线性代数练习题二(矩阵)
线性代数第二章矩阵练习题(有答案)

第二章一、选择题 1、计算13230102-⎡⎤⎡⎤+⎢⎥⎢⎥⎣⎦⎣⎦的值为(C ) A.-5 B.6 C.3003⎡⎤⎢⎥⎣⎦ D.2902-⎡⎤⎢⎥⎣⎦2、设,A B 都是n 阶可逆矩阵,且AB BA =,则下列结论中不正确的是(D ) A. 11AB B A --= B. 11A B BA --= C. 1111A B B A ----= D.11B A A B --=3、初等矩阵(A )A. 都是可逆阵B.所对应的行列式值等于1C. 相乘仍是初等阵D.相加仍是初等阵 4、已知,A B 均为n 阶矩阵,满足0AB =,若()2r A n =-,则(C ) A. ()2r B = B.()2r B < C. ()2r B ≤ D.()1r B ≥二、判断题1、若,,A B C 都是n 阶矩阵,则()k k k k ABC A B C =. (×)2、若,A B 是n 阶反对称方阵,则kA 与A B +仍是反对称方阵.(√)3、矩阵324113A ⎡⎤=⎢⎥⎣⎦与矩阵2213B ⎡⎤=⎢⎥⎣⎦可进行乘法运算. (√) 4、若n 阶方阵A 经若干次初等变换后变成B ,则A B =. (×)三、填空题1、已知[]456A =,123B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,求AB 得_________。
(32)2、已知12n a a A a ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦(0,1,2,,ia i n ≠= ),则1A -=3、设A 为n 阶方阵,2A =,求TA A的值为_________。
4、设A 为33⨯矩阵,3A =-,把A 按列分块为()123A A A A =,求出132,4,A A A 的值为__________。
四、计算题1、计算()101112300121024--⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎣⎦⎣⎦.解 原式()1292(38)4-⎡⎤⎢⎥==-⎢⎥-⎢⎥⎣⎦.2、求矩阵100120135A -⎡⎤⎢⎥=-⎢⎥-⎢⎥⎣⎦的逆矩阵. 解求出10A =-,11201035A ==,1210515A -=-=-,1311113A --==--, 2100035A =-=,2210515A -==--,2310313A -==-,12111n a a a ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦1212n +3100020A ==,3210010A -=-=-,3310212A -==--故*11001102213110105A A A -⎡⎤⎢⎥-⎢⎥⎢⎥==-⎢⎥⎢⎥-⎢⎥⎣⎦.五、证明题设n 阶方阵A 满足3()0A I +=,求证A 可逆,且求1A -.证 由3()0A I +=得32330A A A I +++=,于是2(33)A A A I I ⎡⎤-++=⎣⎦. 令233B A A I =---,则AB =I ,故A 可逆,且1233A A A I -=---.。
《线性代数》第二章矩阵(习题课)

13
8. 用初等变换法求矩阵的逆矩阵
定理: 可逆矩阵可以经过若干次初等行变换化为单位矩阵. 推论1: 可逆矩阵可以表示为若干个初等矩阵的乘积
第二章 矩阵习题课
一. 主要内容 二. 典型例题 三. 测验题
1
一. 主要内容
1. 矩阵的定义
由m n个数 aij (i 1,2,,m; j 1,2,,n)
排成的m行n列的数表, a11 a12 a1n
简称m n矩阵.
记作
A
a 21
a 22
a 2n
例1:设矩阵
A
1 0
1
1
,
求与A可交换的所有矩阵。
分析:根据乘法定义及矩阵相等定义求
解:设所求矩阵为 X 由 AX XA,
a
c
b
d
,
得
ac
c
b
d
d
a c
a b
c
d
c 0,a d
X
a 0
矩阵加(减)法:两个同型矩阵,对应元素相加(减)
加法满足
1 交换律:A B B A.
2 结合律:A B C A B C . 3 A 0 A,其中A与O是同型矩阵. 4 A A O.
3
线性代数练习册练习题—第2章 矩阵

一、填空题
1.
2 0
3
121
2 1
02 _________.
矩阵
2.设 A 2 3 1 2 ,则 AAT _________.
3.设
A
a c
b d
,则
A
的伴随矩阵
A*
_________.
4.设 A 为 3 阶方阵,且 A =2, 则 A =
.
5. A 为 3 阶方阵, A =2,则 A A
( A )若 A, B 可逆,则 A B 可逆
( B )若 A, B 可逆,则 AB 可逆
( C )若 A B 可逆,则 A B 可逆 ( D )若 A B 可逆,则 A, B 可逆
5.A 为 n 阶可逆矩阵,下列各式中不正确的是( ).
(A) (2A)1 =2 A1
(B) A1 = 1 A
(B)4
( C )5 (D)40
a11 a12 a13
a21
a22
a23
9.设
A
a21
a22
a23
,
B
a11
a12
a13
a31 a32 a33
a11 a31 a12 a32 a13 a33
0 1 0
1 0 0
P1
1
0
0
,
P2
0
1
0
,则(
)成立.
0 0 1
1 0 1
()
4. 在秩是 r 的矩阵中,所有的 r 阶子式都不等于 0.
