89C51在直流调速控制系统中的应用
89C51单片机直流电机调速Word版

计算机控制技术课程设计成绩评定表设计课题基于89C51的直流电机调速设计学院名称:电气工程学院专业班级:学生姓名:学号:同组者:指导教师:设计地点:设计时间:单片机系统课程设计任务书目录1 引言 (4)2 总体方案设计 (5)2.1总体方案 (5)2.2 原件选择及介绍 (6)3 硬件电路设计 (10)3.1 单片机及其外围整体电路 (10)3.3 键盘扫描电路 (12)3.4 LED显示模块电路 (18)3.5 D/A转换器及其与MCU的接口电路 (13)4 系统软件设计 (13)4.1 主程序设计 (13)4.2 中断服务程序设计 (15)4.3 子程序的设计 (17)5 系统调试与总结 (18)调试总结 (18)参考文献 (19)附录A 系统原理图 (20)附录B 源程序 (21)1 引言电动机作为最主要的机电能量转换装置,其应用范围已遍及国民经济的各个领域和人们的日常生活。
无论是在工农业生产,交通运输,国防,航空航天,医疗卫生,商务和办公设备中,还是在日常生活的家用电器和消费电子产品(如电冰箱,空调,DVD等)中,都大量使用着各种各样的电动机。
据资料显示,在所有动力资源中,百分之九十以上来自电动机。
同样,我国生产的电能中有百分之六十是用于电动机的。
电动机与人的生活息息相关,密不可分。
电气时代,电动机的调速控制一般采用模拟法,对电动机的简单控制应用比较多。
简单控制是指对电动机进行启动,制动,正反转控制和顺序控制。
然而近年来,随着技术的发展和进步,以及市场对产品功能和性能的要求不断提高,直流电动机的应用更加广泛,尤其是在智能机器人中的应用。
直流电动机的起动和调速性能、过载能力强等特点显得十分重要,为了能够适应发展的要求,单闭环直流电动机的调速控制系统得到了很大的发展。
而作为单片嵌入式系统的核心—单片机,正朝着多功能、多选择、高速度、低功耗、低价格、大存储容量和强I/O功能等方向发展。
随着计算机档次的不断提高,功能的不断完善,单片机已越来越广泛地应用在各种领域的控制、自动化、智能化等方面,特别是在直流电动机的调速控制系统中。
基于单片机89C51产生PWM信号来控制直流电机调速程序

基于单片机89C51产生PWM信号来控制直流电机调速程序利用2051的T0产生双路PWM信号,推动L293D或L298N为直流电机调速,程序已通过调试。
/* =======直流电机的PWM速度控制程序======== */ /* 晶振采用11.0592M,产生的PWM的频率约为91Hz */#include#include#define uchar unsigned char#define uint unsigned intsbit en1=P1^0; /* L298的Enable A */sbit en2=P1^1; /* L298的Enable B */sbit s1=P1^2; /* L298的Input 1 */sbit s2=P1^3; /* L298的Input 2 */sbit s3=P1^4; /* L298的Input 3 */sbit s4=P1^5; /* L298的Input 4 */uchar t=0; /* 中断计数器 */uchar m1=0; /* 电机1速度值 */uchar m2=0; /* 电机2速度值 */uchar tmp1,tmp2; /* 电机当前速度值 *//* 电机控制函数 index-电机号(1,2); speed-电机速度(-100~100) */void motor(uchar index, char speed){if(speed>=-100 && speed<=100){if(index==1) /* 电机1的处理 */{m1=abs(speed); /* 取速度的绝对值 */if(speed<0) /* 速度值为负则反转 */{s1=0;s2=1;}else /* 不为负数则正转 */{s1=1;s2=0;}}if(index==2) /* 电机2的处理 */{m2=abs(speed); /* 电机2的速度控制 */ if(speed<0) /* 电机2的方向控制 */ {s3=0;s4=1;}else{s3=1;s4=0;}}}}void delay(uint j) /* 延时函数 */{for(j;j>0;j--);}void main(){uchar i;TMOD=0x02; /* 设定T0的工作模式为2 */ TH0=0x9B; /* 装入定时器的初值 */TL0=0x9B;EA=1; /* 开中断 */ET0=1; /* 定时器0允许中断 */TR0=1; /* 启动定时器0 */while(1) /* 电机实际控制演示 */{for(i=0;i<=100;i++) /* 正转加速 */{motor(1,i);motor(2,i);delay(5000);}for(i=100;i>0;i--) /* 正转减速 */{motor(1,i);motor(2,i);delay(5000);}for(i=0;i<=100;i++) /* 反转加速 */{motor(1,-i);motor(2,-i);delay(5000);}for(i=100;i>0;i--) /* 反转减速 */{motor(1,-i);motor(2,-i);delay(5000);}}}void timer0() interrupt 1 /* T0中断服务程序 */{if(t==0) /* 1个PWM周期完成后才会接受新数值 */ {tmp1=m1;tmp2=m2;}if(tif(tt++;if(t>=100) t=0; /* 1个PWM信号由100次中断产生 */ }。
基于单片机AT89C51控制的直流电机PWM调速控制系统课程设计报告

第一章:前言1.1前言:直流电机的定义:将直流电能转换成机械能(直流电动机)或将机械能转换成直流电能(直流发电机)的旋转电机。
近年来,随着科技的进步,直流电机得到了越来越广泛的应用,直流具有优良的调速特性,调速平滑,方便,调速范围广,过载能力强,能承受频繁的冲击负载,可实现频繁的无极快速起动、制动和反转,需要满足生产过程自动化系统各种不同的特殊要求,从而对直流电机提出了较高的要求,改变电枢回路电阻调速、改变电压调速等技术已远远不能满足现代科技的要求,这是通过PWM方式控制直流电机调速的方法就应运而生。
采取传统的调速系统主要有以下的缺陷:模拟电路容易随时间飘移,会产生一些不必要的热损耗,以及对噪声敏感等。
而用PWM技术后,避免上述的缺点,实现了数字式控制模拟信号,可以大幅度减低成本和功耗。
并且PWM调速系统开关频率较高,仅靠电枢电感的滤波作用就可以获得平滑的直流电流,低速特性好;同时,开关频率高,快响应特性好,动态抗干扰能力强,可获很宽的频带;开关元件只需工作在开关状态,主电路损耗小,装置的效率高,具有节约空间、经济好等特点。
随着我国经济和文化事业的发展,在很多场合,都要求有直流电机PWM调速系统来进行调速,诸如汽车行业中的各种风扇、刮水器、喷水泵、熄火器、反视镜、宾馆中的自动门、自动门锁、自动窗帘、自动给水系统、柔巾机、导弹、火炮、人造卫星、宇宙飞船、舰艇、飞机、坦克、火箭、雷达、战车等场合。
1.2本设计任务:任务: 单片机为控制核心的直流电机PWM调速控制系统设计的主要内容以及技术参数:功能主要包括:1)直流电机的正转;2)直流电机的反转;3)直流电机的加速;4)直流电机的减速;5)直流电机的速度在数码管上显示;6)直流电机的启动;7)直流电机的停止;第二章:总体设计方案1、系统的硬件电路设计与分析电动机PWM驱动模块的电路设计与实现具体电路见下图。
本电路采用的是基于PWM 原理的H型桥式驱动电路。
89C51单片机直流电机调速

