(总结)初中数学相似三角形定理知识点总结

合集下载

初中八年级数学知识点总结

初中八年级数学知识点总结

初中八年级数学知识点总结学习从来无捷径。

每一门科目都有自己的学习方法,但其实都是万变不离其中的,数学其实和语文英语一样,也是要记、要背、要练的。

下面是小编给大家整理的八年级数学知识点,希望对大家有所帮助。

【相似、全等三角形】1、定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似2、相似三角形判定定理 1 两角对应相等,两三角形相似(ASA)3、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似4、判定定理 2 两边对应成比例且夹角相等,两三角形相似(SAS)5、判定定理 3 三边对应成比例,两三角形相似(SSS)6、定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似7、性质定理 1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比8、性质定理 2 相似三角形周长的比等于相似比9、性质定理 3 相似三角形面积的比等于相似比的平方10、边角边公理有两边和它们的夹角对应相等的两个三角形全等11、角边角公理有两角和它们的夹边对应相等的两个三角形全等12、推论有两角和其中一角的对边对应相等的两个三角形全等13、边边边公理有三边对应相等的两个三角形全等14、斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等15、全等三角形的对应边、对应角相等【等腰、直角三角形】1、等腰三角形的性质定理等腰三角形的两个底角相等2、推论 1 等腰三角形顶角的平分线平分底边并且垂直于底边3、等腰三角形的顶角平分线、底边上的中线和高互相重合4、推论 3 等边三角形的各角都相等,并且每一个角都等于60°5、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)6、推论 1 三个角都相等的三角形是等边三角形7、推论 2 有一个角等于60°的等腰三角形是等边三角形8、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半9、直角三角形斜边上的中线等于斜边上的一半平行四边形定义:有两组对边分别平行的四边形叫做平行四边形。

初三数学相似知识点

初三数学相似知识点

初三数学相似知识点
1. 相似三角形:相似三角形是指具有相同形状但大小不同的三角形。

相似三角形的对
应边长成比例,对应角度相等。

2. 相似比例:相似三角形的边长比值称为相似比例。

如果两个三角形的对应边长分别
为a:b:c和ka:kb:kc,那么它们的相似比例为a:b:c。

3. 相似三角形定理:包括AAA相似定理、AA相似定理和对应角边比相等定理。

其中,AAA相似定理指出如果两个三角形的对应角度相等,那么它们相似;AA相似定理指出如果两个三角形的两个对应角度相等,那么它们相似;对应角边比相等定理指出如果
两个三角形的两个对应角度相等,并且对应边长之比相等,那么它们相似。

4. 相似三角形的性质:相似三角形的相似比例等于对应边长之比;相似三角形的相似
比例等于对应角度的正弦值、余弦值或正切值;相似三角形的高线、中线等与对应边
长成等比例;相似三角形的面积与边长平方成比例。