()
5. 从矩阵 A 中划去一行得到矩阵 B ,则 R( A) R(B) . ( )
四、计算题
1.计算
1 0
《线性代数》自测题二及 答案

测试题二(矩阵)一.单项选择题1. 设A 为n 阶矩阵,且O A =3,则( C )(A )A E A E +-,均不可逆; (B )A E -不可逆,但A E +可逆(C )A E -,E A A +-2均可逆;(D )A E -可逆,但E A A +-2不可逆2.设B A ,都是n 阶非零矩阵,且O AB =,则B A ,的秩( B )(A )必有一个等于零 (B )都小于n(C )一个小于n ,一个等于n (D )都等于n3.若A 为n 阶可逆矩阵,则下列结论不正确的是( D ).(A )11)()(--=k k A A ; (B )T k k T A A )()(=; (C )k k A A )()(**=; (D )**=kA kA )(.4. 设B A ,为n 阶矩阵,下列结论正确的是( D )(A )||||||B A B A +=+ (B )||||||B A B A -=-(C )若B AB =,则BA AB = (D )若E B AB +=,则BA AB = 5.B A ,均为三阶可逆矩阵,则下列等式成立的是( A ).(A )111)(---=B A AB ; (B )A A =-; (C )B A B A B A +-=-22; (D )A A 22=.6.设()353=⨯A R ,那么53⨯A 必满足 ( D ).(A )三阶子式全为零; (B )至少有一个四阶子式不为零;(C )二阶子式全为零; (D )至少有一个二阶子式不为零.7.⎪⎪⎪⎪⎭⎫ ⎝⎛=n n n n n n b a b a b a b a b a b a b a b a b a A 212122122111,02121≠n n b b b a a a ,秩=A (B ). (A )0; (B )1 ; (C )2; (D )n .8.设B A ,为n 阶矩阵,**,B A 是伴随矩阵,⎪⎪⎭⎫ ⎝⎛=B O O A C ,则=*C ( C ). (A ) ⎪⎪⎭⎫ ⎝⎛**B B O O A A ; (B ) ⎪⎪⎭⎫ ⎝⎛**A A O O B B ; (C ) ⎪⎪⎭⎫ ⎝⎛**B A O O A B ; (D ) ⎪⎪⎭⎫ ⎝⎛**A B O O B A .9.设B A ,均为n 阶矩阵,A 与B 等价,下列结论不正确的是( A ).(A )若0||>A ,则0||>B(B )若0||≠A ,则存在可逆矩阵P 使得E PB =(C )若A 与E 等价,则B 是可逆矩阵(D )存在可逆矩阵Q P ,,使得B PAQ =10.设)3(≥n n 阶矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=a a b a b a b a a A ,其中0≠ab ,若1)(-=n A r ,则b a , 应满足( B ) (A )0=+b a (B )a n b )1(-= (C )0=-b a (D )a n b )1(-=11.设B A ,均为n m ⨯矩阵,1)(r A r =,2)(r B r =,若方程组α=Ax 有解,β=Bx 无解,且r B A r =),,,(βα,则( D )(A )21r r r += (B )21r r r +≤ (C )121++=r r r (D )121++≤r r r二.填空题1.若⎪⎪⎭⎫ ⎝⎛=4321A ,⎪⎪⎭⎫ ⎝⎛=0110P ,那么=20042003AP P ⎪⎪⎭⎫ ⎝⎛2143. 2.B A ,为三阶矩阵,1-=A ,2=B ,则()='-212B A 2 . 3.已知53)(2+-=x x x f ,⎪⎪⎭⎫ ⎝⎛=b a A 00,则=)(A f ⎪⎪⎭⎫ ⎝⎛+-+-53005322b b a a . 4.若C B A ,,均为n 阶矩阵,且E CA BC AB ===,则=++222C B A 3E . 5.α是三维列向量,⎪⎪⎪⎭⎫ ⎝⎛----='111111111αα,则='αα 3 .6.若A 为)2(≥n n 阶可逆矩阵,*A 是A 的伴随矩阵,则**)(A = A A n 2||-.三.判断题(正确打V ,错误打×)1.*A A =的充分必要条件是1-=A A A .( × )2.3223⨯⨯B A 不可逆.( V )3.如果E AB =,则1-=A B .( V )4.B A ,为n 阶非零矩阵,若,O AB =则0==B A .( V )5.()ij a A =为n 阶可逆矩阵,若A 的每行元素之和全为a ,则1-A 的每行元素之和全为1-a .( V )6.若A 为)2(≥n n 阶可逆矩阵,*A 是A 的伴随矩阵,则**)(A A -=-( × )四.设矩阵⎪⎪⎪⎭⎫ ⎝⎛=110011001A ,求n A . 五.讨论参数a 的取值,求矩阵⎪⎪⎪⎭⎫ ⎝⎛=68963642321a A 的秩.六.设122101221,021425000A B -⎛⎫⎛⎫ ⎪ ⎪==- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭,是否存在可逆阵P 使PA B =,若存在,求出P 。
线性代数习题集第二章-湖北工业大学水印

1 2 1
1
学 1
,试求伴随矩阵
A*
的逆矩阵。
3
湖
大
业
工 四、求解下列方程组(每题 10 分,共 20 分)
北 x1 + 2x2 + 3x3 = 1
1、 2x1 + 2x2 + 5x3 = 2 3x1 + 5x2 + x3 = 3
湖
2 1 −1 1 −1 3
学 2、
X
1
1
1
=
4
3
2
3 2 1 2 −2 5
A
可逆,则下列结论中成立的是(
湖 大 (A) A1可逆
(B) A2 可逆
)
(C) A1 与 A2 的可逆性不定
业 (D) A1 与 A2 均可逆
3、设
A、B
为
n
阶方阵,则分块矩阵
C
=
A
O
北 工 (A)
A* O
O
B*
A A* (B) O
O B B*
O
B
的伴随矩阵 C*
=
(
)
湖
B A* (C) O
2
1
2
学 a11 a12 a13 x1
( ) 4、 x1
x2
x3
a12
a22
a23
x2
大 a13 a23 a33 x3
业
1 0
工
四、设
A
=
0
0
0
北 1
,
求
Ak
,
k
N
+
湖
学 大
3 1 1
工 五、已知
《线性代数》第二章矩阵及其运算精选习题及解答