计算机控制技术课程设计成绩评定表设计课题基于89C51的直流电机调速设计学院名称:电气工程学院专业班级:学生姓名:学号:同组者:指导教师:设计地点:设计时间:单片机系统课程设计任务书目录1 引言 (4)2 总体方案设计 (5)2.1总体方案 (5)2.2 原件选择及介绍 (6)3 硬件电路设计 (10)3.1 单片机及其外围整体电路 (10)3.3 键盘扫描电路 (12)3.4 LED显示模块电路 ........................................................... 错误!未定义书签。
3.5 D/A转换器及其与MCU的接口电路 (13)4 系统软件设计 (13)4.1 主程序设计 (13)4.2 中断服务程序设计 (15)4.3 子程序的设计 (17)5 系统调试与总结 (18)调试总结 (18)参考文献 (19)附录A 系统原理图 (20)附录B 源程序 (21)1 引言电动机作为最主要的机电能量转换装置,其应用范围已遍及国民经济的各个领域和人们的日常生活。
无论是在工农业生产,交通运输,国防,航空航天,医疗卫生,商务和办公设备中,还是在日常生活的家用电器和消费电子产品(如电冰箱,空调,DVD等)中,都大量使用着各种各样的电动机。
据资料显示,在所有动力资源中,百分之九十以上来自电动机。
同样,我国生产的电能中有百分之六十是用于电动机的。
电动机与人的生活息息相关,密不可分。
电气时代,电动机的调速控制一般采用模拟法,对电动机的简单控制应用比较多。
简单控制是指对电动机进行启动,制动,正反转控制和顺序控制。
然而近年来,随着技术的发展和进步,以及市场对产品功能和性能的要求不断提高,直流电动机的应用更加广泛,尤其是在智能机器人中的应用。
直流电动机的起动和调速性能、过载能力强等特点显得十分重要,为了能够适应发展的要求,单闭环直流电动机的调速控制系统得到了很大的发展。
PROTUES课程设计-直流电动机调速器-单片机89C51-Keil---Proteus

1 引言随着微电子技术的不断发展与进步,微处理器芯片的集成程度越来越高,单片机已可以在一块芯片上同时集成CPU、存储器、定时器/计数电路,这就很容易将计算机技术与测量控制技术结合,组成智能化测量控制系统。
在现代工业中,直流电动机作为电能转换的传动装置,被广泛应用于机械、冶金、石油、化工、国防等工业部门中。
直流电动机是将直流电能转换为机械能的电动机。
因其良好的调速性能而在电力拖动中得到广泛应用。
随着对生产工艺、产品质量的要求不断提高和产量的增长,越来越多的生产机械要求能实现自动调速。
直流调速系统的发展得力于微电子技术、电力电子技术、传感器技术、永磁材料技术、自动控制技术和微机应用技术的最新发展成就。
正是这些技术的进步使直流调速系统发生翻天覆地的变化。
其中电机的控制部分已经由模拟控制逐渐让位于以单片机为主的微处理器控制,形成数字与模拟的混合控制系统和纯数字控制系统,并向全数字控制方向快速发展。
本文设计了用DAC0808设计直流电动机调速器的基本方案,阐述了该调速器系统的基本结构、工作原理、运行特性及其设计方法。
本系统用电压表测量直流电动机的转速,用MCS-51单片机输出数字信号通过DAC0808芯片实现数模转换,从而输出模拟电压来控制调节直流电动机的转速。
本设计主要研究利用单片机及DAC0808实现数模转换调速,直流电机的控制和测量方法,从而对直流电机的调速控制精度、响应速度以及节约能源等都具有重要意义。
2 设计总体方案2.1 设计要求基本要求:使用AT89C51单片机为核心,使用数模转换元件DAC0808对单片机输出的数字信号进行转换,输出模拟信号驱动直流电动机。
具体要求:在设计中,设计8个按键对应直流电动机的8挡不同转速,按下不同按键时,电动机将以不同速度转动,在8个按键中取一个按键为直流电动机转动停止按键。
8挡不同转速的设定由学生自己决定。
仿真:控制程序在Keil软件中编写,编译,整个控制电路在Proteus仿真软件中连接调示。
基于89C51单片机直流电机控制及其程序

课程设计说明书院系:船舶工程学院班级:姓名:学号:机电综合课程设计设计题目:直流电机控制系统立体目的:通过本次课程设计,达到培养学生综合应用所学知识,分析和解决实际工程问题,锻炼创造能力的目的。