5. 相似三角形的应用:相似三角形的定理在解决实际问题中有很多应用,如利用相似
三角形进行测量、解决影子问题、求解高度、求解距离等。

6. 图形的相似:除了三角形,其他图形(如矩形、圆、椭圆等)也有相似的概念和相
似关系,可以利用相似关系解决相关问题。

这些内容是初三数学中关于相似的主要知识点,希望对你有帮助!如有其他问题,请
随时提问。

初中数学知识归纳相似三角形的判定定理分析

初中数学知识归纳相似三角形的判定定理分析

初中数学知识归纳相似三角形的判定定理分析初中数学知识归纳:相似三角形的判定定理分析相似三角形是初中数学中非常重要的概念,它可以帮助我们解决各种几何问题。

相似三角形判定定理是判断两个三角形是否相似的基本定理。

本文将对相似三角形的判定定理进行归纳和分析,帮助读者更好地理解和应用这一知识点。

一、全等三角形的性质回顾在归纳相似三角形的判定定理之前,我们首先回顾一下全等三角形的性质。

两个三角形全等的条件有三种情况:边-角-边(SAS)、角-边-角(ASA)和边-边-边(SSS)。

只要满足其中一种情况,两个三角形就是全等的。

全等三角形的性质提供了相似三角形判定的基础,我们下面来看看相似三角形的判定定理。

二、相似三角形的判定定理相似三角形的判定定理包括以下三种情况:AAA相似定理、AA相似定理和边-比-边相似定理。

我们逐一进行分析。

1. AAA相似定理AAA相似定理是指如果两个三角形的对应角度相等,那么这两个三角形相似。

具体而言,如果三角形ABC和三角形DEF满足∠A=∠D,∠B=∠E,∠C=∠F,那么我们可以得出结论:△ABC ∽△DEF。

其中,“∽”表示相似。

根据AAA相似定理,我们可以用角度关系判定两个三角形是否相似。

这对于求解角度未知的三角形问题非常有用。

但需要注意的是,AAA相似定理只能判定三角形之间的相似关系,并不能确定它们的实际大小。

2. AA相似定理AA相似定理是指如果两个三角形的两个对应角度相等,那么这两个三角形相似。

具体而言,如果三角形ABC和三角形DEF满足∠A=∠D,∠B=∠E(或∠A=∠E,∠B=∠D),那么我们可以得出结论:△ABC ∽△DEF。

AA相似定理是比较常用且直观的判定方式。

通过测量或计算出两个角度的大小,我们就能确定两个三角形的相似关系。

需要注意的是,判定相似三角形时,AA相似定理只能判定两个角度对应相等,不能判定另一个角度是否相等。

3. 边-比-边相似定理边-比-边相似定理是指如果两个三角形的对应边长成比例,那么这两个三角形相似。

中考数学《相似三角形》知识点及练习题

中考数学《相似三角形》知识点及练习题

相似三角形一. 知识梳理1.平行线分线段成比例定理定理:两条直线被三条平行线所截,所得的对应线段成比例。

推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例。

2.相似三角形定义:三角对应相等、三边对应成比例的两个三角形叫做相似三角形。

相似比:相似三角形对应边的比叫做相似比。

3.相似三角形的判定平行法:平行于三角形一边的直线和其他两边相交,所得的三角形与原三角形相似。

两角法:两角分别相等的两个三角形相似。

边角法:两边成比例且夹角相等的两个三角形相似。

三边法:三边对应成比例的两个三角形相似。

4.相似三角形的性质①相似三角形的对应角相等,对应边成比例;②相似三角形对应边上高的比,对应边上中线的比与对应角平分线的比都等于相似比;③相似三角形周长的比等于相似比;④相似三角形面积的比等于相似比的平方。

5.位似图形定义:如果两个图形不仅相似,而且对应顶点的连线相交于一点,那么这样的两个图形叫做位似图形,这个点叫做位似中心。

这时的相似比又叫位似比6. 黄金分割:点C 把线段AB 分成两条线段AC 和BC,如果ACBC AB AC =,那么称线段AB 被点C 黄金分割,点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比. 1:618.0215:≈-=AB AC 二.课后作业1.下列图形中不一定属于相似形的是( )A.两个圆B.两个等边三角形C.两个正方形D.两个矩形2.如果两个相似三角形的面积比是1∶4,那么它们的周长比是( )A. 1∶16B. 1∶4C. 1∶6D. 1∶23.已知△ABC ∽△DEF ,且AB:DE=1:2,则△ABC 的周长与△DEF 的周长之比( )A.1:2B.1:4C.2:1D.4:14.如图,给出下列条件:其中,不能单独判定△ABC∽△ACD 的条件为( )A.∠B=∠ACDB.∠ADC=∠ACBC.AC CD =AB BCD.AC AD =AB AC5.如图,DE ∥BC ,且AD=2,BD=5,则△ADE 与△ABC 的相似比为( )A.2:5B.5:2C.2:7D.7:26.如图,在△ABC 中,DE ∥BC ,AD=2,AE=3,BD=4,则AC=( ) A.7 B.8 C.9 D.10 E A D CB A BC DE7.已知△ABC ∽△DEF ,且它们的周长之比为1:2,那么它们的相似比为 。