第二章 矩阵及其运算2.1 目的要求1.理解矩阵的概念;2.了解单位矩阵, 对角矩阵, 三角矩阵, 对称矩阵以及它们的基本性质; 3.掌握矩阵的线性运算, 乘法, 转置及其运算规则;4.理解逆矩阵的概念; 掌握可逆矩阵的性质; 会用伴随矩阵求矩阵的逆; 5.了解分块矩阵的概念, 了解分块矩阵的运算法则.2.2重要公式和结论1.对于任意方阵A , 总有 E A =A A =AA **,如果0≠A , 即A 为可逆矩阵, 则有 *1A AA1=−或1*A A A −=; 2.数乘以方阵的关系 , TTk k A A =)(111)(−−=A A kk , A A n k k =, A A 11=−;3.矩阵乘法的关系T T T A B (AB)=, , 111A B (AB)−−−=BA AB =;,()22T TA)(A =()2112A )(A−−=,22A A =;4.若A 、均为可逆矩阵, 则; ; B 10B A 0−⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=−−0AB 011⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛−−−111B 00A B 00A ⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛−−−−−11111B 0CB A A B 0C A ;; ⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛−−−−−11111B CA B 0A BC 0A 5.已知A 为一个n 阶可逆矩阵, 则有)2(≥n 1n *AA −=;6.已知A 为一个阶矩阵,则n A A nk k =,1−=n nk k A A *,()1)1(*−−=n n n kk AA ;7.已知A 为一个n 阶可逆矩阵, 则有)3(≥n A AA 2**)(−=n .2.3典型例题例2.1计算:(1) (2) .⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛n n b b a a M L 11)(()n n b b a a L M 11⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛解 (1) =;⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛n n b b a a M L 11)(∑==+n k k k n n b a b a b a 111L (2) . ()⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛=⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛n n n n n n n n b a b a b a b a b a b a b a b a b a b b a a L M M M L L L M 21222121211111例2.2 设 为三阶矩阵, 且已知)(j i a =A a =A , *A 为A 的伴随矩阵又⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=333231232221131211na na na ma ma ma la la la B , 求 *BA 解 由于 CA B =⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=333231232221131211333231232221131211000000a a a a a a a a a n m l na na na ma ma ma la la la 其中, ,故⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=n m l 000000C ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛====an am al a 000000C E A C CAA BA **.例2.3 设, , 求的关系, 使⎟⎟⎠⎞⎜⎜⎝⎛=3421A ⎟⎟⎠⎞⎜⎜⎝⎛=y x 21B y x 与A 与是可交换的. B 解 要使A , 可交换, 即B BA AB =又⎟⎟⎠⎞⎜⎜⎝⎛++++=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=y x y x y x 3464214213421AB ⎟⎟⎠⎞⎜⎜⎝⎛++++=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=y y x x y x 3442324342121BA 故的充要条件是 , 得到 BA AB =⎪⎪⎩⎪⎪⎨⎧+=++=++=++=+yy y x x y x x 343442643221441−=y x .例2.4 设n ×=1)21,0,,0,21(L C , , ,计算C C E A T −=C 2C E B T +=AB .解: C)C C)(E C (E AB TT +−=C CC 2C C C C 2C E T T T T −−+= )C (CC 2C C C E TTT−+=C C 212C C E T T ××−+=E = 故 E AB =.例2.5 设. , 求⎟⎟⎠⎞⎜⎜⎝⎛=5423A 1−A解 由于075423≠==A , 故A 是可逆的,又, 故⎟⎟⎠⎞⎜⎜⎝⎛−−=⎟⎟⎠⎞⎜⎜⎝⎛=342522122111*A A A A A ⎟⎟⎠⎞⎜⎜⎝⎛−−==−3425711*1A A A . 例2.6 设阶矩阵n A 的伴随矩阵为*A , 是常数, 试证 k ()*A A 1*−=n k k . 证明 把看作一个整体, 根据A k E A AA *=, 有 ()E A A A )()(*k k k =,由于A 是可逆的,则也是可逆的,故)(A k ()*11111*1)()(A A A A A A A A −−−−−==×==n n n k k kk k k k . 证毕例2.7 设, ⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛=2111021100210001A *A 为A 的伴随矩阵, 求. **)(A 解 由于 082111021100210001≠==A , 故A 是可逆的, *A 是可逆;根据E A AA *=, 有 E A )(A A ****=,方程左右两边同时左乘以A ,得 E A A )(A AA ****=, 即 A A A)(A ***1=, 又 1n *A A −=, A 是4阶矩阵,故 10001200()6411201112−⎛⎞⎜⎟⎜⎟===⎜⎟⎜⎟⎜⎟⎝⎠n 22**A AA AA . 例2.8 设A , 是n 阶方阵, 若B AB E −可逆, 试证 BA E −也可逆 .证明 由于A AB)AB)(E B(E E BA E 1−−−−=−A AB)BAB)(E (B E 1−−−−=A AB)BA)B(E (E E 1−−−−=移项得到E A AB)BA)B(E (E BA)(E 1=−−+−−即E A)AB)B(E BA)(E (E 1=−−−−根据可逆矩阵的定义, BA E −可逆, 并且.证毕A AB)B(E E BA)(E 11−−−+=−例2.9 设, 求.