技术要求:设计直流电机控制系统,包括:机械装配图,控制原理图和接线图,并编制相应的控制程序。
完成基于89C51单片机开发板的直流电机速度控制,启停及正反转控制。
一.机械系统由直流电机驱动滚珠丝杠实现滑台的平移。
将电机的旋转运动通过滚珠丝杠转换为平台的直线运动。
系统组成:直流电机,底板,支座,光杠,滚珠丝杠,平台等。
二.电气系统1. 直流电机电机采用无刷直流电机,型号为:BL-2203C。
其特点是调速范围宽,低速力矩大,运行平稳,低噪声,高效率。
电机接线,两股线,一股为电机线,一股为电机霍尔线。
2.驱动器驱动器采用无刷直流电机驱动器。
接线端子说明:驱动器由220V交流供电。
驱动器调速方式(1)内部电位器调速:逆时针旋转驱动器控制面板上的电位器,电机速度减小,顺时针则转速增大:由于测速需要响应时间,速度显示会滞后。
(2)外部输入调速:将外接电位器的两端分别接于驱动器的“+12”和“COM”端上,将调解段接于“AVI”上即可使用外接电位器调速,也可以通过其他控制单元输入模拟电平信号到“AVI”端实现调速。
(3)多段速度选择:通过控制驱动器上的CH1—3三个端子的状态可以选择内部预先设定的几种转速。
电机运行/停止控制(R/S)通过控制端子“R/S”相对于“COM”的通、断可以控制电机的运行和停止。
端子“R/S”内部以电阻上拉到+12,可以配合无源触点开关使用,也可以配合集电极开路的PLC 等控制单元;当“R/S”与端子“COM”断开时电机运行,反之电机停止。
使用运行/停止端控制电机停止时,电机为自然停车,其运动规律与负载惯性有关;电机正/反转控制(F/R)通过控制端子“F/R”与端子“COM”的通、断可以控制电机的运转方向。
一种基于AT89C51的直流电机PWM调速系统

一种基于AT89C51的直流电机PWM调速系统
常心远;高继辉;刘千萌;成浩;薛晨澎;孙哲
【期刊名称】《电气工程》
【年(卷),期】2024(12)1
【摘要】直流电机调速技术是工业自动化领域中非常重要的技术之一,具有广泛的应用前景和市场需求。
本项目我们用到的微控制器是AT89C51型号单片机,并利用PWM脉冲宽度调制的方法设计出来的一个直流电机调速系统。
AT89C51单片机作为系统的核心芯片,电机驱动电路则是用到L298N来进行控制的,通过与单片机各引脚的相互连接,实现了一个用PWM来控制的直流电机调速系统。
使用proteus 8对系统进行电路的设计与仿真,并利用Keil5来进行程序的编写,最后通过proteus 8与Keil 5的联合仿真与测试从而实现电机调速系统的功能。
【总页数】7页(P12-18)
【作者】常心远;高继辉;刘千萌;成浩;薛晨澎;孙哲
【作者单位】天津农学院
【正文语种】中文
【中图分类】TP3
【相关文献】
1.基于Nios Ⅱ的片上可编程系统(SOPC)实现的直流电机的PWM调速系统
2.基于单片机的直流电机PWM调速系统
3.基于物联网的直流电机PWM智能调速系
统设计4.基于STC89C51的直流电机PWM的PID调速系统5.基于ARM的直流电机PWM调速系统设计
因版权原因,仅展示原文概要,查看原文内容请购买。
基于89C51单片机的直流电机控制系统设计

目录摘要 (3)关键词: (3)1直流电动机 (3)1.1直流电动机的工作原理 (3)1.1.1直流电动机的运动特性与优点 (4)1.2直流串励电动机 (5)1.2.1串励电动机的特点 (5)1.3直流他励电动机 (5)1.3.1他励电动机的特点 (6)2设计概要 (6)2.1硬件设计概要 (7)2.2程序设计流程图 (7)3硬件设计 (8)3.1.1电机驱动电路 (8)3.1.2单片机及控制电路 (10)3.1.3单片机介绍 (12)3.1.3.3管脚说明 (14)4程序设计 (16)4.1主程序设计 (19)4.1.1定义说明程序 (19)4.1.2执行主程序 (20)4.2子程序设计 (22)4.2.1定义延时程序函数 (22)4.2.2定时器1中断服务程序 (22)4.2.3定时器2中断服务程序 (23)4.3调速原理 (23)4.3.1PWM(脉冲宽度调制)原理 (23)4.3.2PWM(脉冲宽度调制)特点 (24)5调试与仿真 (25)参考文献 (25)附录 (26)摘要通过单片机改变输出脉冲波的宽度井陉调节,以便实现直流电的起动、正反转、加速、减速功能,在这种调速方法下,可以有效的减少其损耗功率。