【初中数学】初中数学三角形相似重要知识点

【初中数学】初中数学三角形相似重要知识点

【初中数学】初中数学三角形相似重要知识点【—三角形相似判定知识】三角形相似知识经常出现在的大题目中,性质及判定定理也是需要掌握的。

三角形相似判定(1)平行于三角形一边的直线和其他两边平行,所形成的三角形与原三角形相近。

(2)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似。

(简叙为:两边对应成比例且夹角相等,两个三角形相似。

)(3)如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相近。

(简叙为:三边对应成比例,两个三角形相近。

)(4)如果两个三角形的两个角分别对应相等(或三个角分别对应相等),那么这两个三角形相似。

直角三角形认定定理:(1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似。

(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相近。

相似三角形性质定理:(1)相近三角形的对应角成正比。

(2)相似三角形的对应边成比例。

(3)相近三角形的对应高线的比,对应中线的比和对应角平分线的比都等同于相近比。

(4)相似三角形的周长比等于相似比。

(5)相近三角形的面积比等同于相近比的平方。

判定定理推论推断一:顶角或底角成正比的两个等腰三角形相近。

推论二:腰和底对应成比例的两个等腰三角形相似。

推断三:存有一个锐角成正比的两个直角三角形相近。

推论四:直角三角形被斜边上的高分成的两个直角三角形和原三角形都相似。

推断五:如果一个三角形的两边和其中一边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相近。

推论六:如果一个三角形的两边和第三边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。

性质 1.相近三角形对应角成正比,对应边变成比例。

2.相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比。

3.相近三角形周长的比等同于相近比。

初中数学相似三角形定理知识点总结精选全文完整版

初中数学相似三角形定理知识点总结精选全文完整版

可编辑修改精选全文完整版初中数学相似三角形定理知识点总结相似三角形是几何中重要的证明模型之一,是全等三角形的推广。

全等三角形可以被理解为相似比为1的相似三角形。

相似三角形其实是一套定理的集合,它主要描述了在相似三角形是几何中两个三角形中,边、角的关系。

下面是小编为大家带来的初中数学相似三角形定理知识点总结,欢迎阅读。

相似三角形定理1.相似三角形定义:对应角相等,对应边成比例的三角形,叫做相似三角形。

2.相似三角形的表示方法:用符号"∽"表示,读作"相似于"。

3.相似三角形的相似比:相似三角形的对应边的比叫做相似比。

4.相似三角形的`预备定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所截成的三角形与原三角形相似。

从表中可以看出只要将全等三角形判定定理中的"对应边相等"的条件改为"对应边成比例"就可得到相似三角形的判定定理,这就是我们数学中的用类比的方法,在旧知识的基础上找出新知识并从中探究新知识掌握的方法。

6.直角三角形相似:(1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似。

(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。

7.相似三角形的性质定理:(1)相似三角形的对应角相等。

(2)相似三角形的对应边成比例。

(3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比。

(4)相似三角形的周长比等于相似比。

(5)相似三角形的面积比等于相似比的平方。

8. 相似三角形的传递性如果△ABC∽△A1B1C1,△A1B1C1∽△A2B2C2,那么△ABC∽A2B2C2。

初中相似三角形知识点

初中相似三角形知识点

初中相似三角形知识点一、相似三角形的定义相似三角形是指两个三角形的对应角相等,且对应边长成比例的三角形。

也就是说,如果三角形ABC与三角形DEF相似,那么角A等于角D,角B等于角E,角C等于角F,并且边AB与边DE、边BC与边EF、边CA与边DF之间的长度成同一比例。