⎟⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎜⎝⎛−=00010000200010L L MM M MLL n n n A 1−nA 解 对矩阵分块, , 其中 n A ⎟⎟⎠⎞⎜⎜⎝⎛=0CB 0A n )(n =C , , ⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛−=100020001n L M M M L L B 故1(1n=−C , ⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛−=−)1(10002100011n L M M M LLB, 根据分块矩阵的逆矩阵公式⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛=−−−−0B C 00C B 0A 1111n⎟⎟⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎜⎜⎝⎛−=0)1(100021000011000n n LM M M M L L L . 例2.10 设阶方阵 , , 求, 使n ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=100001010A ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−−=021102341B X B AX =. 解 由于01100001010≠−==A , 故A 是可逆的; 并且 ;⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=−1000010101A 方程左右两边同时左乘以1−A 得到⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−−=⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−−⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛==−021341102021102341100001010B A X 1.例2.11 设,求, 使⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=134030201A X X A E AX 2+=+.解 对方程移项得 E A X AX 2−=−, 根据矩阵乘法分配律得E A E)X (A 2−=−由于 016034020200≠−==−E A , 故E A −可逆.方程左右两边同时左乘以, 得(1−−E A )()()E)(A E A E)(A E A E)(A X 121+−−=−−=−−⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=+=234040202E)(A例2.12 设, 求. 其中E BA)B X(E TT1=−−X , ⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛−−−=1000110001100011A ⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛=2000120031204312B 解 根据乘法转置公式得 TTT(AB)A B =T T 1T T1A)(B A)]B [B(E BA)B (E −=−=−−−又 011234012300120001)(≠==−TA B , 故可逆, 对方程 右乘以[, 得到 . T )(A B −E A)X(B T=−]1)(−−T A B []⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛−−−=−=−12100121001200011T A)(B X例2.13 设A 的伴随矩阵, 求, 使. ⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛−=8030010100100001*A B 3E BA ABA 11+=−−解 根据, 得到 3E BA ABA 11+=−−()3E BA E A 1=−−故 皆是可逆的, 并且A E,A −()()()1111A E A A E AB −−−−−=−=33[]1111)A (E E))(A (A −−−−−=−=33又由1n *AA −=, 8*=A , , 故 4=n 2=A ,1*1*11)A E ()A (E )A (E B −−−−⎥⎦⎤⎢⎣⎡−=−=−=22132133 11*1*60300101001000016)2(6)2(213−−−⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛−−=−=⎥⎦⎤⎢⎣⎡−=A E A E B . ⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛−=1030060600600006例2.14 设阶矩阵n A 的伴随矩阵为*A , 试证(1) 若0=A , 则0*=A ; (2) 1*−=n AA ; (3) 1)1(*)(−−=n n n kk AA .证明 (1 ) 根据0=A 得到0A =与0A ≠两种情况,① 当0A =时, 则, 显然0A *=0*=A ;② 当0A ≠时, 利用反证法, 不妨反设0*≠A ,则可逆, 即存在*A 1*−A , 又由于E A AA *=,0=A ,得到0)(A 0)(A A A 1*1*=⋅==−−, 这与矛盾.假设0A ≠0*≠A 不成立.故综合①②得到若0=A , 则0*=A .(2 ) 分0=A 和0≠A 两种情况,① 当0=A 时, 由(1)得到0*=A , 显然有1*−=n AA .② 当0≠A 时, 则A 可逆, 由E A AA *=引入行列式得到n*A A A =, 从而1n *AA −=.(3 ) 根据(2 )中1n *AA −=得到1)1(11*)()()(−−−−===n n n n n n k k k k AA A A .例2.15 设A , 均为阶方阵, B n 2=A , 3−=B , 求1*B)(A −2.解1*n1*1*1*B A B A B)(A B)(A −−−−⎟⎠⎞⎜⎝⎛===212122, 又根据E BB1=−, 得到1=−1B B , 即BB 11=−, 以及1−=n A A *,所以6131)2(212121−=⎟⎠⎞⎜⎝⎛−××⎟⎠⎞⎜⎝⎛=⎟⎠⎞⎜⎝⎛=−−−n n1*n1*B A B)(A例2.16 设5阶矩阵A , 且2=A , 求A A −. 解 由于2=A , ()()6423225−=×−=−=−=−A A AA A 5.例2.17 设A , 均为3阶矩阵, B 2=A , 21=B , 求()*AB . 解()()122122=⎟⎠⎞⎜⎝⎛====−−1313*****ABA B A B AB . 