基因定位常用的方法
基因定位的方法

基因定位的⽅法基因定位的⽅法⼀定义基因所属连锁群或染⾊体以及基因在染⾊体上的位置的测定。
基因定位是遗传学研究中的重要环节。
在遗传学的早期研究中并未发现果蝇等⽣物的基因在染⾊体上的位置和⽣理功能有什么关系。
但以后发现⼀些有类似表型效应的基因是紧密连锁的。
例如1945年E.B.刘易斯在果蝇中发现与中胸发育有关的⼏个基因相邻接,构成⼀个复合座位或称基因复合体或拟等位基因系列;1960年J.莫诺和 F.雅各布报道⼤肠杆菌的与乳糖发酵有关的⼏个基因紧密连锁,构成⼀个操纵⼦。
可见基因的位置并不是和它们的功能完全⽆关的,因此基因定位有助于了解基因的功能。
此外,测定了某⼀基因在某⼀染⾊体上的位置以后,便可以⽤这⼀基因作为所属染⾊体或其⼀部分的标记,追踪并研究染⾊体的⾏为。
例如通过分析⼤肠杆菌的接合过程中各个标记基因在受体菌株中出现的先后次序,就有助于了解接合过程中染⾊体的⾏为(见细菌接合);在许多⽣物中根据杂交⼦代中各个标记基因的组合,可以研究染⾊体⼲涉、染⾊单体⼲涉和染⾊体畸变;在育种⼯作中也经常通过标记基因来识别染⾊体的替换。
1913年C.B.布⾥奇斯⾸先在果蝇中通过 X染⾊体的不离开现象证实了⽩眼基因(white,w)是在X染⾊体上。
同年A.H.斯特蒂⽂特根据两个基因之间的距离愈远则交换频率愈⾼这⼀假设,⾸先在果蝇中进⾏了基因定位⼯作。
⼆基因所属连锁群或染⾊体的测定(⼀)系谱分析法通过分析、统计家系中有关性状的连锁情况和重组率⽽进⾏基因定位的⽅法。
其中连锁分析法是最常⽤的家系分析法(pedigree method)。
早在20世纪30年代,通过家系分析法已将⼈类的绿⾊盲、G6PD、红⾊盲、⾎友病A的基因定位在X染⾊体上。
1.如果某性状只出现在男性,则可将决定这个性状的基因定位在Y染⾊体上。
2.X连锁基因的定位根据伴性遗传原理,男性的X染⾊体总是来⾃他的母亲,⽽这条X染⾊体⼜总是传给他的⼥⼉,所以在正常情况下在X染⾊体上的基因不会出现直接从男性到男性的传递⽅式,⽽是隔代交叉遗传,亦即外祖⽗出现的某种性状在母亲⾝上不出现(当外祖母为纯合正常时),往往出现在其外孙⾝上。
高考生物复习:染色体变异拓展——基因定位的常用方法