关键词:单片机;直流电机;调速1直流电动机直流电动机主要由静止的定子和旋转的转子组成。
定子由主磁极、换向极、电刷装置和机座组成。
主磁极铁芯上套有线圈,通入直流励磁电流便会产生磁场,即主磁场。
换向极也由铁芯及套在上面的线圈组成,其作用是产生附加磁场。
以减弱换向片与电刷之间的火花,避免烧蚀。
机座除作电动机的机械支架外,还作为各磁极间磁的通路。
转子由转子铁芯、转子绕组、换向器、轴和风扇组成。
转子铁芯用来安装转子绕组,并作为电动机磁路的一部分。
转子绕组的主要作用是产生感应电动势并通过电流,以产生电磁转矩。
换向器由换向片组成,换向片按一定规律与转子绕组的绕组元件连接。
1.1直流电动机的工作原理直流电动机包括俩个在空间固定的永久磁铁,一个为N极,另一个为S极。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于单片机(89C51)的双闭环直流调速系统摘要:该文介绍89C51单片机在直流电机转速控制系统中的应用、实现方法、硬件结构等。
本系统采用霍尔元器件测量电动机的转速,用89C51单片机对直流电机的转速进行控制,用DAC0832芯片实现输出模拟电压值来控制直流电动机的转速。
1.前言直流电动机具有良好的起动、制动性能,宜于在大范围内平滑调速,在许多需要调速或快速正反向的电力拖动领域中得到了广泛的应用。
从控制的角度来看,直流调速还是交流拖动系统的基础。
早期直流电动机的控制均以模拟电路为基础,采用运算广大器、非线性集成电路以及少量的数字电路组成,控制系统的硬件部分非常复杂,功能单一,而且系统非常不灵活、调试困难,阻碍了坦洲电动机控制技术的发展和应用范围的推广。
随着单片机技术的日新月异,使得许多控制功能及算法可以采用软件技术来完成,为直流电动机的控制提供了更大的灵活性,并使系统能达到更高的性能。
采用单片机构成控制系统,可以节约人力资源和降低系统成本,从而有效的提高工作效率。
2.转速的测量原理转速是工程上一个常用的参数,旋转体的转速常以每分钟的转数来表示。
其单位为r/min。
转速的测量方法很多,由于转速是以单位时间内的转数来衡量的,因此采用霍尔元器件测量转速是较为常用的一种测量方法。
霍尔器件是具有半导体材料制成的一种薄片,器件的长、宽、高分别为l、b、d。
若在垂直于薄片平面(沿厚度d)方向施加外加磁场B,在沿l方向的两个端面加以外电场,则有一定的电流经过。
由于电子在磁场中运动,所以将受到一个洛仑磁力,其大小为:fl=pVB 式中“fl—洛化磁力,q—载流子电荷,V—载流子运动速度,B—磁感应强度。
这样使电子的运动轨迹发生偏移,在霍尔元器件薄片的两个侧面分别产生电子积聚或电荷过剩,形成霍尔电场,霍尔元器件两个侧面间的电位差UH称为霍尔电压。
霍尔电压大小为:U H=R HχIχB/d(mV)式中:R H—霍尔常数,d—元件厚度,B—磁感应强度,I—控制电流设K H= R H /d,则U N=K HχIχB(mV)K H为霍尔器件的灵敏系数(mV/mA/T),它表示该霍尔元件在磁感应强度和单位控制输出霍尔电动势的大小。
应注意,当电磁感应强度B反向时,霍尔电动势也反向。
若控制电流保持不变,则霍尔感应电压将随外界磁场强度而变化,根据这一原理,可以将一块永久磁钢固定在电动机的转轴上转盘的边沿,转盘随被测轴旋转,磁钢也将跟着同步旋转,在转盘附近安装一个霍尔元件,转盘随轴旋转时,霍尔元件受到磁钢所产生的磁场影响,故输出脉冲信号,其频率和转速成正比,测出脉冲的周期或频率即可计算出转速。