例2.18 设阶矩阵n A , 有E A m=, 若A 中每个元素用其对应的代数余子式代替, 得到矩阵, 求.ij a ij A B mB 解 依题意, 得 , (其中T *)(A B =*A 为A 的伴随矩阵),由E A m=, 得到1=m A ,即A 是可逆的,故 1ΤΤ1Τ1Τ*)(ΑΑ)(ΑΑ)ΑΑ()(ΑΒ−−−====,又由, 得111A B (AB)−−−=T T T A B (AB)=()()222112)(,)(T T A A A A ==−−,所以 ()()11)()(−−=T m mTA A , 故()()E A A AB===−−11)()(Tm T m mm.例2.19 设⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎝⎛−=21232321A , 且E A 6=, 求11A 解 由 E A 6=, 得E A12=, 即E AA 11=, 故⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎝⎛−=−212323211A A 11. 例2.20 设, )5,4,3,2,1(=A ⎟⎠⎞⎜⎝⎛=51,41,31,21,1B , 又B A X T =, 求n X 解 由X XX XnL =B)(A B)B)(A(A T TTL =()()()B BA BA BA A T T T T L =又因为,故 5=T BA ⎟⎠⎞⎜⎝⎛⎟⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎜⎝⎛==−−514131211543215511n n n B A X T ⎟⎟⎟⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎜⎜⎜⎝⎛=−145352555413424534312335242321251413121151n . 例2.21 设, 满足⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=100000001B ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−=112012001P PB AP =,求A , 9A .解.由于01112012001≠−=−=P , 故是可逆的,且,P ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−=−1140120011P 由题意, , ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−==−1140120011000000011120120011PBPA ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−=116002001又 A PBP P PB PBP PBPA 119119====−−−−L ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−=116002001.例2.22 设, 求⎟⎟⎠⎞⎜⎜⎝⎛=101λA nA . 解 由于 ,⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛==1021101101λλλAA A 2⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛==10311011021λλλA A A 23不妨假设结论,下用归纳法证明. 当⎟⎟⎠⎞⎜⎜⎝⎛=101λn nA 2=k 时,显然成立, 不妨设时也成立, 即, 则当1−=n k ⎟⎟⎠⎞⎜⎜⎝⎛−=−10)1(11λn n An k =时⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛−==−10110110)1(1λλλn n A A A 1n n ,故结论成立, 即. ⎟⎟⎠⎞⎜⎜⎝⎛=101λn nA2.4 独立作业2.4.1 基础练习1.设阶矩阵, 且n )(ij a =A ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=n λλO 1D )(j i j i ≠≠λλ则=AD (A )()ij i a λ ; (B )()j ij a λ; (C )()ij i a 1+λ ; (D )以上都不对. 2.设A 、均为阶矩阵,下列命题正确的是 B n(A )0B 0A 0AB ==⇒=或; (B )0B 0A 0AB ≠≠⇔≠且; (C )00==⇒=B A 0AB 或; (D )00≠≠⇔≠B A 0AB 且. 3.设阶矩阵满足, 则有 n E ABC =(A ) (B )E ACB =E CBA = (C )E BAC = (D )E BCA =4.设,则⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−=120001430A =A k(A ) (B ) (C )311k −311k k 11− (D ) k 115.下列命题正确的是 (A )若A 是阶方阵,且n 0A ≠,则A 可逆; (B )若A 、是阶可逆方阵,则B n B A +也可逆; (C )若A 是不可逆方阵,则必有0A =; (D )若A 是阶方阵,则n A 可逆⇔TA 可逆.6.已知,,则⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−=210413121A ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−=121312410B ()T AB 7.设,,则⎟⎟⎠⎞⎜⎜⎝⎛−=⎟⎟⎠⎞⎜⎜⎝⎛=0111,300121A A ⎟⎟⎠⎞⎜⎜⎝⎛=21A 00A A =−1A8.已知,则 ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=300041003A =−−1)(2E A9.设矩阵满足,其中B 9E 3B A AB 2−=−E 为三阶单位矩阵,⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=400020101A , 则 =B10.已知,满足⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−=200012021B A B AB =−,则=A 11.设,,求矩阵,使⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=311201A ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−=041012B X B X A =+23成立.12.