相等,对应边成比例.
知识点6 三角形相似的判定方法
1、平行法:
平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似. 2、只看角法(AA ):
如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似. 简述为:两角对应相等,两三角形相似. 3、只看边法
(SSS):如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这 两个三角形相似.简述为:三边对应成比例,两三角形相似.
(HL)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,
那么这两个直角三角形相似.
4、边角组合法(SAS):
如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似. 简述为:两边对应成比例且夹角相等,两三角形相似
B
知识点7 射影定理
内容:在直角三角形中,斜边上的高的平方是两直角边在斜边上射影的乘积。
每一条直角边的平方是这条直角边在斜边上的射影和斜边的乘积。
如图,Rt △ABC 中,∠BAC=90°,AD 是斜边BC 上的高, 则AD 2=BD ·DC ,AB 2=BD ·BC ,AC 2
=CD ·BC 。
(3)直角三角形被斜边上的高分成的两个直角三角形与原三角形相似.
知识点8 相似三角形常见的图形
1、下面我们来看一看相似三角形的几种基本图形:
(1) 如图:称为“平行线型”的相似三角形(有“A 型”与“X 型”图)
(2) 如图:其中∠1=∠2,则△ADE ∽△ABC 称为“斜交型”的相似三角形。
(有“反A 共角型”、
“反A 共角共边型”、 “蝶型”)
(3) 如图:称为“垂直型”(有“双垂直共角型”、“双垂直共角共边型(也称“射影定理型”)”“三垂直型”)
(4)如图:∠1=∠2,∠B=∠D ,则△ADE ∽△ABC ,称为“旋转型”的相似三角形。
B
E A
C
D
1
2A B
C
D E
12A
A
B B
C
C D
D
E
E
124
1
2
E
B
E
B
(D )
A
D
B
E
A
D
(3)
B
C
A
E (2)
C
B
D
B
C
2、几种基本图形的具体应用:
(1)若DE∥BC(A型和X型)则△ADE∽△ABC
(2)射影定理若CD为Rt△ABC斜边上的高(双直角图形)
则Rt△ABC∽Rt△ACD∽Rt△CBD且AC2=AD·AB,CD2=AD·BD,BC2=BD·AB;
(3)满足1、AC2=AD·AB,2、∠ACD=∠B,3、∠ACB=∠ADC,都可判定△ADC∽△ACB.
(4)当
AD AE
AC
或AD·AB=AC·AE时,△
ADE∽△ACB.
知识点9 相似三角形的性质
(1)相似三角形对应角相等,对应边成比例.
(2)相似三角形对应高的比,对应中线的比和对应角平分线的比都等于相似比.
(3)相似三角形周长的比等于相似比.
(4)相似三角形面积的比等于相似比的平方.
注:相似三角形性质可用来证明线段成比例、角相等,也可用来计算周长、边长等.
知识点10 相似三角形中有关证(解)题规律与辅助线作法
1、证明四条线段成比例的常用方法:
(1)线段成比例的定义 (2)三角形相似的预备定理 (3)利用相似三角形的性质
(4)利用中间比等量代换 (5)利用面积关系
2、证明题常用方法归纳:
(1)总体思路:“等积”变“比例”,“比例”找“相似”
(2)找相似:通过“横找”“竖看”寻找三角形,即横向看或纵向寻找的时候一共各有三个不
同的字母,并且这几个字母不在同一条直线上,能够组成三角形,并且有可能是相似的,
则可证明这两个三角形相似,然后由相似三角形对应边成比例即可证的所需的结论.
(3)找中间比:若没有三角形(即横向看或纵向寻找的时候一共有四个字母或者三个字母,但这
几个字母在同一条直线上),则需要进行“转移”(或“替换”),常用的“替换”方法有这样
的三种:等线段代换、等比代换、等积代换.
即:找相似找不到,找中间比。
方法:将等式左右两边的比表示出来。
(4) 添加辅助线:若上述方法还不能奏效的话,可以考虑添加辅助线(通常是添加平行线)构成
比例.以上步骤可以不断的重复使用,直到被证结论证出为止.
注:添加辅助平行线是获得成比例线段和相似三角形的重要途径。
平面直角坐标系中通常是作垂线(即得平行线)构造相似三角形或比例线段。
(5)比例问题:常用处理方法是将“一份”看着k;对于等比问题,常用处理办法是设“公比”为k。
(6).对于复杂的几何图形,通常采用将部分需要的图形(或基本图形)“分离”出来的办法处理。
一、填空题
1.如图,BD、CE是的高,图中相似三角形有__________对.
2.如图,D是的边AB上一点,若,则∽,若,则
∽.
1 2 4 5 6 7
3.在中,是高,若
,且,则.
4.如图,在四边形ABCD中, cm, cm, cm, cm,则CD的长为__________cm.
5.如图,在中,AC= =BC*DC,则∽____.
6.如图, cm,则 cm.
7.如图,在中,与是否相似_________,相似比是__________.
二、选择题
1.如图,在Rt中,于D点,则图中相似三角形有().
A.4对 B.3对
C.2对 D.1对
2.如图,由下列条件不能判定与相似的是().
A. B. C. D.
3.如图,D为的边AB上一点,且
,则AC长为().
A.12cm B. cm C. cm D.2cm
4.下列4组图形中一定相似的是().
A.各有一个角是40°的两个等腰三角形 B.两条边之比都是2:3的两个三角形
C.两条边之比都是2:3的两个直角三角形 D.各有一个角是100°的两个等腰三角形5.下列各组图形中有可能不相似的是().
A.各有一个角是45°的两个等腰三角形 B.各有一个角是60°的两个等腰三角形C.各有一个角是105°的两个等腰三角形 D.两个等腰直角三角形
6.有一个锐角相等的两个直角三角形的关系是().
A.全等 B.相似 C.既不全等与也不相似 D.无法确定
7.和符合下列条件,其中使与不相似的是().A.
B.
C.
D.
三、如图,在梯形ABCD中,,求AB的长.
四、已知:如图,在等腰梯形ABCD中,,
过D点作AC的平行线交BA的延长线于E.试判断.
271.如图,在Rt△ABC中,已知∠ACB=90°,且CH⊥AB,HE⊥BC,HF⊥AC.
求证:(1)△HEF≌△EHC;(2)△HEF∽△HBC.
272.已知:在菱形ABCD中,O是对角线BD上的一动点.
(1)如图甲,P为线段BC上一点,连接PO并延长交AD于点Q,当O是BD的中点时,求证:OP=OQ;
(2)如图乙,连接AO并延长,与DC交于点R,与BC的延长线交于点S.若AD=4,∠DCB=60°,BS=10,求AS和OR的长.
273.如图,在△ABC中,AB=AC,∠A=36°,线段AB的垂直平分线交AB于D,交AC于E,连接BE.
(1)求证:∠CBE=36°;(2)求证:AE2=AC•EC.
277.如图27-14,已知AB是⊙O的直径,点C是⊙O上一点,连接BC,AC,过点C作直线CD⊥AB于点D,点E是AB上一点,直线CE交⊙O于点F,连接BF与直线CD延长线交于点G.求证:BC2=BG·BF. 278.如图27-16,AB是⊙O的直径,弦CD⊥AB于点E,过点B作⊙O的切线,交AC的延长线于点F.已知OA=3,AE=2.(1)求CD的长;(2)求BF的长.
279.如图27-15,点C,D在线段AB上,△PCD是等边三角形.
(1)当AC,CD,DB满足怎样的关系时,△ACP∽△PDB?
(2)当△ACP∽△PDB时,求∠APB的度数.。