3 直流电动机转速控制系统硬件设计通过自制5V电源来确保工作电压正常,由霍尔元件及外围器件组成的测速电路将电动机转速转换成脉冲信号,送至单片机的计数器T1,由T1测出电动机的实际转速,并与设定值比较形成偏差。
根据比较结果,使DAC0832输出控制电压增大或减小。
功放电路将DAC0832输出的模拟电压转换成具有一定输出功率的电动机控制电压。
4 直流电动机转速控制系统软件设计1、编程思路:控制系统程序的功能是用89C51单片机的T0、T1测出电动机的实际转速,并与给定值进行比较。
根据比较结果,使DAC0832芯片的输出控制电压增大或减小。
30H单元存放实际转速与设定值是否相等的标志。
“1”表示相等,“0”表示不相等。
40H单元存放送入DAC0832芯片的数字控制电压。
7FFFH为DAC0832地址。
2、系统流程图如图3所示:5 直流电动机转速控制系统的工作原理直流电动机的转速与施加于电动机两端的电压大小有关。
本系统用DAC0832控制输出到直流电动机的电压的方法来控制电动机的转速。
当电动机转速小于设定值时,DAC0832芯片输出电压减小,从而使电动机以设定的速度恒速旋转。
我们采用比例调节器算法。
控制规律:Y=KP e(t)+KI』e(t)dt式中:Y一比例调节器输出,K 比例系数,K 一积分系数e(t)一调节器的输入,一般为偏差值。
系统采用了比例积分调节器,简称PI调节器,使系统在扰动的作用下,通过PI调节器的调节器作用使电动机的转速达到静态无差,从而实现了静态无差。
无静差调速系统中,比例积分调节器的比例部分使动态响应比较快(无滞后),积分部分使系统消除静差。
6.双闭环直流调速系统的组成调速系统中设置了两个调节器,分别调节转速和电流。
结构原理图如图1所示,图中符号的意义分别为:ASR-转速调节器;ACR-电流调节器;TG-测速发电机;TA-电流互感器;UPE-电力电子变换器U*n;-转速给定电压;Un-转速反馈电压;U*i-电流给定电压;Ui-电流反馈电压。
7. 电流环与转速环的设计经过测量计算,确定系统的基本参数如下:直流电动机:Un=220V,1.16A,1500r/mi n,Ce=0.15,λ=1.3晶闸管装置放大倍数:Ks=63.3电枢回路总电阻:R=41.14Ω时间常数:Tm=0.04s.TL=0.028s电流反馈系数:β=3.3/λInom=3.3/1.5=2.188转速反馈系数:α=2.5/1500=0.0017稳态指标:静差率小于5%,D>103.1 电流环的设计7.1.1 确定时间常数①整流装置滞后时间常数:三相桥式电路的平均失控时间Ts=0.0017s。
②电流滤波时间常数:由于主回路的电流是脉动直流,为了能取得电流的平均值,可采用多次采样取平均值等数字滤波方法,但考虑到系统的CPU时序安排紧张,决定采用加硬件滤波环节的办法,但其时间常数应该取得小一些,取③电流环小时间常数按小时间常数近似处理,取7.1.2 选择调节器结构电流环按I型系统设计,电流调节器选用PI调节器,其传递函数为:7.1.3 计算各调节器参数:ACR超前时间常数:。
电流开环增益:按δI%≤5%,应取,因此:则ACR的比例系数为:7.1.4 校验近似条件电流环截止频率Wci=KI=178.57/S晶闸管整流装置传递函数近似条件Wci≤1/3Ts 现在,,满足近似条件。
忽略反电动势对电流环影响的条件 现在,,满足近似条件。
小时间常数近似处理条件: 现在, ,满足近似条件。
7.1.5 计算调节器电阻和电容模拟式电流调节器电路如右图:图中:*i U —电流给定电压 d I β-—电流负反馈电压c U —电力电子变换器的控制电压按所用运算放大器取Ω0R =40K ,各电阻和电容值计算如下:1.013*4040.52K ==Ω=Ωi i 0R R K K 取40ΩK630.03*100.7540*10i C F F τμμ===i i R 取0.75F μ 6344*0.002*100.240*10oi T C F F μμ===oi 0R 取0.2F μ 按照上述参数,电流环可以达到的动态指标为:% 4.3%5%i σ=<,满足设计要求。