设,计算⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−=141021001A ()()()2181644A A E A E A E +−−−−T .13.设,,求矩阵⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛−−−=1000210032101321B ⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛=1000210002101021C A , 使成立.T T 1C B)A C(2E =−−14.设矩阵,,,⎟⎟⎠⎞⎜⎜⎝⎛=3152P ⎟⎟⎠⎞⎜⎜⎝⎛−=1001B ⎟⎟⎠⎞⎜⎜⎝⎛−−=2153Q PBQ A =, 试计算QP 和nA .15.设(k 为正整数),(1)试证 ;0A k =1k 1A A E A)(E −−+++=−L (2)求. 1)4(−−E)(A 2.4.2提高练习1.设A 为阶矩阵,且有n A A 2=,则结论正确的是________________ (A)(B) 0A =E A = (C) 若A 不可逆,则0A = (D) 若A 可逆,则E A 2=2.已知,,且⎟⎟⎠⎞⎜⎜⎝⎛=22211211a a a a A ⎟⎟⎠⎞⎜⎜⎝⎛=y a x a 2111B 1,1==B A ,则=+B A (A) 2; (B) 3; (C) 4; (D) 5.3.设 ,是两个阶方阵,则)(ij a =A )(ij b =B n AB 的第行是 i (A ) 的各行的线性组合,组合系数是B A 的第行各元素; i (B ) A 的各行的线性组合,组合系数是的第行各元素; B i (C ) 的各列的线性组合,组合系数是B A 的第行各元素; i (D ) 的各行的线性组合,组合系数是B A 的第列各元素. i 4.设A 、、C 为可逆矩阵,则B ()=−1T ACB(A ) ; (B ) ;()1−−−C A B11T 11T A C B −−(C ) ( D ) ()1T 11B CA −−−()11T1A C B−−−.5.设A 为阶矩阵,为其伴随矩阵,则n *A =*A k (A ) A n k (B) nk A (C)1−n n k A(D)nn kA1−6.设三阶矩阵A 的行列式3=A ,则=−−*123A A7.设阶矩阵n A 的行列式5=A ,则()=−1*5A8.已知 则⎟⎟⎠⎞⎜⎜⎝⎛−=θθθθcos sin sin cos A =−1A 9.设阶矩阵n A 、、C ,且B E CA BC AB ===,则 =++222C B A10.设A 、是四阶矩阵,且B 2=A ,21=B ,则()=*AB11.设三阶矩阵A 、Β满足关系式,BA 6A BA A 1+=−⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎝⎛=710004100031A ,求 B 12.设 B A B A AX AXB 22+−+=,求.其中,X⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−=100110111A ,⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=200020102B 13.设A 、均为阶方阵,若B n AB B A =+,求()1−−E A .14.设, ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=211021001A *A 为A 的伴随矩阵, 求.1*)(−A第二章 参考答案与提示2.4.1 基础练习1.( B ) 提示 AD 表示A 的第i 行与D 的第列j 相乘得到()j ij a λ. 2.(C )提示 0000==⇒=⇒=⇒=B A B A A 0AB 或B . 3.(D )提示 A 、、C 可逆,等式左乘以B 1−A ,右乘以A . 4.(A )提示 3311k k k −==A A .5.(D )提示 由于A 可逆⇔00≠⇔≠T A A ⇔TA 可逆.6., ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−−−=⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−=15419102935121312410210413121AB ()⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−−−=⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−−−=1541910293511995103425TAB . 7.⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛−=⎟⎟⎠⎞⎜⎜⎝⎛=−−−110100000310000112111A 00A A.8.,()⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=−1000210012E A ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−=−−1000212100121E A . 9. , ,E B A AB 293−=−E A B AB 293−=−)333E E)(A (A E)B (A +−=−由于021*********≠=−−=−E A ,故E)A 3(−是可逆的,.⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=+=7000501043E)(A B 10.A B AB =− , ,B E)A(B =−04100002020≠=−=−E B ,E B −是可逆的,⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎝⎛−=⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎝⎛−⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−=−=−200012102111000021021020********E)B(B A .11.()⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−−−=−=91461121321A B X .12.()()()21T A A E A E A E +−−−−81644()()()A E A)E (A E A E 1T−−−−=−4444()()A E A E T−−=44()24A E −=324182==.13.