染色体变异拓展基因定位的常用方法概述基于2017年高考考试大纲及考试大纲的说明(课程标准实验版——理科综合)之生物知识内容及要求中关于“染色体结构变异和数目变异”能力要求已从Ⅰ层次提升为Ⅱ层次,染色体结构变异和数目变异的地位显著提高,加强对该部分知识和能力的拓展及训练成为应考的必然趋势。
非整倍体测交法可以用来测定基因属于哪一个常染色体,是基因定位的常用方法之一。
用常染色体隐性突变型纯合体(a/a)和野生型二倍体(+/+)杂交,再用子一代杂合体(a/+)和隐性亲本回交,在它们的子代中表型是野生型的和表型是突变型的各占50%。
杂交a/a × +/+↓回交a/+ × a/a↓回交子代a/a a/+突变型野生型比例 1 ∶1如果常染色体隐性突变型纯合体和某一染色体的野生型三体(+/+/+)品系杂交,子一代中的三体个体再和隐性亲本回交,在它们的子代中野生型和突变型之比是5∶1而不是1∶1。
如果常染色体隐性突变型纯合体和某一染色体的野生型单体品系(+)杂交,在子一代中就出现50%的突变型个体,而不是100%的野生型。
杂交a/a × +↓子一代a/+ ∶a野生型突变型比例 1 ∶1根据上述三种不同的杂交结果,可见只要具备相当于每一染色体的一系列三体和单体品系,便能从杂交子代的突变型和野生型的比数中判断任何一个突变基因所属的染色体。
小麦是多倍体植物,多倍体植物增加或减少一个染色体不会使它的生活力受到严重的影响,因此容易建立整套三体或单体品系,使基因定位工作得以顺利进行。
除了小麦等植物以外,这一方法也用在酵母菌的遗传学研究中。
【典例剖析】1.利用单体品系进行基因定位【例题1】黑麦为二倍体,1个染色体组中含有7条染色体,分别记为1~7号,其中任何1条染色体缺失均会造成单体,即二倍体黑麦中共有7种单体。
单体在减数分裂时,未配对的染色体随机移向细胞的一极。
产生的配子可以随机结合,后代出现二倍体、单体和缺体(即缺失一对同源染色体)三种类型。
基因定位常用的方法

HAT选择系统: HAT选择系统: 选择系统
人的突变细胞株:缺乏HGPRT 人的突变细胞株:缺乏HGPRT酶 HGPRT酶 小鼠细胞株:缺乏TK TK酶 小鼠细胞株:缺乏TK酶 两者融合培养于HAT HAT培养基中 两者融合培养于HAT培养基中 HAT培养基: HAT培养基: 培养基 为次黄嘌呤, HGPRT的底物 的底物, DNA合成提 H为次黄嘌呤,是HGPRT的底物,为DNA合成提 供原料(核苷酸旁路合成原料) 供原料(核苷酸旁路合成原料) 可阻断正常的DNA合成(嘌呤及TMP DNA合成 TMP合成受抑 A可阻断正常的DNA合成(嘌呤及TMP合成受抑 制) 在胸苷激酶(TK) T在胸苷激酶(TK)的作用下生成胸腺嘧啶核 苷酸, DNA合成提供原料 苷酸,为DNA合成提供原料
1)概念: 概念: 基因定位的连锁分析是根据基因在染 色体上呈直线排列, 色体上呈直线排列,不同基因相互连锁成 连锁群的原理, 连锁群的原理,即应用被定位的基因与同 一染色体上另一基因或遗传标记相连锁的 特点进行定位。 特点进行定位。
19
2)重组值(recombination fraction) fraction) 重组值( 是基因定位时两个基因间遗传图距的量 即基因间的遗传距离。 度,即基因间的遗传距离。如果两个基因 间有1%的重组值,其遗传图的距离为1厘摩。 1%的重组值 间有1%的重组值,其遗传图的距离为1厘摩。 centimorgan,cM) (centimorgan,cM) 遗传标记( marker) 3)遗传标记(genetic marker) 用连锁分析发法进行基因定位需要已知 的记忆内作为遗传标记, 的记忆内作为遗传标记,这些标记按孟德 尔方式遗传,标记位点应是多态的。 尔方式遗传,标记位点应是多态的。
基因定位的表示方法