7.2 转速环的设计7.2.1 确定时间常数①电流环等效时间常数为②转速滤波时间常数Ton外加转速滤波环节,取③转速环小时间常数按小时间常数处理,取:7.2.2 选择调节器结构按典型II型系统设计转速环,ASR选用PI调节器,其传递函数为7.2.3 计算转速调节器参数按跟随和抗扰性能都较好的原则,取=5,则ASR的超前时间常数为:转速环开环增益:于是,ASR的比例系数为:7.2.4 验近似条件转速环截止频率为电流环传递函数简化条件:现在 满足简化条件。
小时间常数近似处理条件:现在: ,满足近似条件。
5 计算调节器的电阻和电容模拟式转速调节器电路如下图;图中:*n U —为转速给定电压n α-—为转速负反馈电压,*i U —调节器的输出是电流调节器的给定电压取Ω0R =40K ,则11.7*40468n R K ==Ω=Ωn 0R K K 取470ΩK630.087*100.185470*10n C F F τμμ===n n R 取0.2F μ 6344*0.01*10140*10on T C F F μμ===on 0R 取1F μ8. 采样周期选择及PI 控制算法8.1 采样周期选择根据采样定理,必须使采样频率Ws≥2Wmax,以便采样后的离散信号不会失真,ws=2π(1/Ts),为采样角频率;wmax=2πfma为信号最高角频率。
按采样定理可以确定采样周期的上限值:Ts≤π/Wmax;实际应用中,常按一定的原则,结合使用经验来选择采样周期Ts:Tmin≤Ts≤Tmax。
在一般情况下,可以令采样周期,或用采样角频率Ws≥(4~10)Wc,Wc为控制系统的截止频率。
由双闭环的设计参数知:8.2 PI控制算法当输入误差函数e (t),输出函数是u (t)时,PI调节器的传函:;则,u (t)和e (t)关系的时域表达式可写成:其中,KP=KPI,为比例系数;为积分系数。
将上式离散化成差分方程,其第k拍输出为:9. MATLAB仿真建模与波形分析电流调节器和转速调节器仿真模型分别采用I型和Ⅱ型系统,所用数据为按工程方法计算的参数,并根据经验略作调整,MATLAB仿真波形如图4所示。
从图4中可以看出,由于负载增大,使电枢电流出现一个小的数值增大的波动后,达到新的负载电流状态的稳定值,这个稳定值与负载增加前相比,数值变大。
由图5和图6得:突然给定电压U*n时,Un很小,所以△Un很大,ASR很快饱和,输出为最大值,电枢电流线形增加,当r>n*时,Un>U*n那么△Un变极性,ASR退饱和,转速负反馈投入运行,直到n=n*。
综上所述,起动电流根据电机起动波形,可以看到速度与电流之间的关系与理论情况基本相同。
10. 实验波形及分析(1) 电机突加最大给定时,转速波形如图7。
由于测速发电机性能的影响,使得超调现象不明显。
由图7可知,转速起动波形与SIMULINK仿真所得波形一致,达到了预期的效果。
(2) 电枢电流波形电枢电流波形在突加给定时,在双闭环的作用下迅速上升,迫使电动机快速起动,然后迅速回落直到等于负载电流。
在图8,因为测速发电机性能和晶闸管驱动环节死区电压的影响,使得电枢电流没有恒流阶段。
但波形与SIMULINK仿真所得波形趋势一致,达到了预期的效果。
11.结论本设计为“基于单片机的双闭环直流调速系统”,由单片机控制电动机的转速,经过调试证明设计的双闭环系统能满足设计指标的要求,完成了设计任务。
实验结果表明经过该设计系统改进,与其为单闭环系统相比:机械特性偏硬,快速起制动,突加负载动态速将小。
因为本系统采用了双闭环系统,所以系统能够通过两个转速调节器进行自动调节作用减少稳态速降,但是有超调。
为使系统的稳态性能更好,该系统采用无静差调节,即转速调节器采用比例积分调节器(PI调节器),使系统保证恒速运行,以保证满足更严格的生产要求。