左乘以C ,,由于 E B)A C (T=−20110002100321043212≠==−B C ,故 是可逆的,(. B C −2()()⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛−−−=−=−=−−−1210012100120001222C 1T T1B)C (B)C (B)A 14.,即、互为逆矩阵, ⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛−−=100131522153QP P Q ()()()()BQ QP QP B QP PB PBQ A nn L ==Q PB n =,由于,故.)(-L ,2,1,122===k k kBB E B⎪⎩⎪⎨⎧⎟⎟⎠⎞⎜⎜⎝⎛−−==为奇数为偶数n n 1162011A E A n 15.(1)由于()1k AA E A)(E −+++−L )A A (A )AA (E n 21k +++−+++=−L LE A E n =−=, 故 ,1k 1A A E A)(E −−+++=−L (2)()111A)(E A))(E (E))(A (−−−−−=−−=−4144()1k A A E −+++−=L 41. 2.4.2提高练习 1.(D )提示:,若0E)A(A A A2=−⇔=A 可逆,则E A =,E A 2=.2.(C )提示:,⎟⎟⎠⎞⎜⎜⎝⎛++=+y a ax a a 2221121122B A 422221112221121122211211=⎟⎟⎠⎞⎜⎜⎝⎛+=++=+y a x a a a a a y a a x a a B A . 3.(A )提示:乘积AB 的第行是i A 的第行与的列的乘积. i B n ,,1L 4.(D )提示:()()()()()()1−−−−−−−===A C B AC B B AC ACB1T 111T 1T 1T .5.(C )提示:1**−==n nn k k k AA A .6.()()()9313133232333111*1−=×−=−=−=−=−−−−−AA A A A A A .7.()n n n n211*1*1*5151151)(515−−−−==⎟⎠⎞⎜⎝⎛==A AA A. 8.⎟⎟⎠⎞⎜⎜⎝⎛−==−θθθθcos sin sin cos 1*1A A A . 9.由于E CA BC AB ===,故 ,2A A(BC)A ABCA E ===2B B(CA)B BCAB E ===,,2C C(AB)C CABC E ===所以 .E CB A 2223=++10.()()11=====−3341*)B A (AB ABABAB AB AB .11.由于,,右乘以得BA A BA A 1+=−6A E)BA (A 16=−−1−A E E)B (A16=−−又可逆.故A)(E −16−−−=E)(A B1⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎝⎛=6100031000216. 12.方程整理得B E)A)(B A(X =−−由于0≠A ,0≠−E B ,故A 、E B −是可逆的,且⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−−=−1001102111A ,()⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−=−−1000101011E B 所以11E)B(B A A X −−−=− ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−−=⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−−=200220522100010101200020102100110211故 . ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−=300330613X 13.由于AB B A =+B AB A −=⇒()B E A A −=⇒(但是B 不一定可逆,不能同时右乘以1−B)()()B E A E E A −=+−⇒()()E E B E A =−−⇒,故 ()E)(B E A 1−=−−.14.由于0421102101≠==A , 故A 是可逆的, *A 是可逆的; 根据E A AA *=, 有 E )(A A **=−1方程左右两边同时左乘以A 得,AE )(A AA **=−1即 A A )(A *11=−, 故 ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛==−2110210014111A A )(A *.。
线性代数练习题2

线性代数基础训练习题二一.选择题:1. 设为矩阵,B为矩阵,且,则矩阵为( )(A)矩阵;(B)矩阵;(C)矩阵;(D)矩阵2.设为阶方阵,且,则必有( )(A);(B);(C);(D)3. 设为阶方阵,则必有( )(A);(B);(C) ; (D)4.设为n阶矩阵的伴随矩阵,则下列结论不正确的是( )(A)若可逆,则也可逆;(B)若是零矩阵,则也是零矩阵;(C)若可逆,则也可逆;(D)若是零矩阵,则也是零矩阵;5.矩阵都是可逆矩阵,则下列结论不正确的是( )(A)是可逆矩阵;(B)的转置矩阵是可逆矩阵;(C)是可逆矩阵;(D)是可逆矩阵。
6.设为阶方阵,且,则必有( )(A);(B);(C);(D)A不是可逆矩阵7.将矩阵的第一行与第三行元素互换位置,再把第一行每个元素的-3倍,加到第二行对应的元素上,得到矩阵B,则矩阵B是( )(A);(B);(C)(D);8.对于方阵A进行一系列初等变换,下列选项中可能变化的是( )(A)A的秩;(B)A的行列式;(A)A的行数;(D) A的列数9.设5阶矩阵A的秩是3,则有A的伴随矩阵的秩( )(A);(B);;(D)二.填空题:1. 已知3阶矩阵的行列式,则有。
2. = 。
3设3阶矩阵A的伴随矩阵为,,则 .4设,则 .5设,则 .6.将3阶矩阵A的第一行元素都乘以2加到第三行对应元素上去得到矩阵B,相当于在矩阵A的左边乘以一个初等矩阵P就会得到矩阵B,这个初等矩阵P =。
7将3阶矩阵A的第一列元素加到第三列对应元素上去得到矩阵B,相当于在A的右边乘以初等矩阵P= 得到B.8.矩阵的秩 .9已知的秩为2,则。
10.设,则三.计算题:1.设矩阵和,求。
2. 设矩阵,求。
3.设矩阵,求此矩阵的逆矩阵。
4.已知及使,求.5.已知且,求.6.设三阶矩阵满足:,且,求.7.用初等变换法求的逆矩阵8.将矩阵化为行阶梯矩阵,并求其一个最高阶的非零子式。
9.求矩阵的秩:(1);(2)10.设为3阶矩阵,是的伴随矩阵,,求四.证明题:1.设为阶矩阵,是的伴随矩阵,证明:的充分必要条件是。
(完整版)线性代数试题库(矩阵)

71.设 是2阶方阵可逆,且 ,则 ( )
A. B.
C. D.
答案:B
72.设 均为3阶矩阵,若 可逆,秩 ,那么秩 ( )
A.0B.1
C.2D.3
答案:C
73.设 为 阶矩阵,若 与 阶单位矩阵等价,那么方程组 ( )
A.无解B.有唯一解
C.有无穷多解D.解的情况不能确定
答案:B
74.设矩阵 ,则 __________.