二、相似三角形的标记在标记相似三角形时,我们通常使用一个字母来表示一个三角形,例如三角形ABC。

如果两个三角形相似,我们可以用一个比例系数(通常用字母k表示)来标记它们的对应边。

例如,如果AB/DE = BC/EF = AC/DF = k,那么我们说三角形ABC与三角形DEF相似,并且边长比例为k。

三、相似三角形的性质1. 角的对应性:相似三角形的对应角相等。

2. 边的成比例性:相似三角形的对应边成比例。

3. 面积的比例:相似三角形的面积比等于边长比的平方。

即,如果三角形ABC与三角形DEF相似,且边长比为k,则三角形ABC的面积与三角形DEF的面积之比为k^2。

4. 周长的比例:相似三角形的周长比也等于它们边长的比例。

四、相似三角形的判定1. 三角形相似判定定理:如果两个三角形的两组对应角分别相等,那么这两个三角形相似。

2. 边角边(SAS)判定定理:如果两个三角形有两边及其夹角分别相等,那么这两个三角形相似。

3. 边边边(SSS)判定定理:如果两个三角形的所有对应边分别成比例,那么这两个三角形相似。

五、相似三角形的应用相似三角形的概念在解决实际问题中非常有用,例如在测量、建筑、设计和其他领域。

通过使用相似三角形的性质,我们可以解决涉及长度、面积和角度的问题,尤其是在没有直接测量工具的情况下。

六、练习题1. 已知三角形ABC与三角形DEF相似,且AB = 6cm, BC = 8cm, AC = 10cm,DE = 3cm,求EF的长度。

2. 如果三角形PQR的面积是24平方厘米,并且与三角形ABC相似,且三角形ABC的面积是144平方厘米,求三角形PQR的边长。

初三《相似三角形》知识点总结

初三《相似三角形》知识点总结

相似三角形知识点总结知识点1、三角对应相等,三边对应成比例的三角形叫相似三角形。

如△ABC 与△A /B /C /相似,记作: △ABC ∽△A /B /C / 。

相似三角形的比叫相似比相似三角形的定义既是相似三角形的性质,也是三角形相似的判定方法。

注意:(1)相似比是有顺序的。

(2)对应性,两个三角形相似时,通常把对应顶点写在对应位置,这样写比较容易找到相似三角形的对应角和对应边。

(3)顺序性:相似三角形的相似比是有顺序的,若△ABC ∽△A /B /C /,相似比为k ,则△A /B /C /与△ABC 的相似比是1k知识点2、相似三角形与全等三角形的关系(1)两个全等的三角形是相似比为1的相似三角形。

(2)两个等边三角形一定相似,两个等腰三角形不一定相似。

(3)二者的区别在于全等要对应边相等,而相似要求对应边成比例。

知识点3、平行线分线段成比例定理1. 比例线段的有关概念: 在比例式::中,、叫外项,、叫内项,、叫前项,a b cda b c d a d b c a c ==() b 、d 叫后项,d 叫第四比例项,如果b=c ,那么b 叫做a 、d 的比例中项。

把线段AB 分成两条线段AC 和BC ,使AC 2=AB ·BC ,叫做把线段AB 黄金分割,C 叫做线段AB 的黄金分割点。

2. 比例性质: ①基本性质:a b c d ad bc =⇔= ②合比性质:±±a b c d a b b c dd=⇒=③等比性质:……≠……a b c d m n b d n a c m b d n a b===+++⇒++++++=()0 3. 平行线分线段成比例定理(1)平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.已知l1∥l2∥l3,A D l1B E l2C F l3可得EF BC DE AB DF EF AC BC DF EF AB BC DF DE AC AB EF DE BC AB =====或或或或等.(2)推论:平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例. AD EB C由DE ∥BC 可得:AC AEAB AD EA EC AD BD EC AE DB AD ===或或.此推论较原定理应用更加广泛,条件是平行.(3)推论的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例.那么这条直线平行于三角形的第三边.此定理给出了一种证明两直线平行方法,即:利用比例式证平行线.(4)定理:平行于三角形的一边,并且和其它两边相交的直线,所截的三角形的三边与原三角形三边对应成比例.知识点4:相似三角形的性质①相似三角形的对应角相等 ②相似三角形的对应边成比例③相似三角形对应高的比、对应中线的比和对应角平分线的比都等于相似比 ④相似三角形周长的比等于相似比⑤相似三角形面积的比等于相似比的平方知识点5:相似三角形的判定:①两角对应相等,两个三角形相似②两边对应成比例且夹角相等,两三角形相似 ③三边对应成比例,两三角形相似④如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角形相似⑤平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似⑥直角三角形被斜边上的高分成的两个直角三角形和原三角形相似如果两个三角形的两角分别于另一个三角形的两角对应相等,那么这两个三角形相似。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学相似三角形定理知识点总结相似三角形定理
1.相似三角形定义:
对应角相等,对应边成比例的三角形,叫做相似三角形。

2.相似三角形的表示方法:用符号"∽"表示,读作"相似于"。

3.相似三角形的相似比:
相似三角形的对应边的比叫做相似比。

4.相似三角形的预备定理:
平行于三角形一边的直线和其他两边(或两边的延长线)相交,所截成的三角形与原三角形相似。

从表中可以看出只要将全等三角形判定定理中的"对应边相等"的条件改为"对应边
1。

相关文档
最新文档