A. B. C. D.
答案:C
95.设 为3阶方阵,且行列式 ,则 【 】
A.-4 B.4 C.-1 D.1
答案:A
96.设矩阵 为 的转置,则 =。
答案:
97.设矩阵 则行列式 的值为.
答案:1
99.设 是 阶方阵,且 的元素全都是1, 是 阶单位位矩阵。证明:
证明:
因为 的元素全都是1,所以: 的元素全部为 ,即:
若 为同阶方阵,则 的充分必要条件是
答案:
143设 都是 阶矩阵,且 ,则下列一定成立的是()
或 B 都不可逆
C 中至少有一个不可逆D
答案:C
144设 均为可逆矩阵,则分块矩阵 亦可逆,
答案:
145设 为3阶可逆矩阵,且 ,则
答案:
146 均为 阶矩阵,下列各式中成立的为()
(A)
(B)
(C) 则 或
答案:×
151.两个初等矩阵的乘积仍为初等矩阵。 ( )
答案:×
152.A,B均为n阶方阵,A≠O,且AB=O,则B的秩( )
(A)等于O (B)小于n
(C)等于n (D)等于n-1
答案:B
153.已知 且A2—AB=E,求矩阵B。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线性代数练习题二(矩阵)
一、 填空题
1、设A 是m n ⨯阶矩阵,B 是s m ⨯阶矩阵,则T T A B 是 阶矩阵.
2、设A B ,均为m n ⨯阶矩阵,则A B B A =的充要条件是 .
3、设A B ,均为n 阶矩阵,则AB 不可逆的充要条件是 .
4、设A B ,均为n 阶可逆矩阵,则由A B ≠≠0,0可推出
O
A
B O = ;O A B O -⎛⎫
= ⎪⎝⎭
1
. 5、 设A B C ,,均为n 阶方阵,且A AB C ≠=0,,则B = 6、 设A B ,为同阶方阵,则A B A AB B +-++=222()(2) 7、设A 为5阶方阵,且A =3,则A -=1 ;A =2 ;
A *= .
8、设A 为3阶方阵,且A =1
2
,则A A -*-=132 . 二、 选择题
1、设A B ,均为n 阶矩阵,且A AB +=0,则( )
A A
B E B C
A E
B D A E B =+==+==+=000000
或和2、设矩阵A B A O
A ⎛⎫
=
⎪⎝⎭
12,其中A A 12,都是方阵,若A 可逆,则下列结论成立的是( )
A A A
B A A C
A A D A A 12211212,,可逆不可逆可逆不可逆
与可逆性不定与均可逆
3、若A B C ,,均为同阶方阵,且A 可逆,则下列结论成立的是( )
A A
B A
C B C
B AB CB A C
C AB O B O
D BC O B O
========若则若则若则若则
4、若A 是( )矩阵,则A 必是方阵
A B C n D 对称矩阵可逆矩阵阶矩阵的转置矩阵
线性方程组的系数矩阵
5、设A 是非奇异对称矩阵,则( )仍是对称矩阵
T
T A A B A C A D AA -13
6、若A 为n 阶方阵,且A a =≠0,则A *=( )
n n A a B a C a D a --11
三、 计算题
1、设A ⎛⎫
⎪--
⎪= ⎪-- ⎪--⎝⎭
1111111111111111,求n A .
2、设A B C ⎛⎫
--⎛⎫⎛⎫ ⎪=== ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪
⎝⎭4113021,25,0424234,求T
ABC ().
3、解矩阵方程A AX E -=2,其中A -⎛⎫
⎪= ⎪
⎪-⎝⎭
111011001,E 为单位矩阵.
4、设4阶方阵A r r r B r r r ==234234(,,,),(,,,)αβ,其中
r r r 234,,,,αβ均为4维列向量,且行列式A a B b ==,,求
行列式A B +的值.
5、若A B ,均为n 阶方阵,且A B ==-2,3,求行列式
A B *-13的值.
6、设A 为n 阶实方阵,且T AA E A ==-,1,求行列式E A +的值. 四、 证明题
1、已知矩阵A a
b c a b c ⎛⎫ ⎪
= ⎪ ⎪⎝
⎭
22
21
11,证明: T AA b a c a c b =---222()()().
(提示:利用范德蒙德行列式)
2、设A 为n 阶实方阵,且T AA E =,证明:行列式A =±1.
答案:
一、1、n s m n A B A B ⨯===1. 2.,, 3.00且可交换或;
n
O
B A B A
C BA AB A A A
O -----⎛⎫--== ⎪
⎝⎭
1111
1
14.(1); 5. 6.7.;3A A *==29;818.16
二、C D A C A B C A B C D C 1. 2. 3., 4.,, 5.,,, 6. 三、
n n n n A E n A E n A A -=⇒==2211.22;2为偶数时,为奇数时,
n X a b -⎛⎫
⎛⎫ ⎪=+- ⎪ ⎪⎝⎭ ⎪
⎝⎭
1021601402. 3.000 4.8() 5.68.02642000 四、(略).。