基因定位的表示方法
基因定位呢,就像是给基因这个小调皮在染色体这个大地图上找个家。
那它的表示方法还挺有趣的呢。
咱先说最常见的一种,就是用染色体的编号加上臂的符号还有区和带的数字来表示。
比如说,1p36,这里的“1”就是指1号染色体啦,“p”呢,就像是染色体的左臂,36就是指这个基因在左臂上的特定位置,就好像是左臂上第36号小房子住着这个基因。
这就像是给基因写了个详细的家庭住址,邮递员(科学家们)就能准确地找到它啦。
还有一种表示方法是和基因连锁来表示。
如果一个基因和另一个已知位置的基因总是一起出现,就像两个形影不离的小伙伴。
那我们就可以通过这个已知基因的位置来大致推断出未知基因的位置。
这就好比你知道小明家在哪,而小红总是和小明一起玩,那你大概也能猜到小红家就在小明家附近啦。
在基因定位表示的时候啊,有时候还会用到一些特殊的符号或者缩写呢。
这就像是基因之间的小暗号。
这些符号可以告诉我们更多关于这个基因的信息,比如它是显性还是隐性啦,它在遗传过程中的一些特殊情况之类的。
《基因定位》课件

CHAPTER 04
基因定位的挑战与未来发展
基因定位的挑战
技术限制
当前基因定位技术仍存在一定的局限性,如分辨率和灵敏度不够高 ,无法准确检测所有基因变异。
数据解读难度
基因定位产生的数据复杂且庞大,对专业知识和技术要求较高,解 读难度较大。
伦理和隐私保护
基因信息属于个人隐私敏感信息,如何合理合法地使用和保护基因数 据,避免侵犯个人隐私和权益,是基因定位面临的伦理挑战。
基因定位的未来发展方向
技术创新
01
随着生物技术的不断发展,未来基因定位技术将不断改进和完
善,提高分辨率、灵敏度和特异性。
数据解读能力提升
02
通过加强人才培养和技术研究,提高基因定位数据的解读能力
,为精准医疗和个性化治疗提供更可靠的支持。
应用领域拓展
03
基因定位技术的应用范围将进一步扩大,不仅局限于遗传性疾
基因定位方法
利用分子遗传学技术,通过家 系分析和关联分析等方法,确 定与疾病相关的基因变异位点 。
临床应用
通过基因检测,预测个体患病 风险,制定个性化的预防和治
疗方案。
研究案例二:农作物抗逆性的基因定位
总结词
通过基因定位技术,鉴定农作物中与 抗逆性相关的基因,提高农作物的抗 逆性,促进农业生产的发展。
CHAPTER 03
基因定位与疾病关联研究
单基因遗传病定位
单基因遗传病定位
通过遗传学手段确定导致 单基因遗传病的基因位置 和变异类型。
意义
有助于理解疾病的发病机 制,为疾病的早期诊断和 治疗提供依据。
技术
包括连锁分析、单倍型分 析和全基因组关联分析等 。
多基因遗传病定位
多基因遗传病定位
水稻基因定位方法

水稻基因定位方法
水稻基因定位的方法主要有两种:同工酶法和DNA分子标记定位法。
同工酶法是利用水稻的近等基因系的组织(叶片等)提取的酶经等电聚焦并变色显影后,比较不同的近等基因系之间同工酶的差异,以确定某个基因与何种酶连锁。
例如,研究表明sd-1与Estl-2紧密连锁,其重组值为%。
DNA分子标记定位是上世纪80年代后,随着分子生物学的发展而兴起的一种新的基因定位方法。
即利用实验室构建的覆盖水稻全部12条染色体的RFLP、SSLP等分子标记图谱,运用RFLP、SSLP、RAPD和AFLP等方法,通过构建极端株高(高秆、矮秆)基因池筛选阳性标记,再利用阳性标记检测整个群体,根据群体中各个体的基因型计算交换值,从而定位基因。
基因定位研究中最常用的分子定位方法是RFLP和SSLP。
以上信息仅供参考,如需更多信息,建议查阅专业植物学书籍或文献。
基因工程的基本过程

基因工程的基本过程介绍基因工程是一项重要的生物技术领域,它利用DNA重组技术,对生物体的基因信息进行修改和重新组合,实现改变生物体性状的目的。
基因工程的基本过程包括基因定位、基因克隆、基因表达和基因转导等步骤。
本文将详细介绍基因工程的基本过程。
一、基因定位基因定位是基因工程的第一步,通过确定目标基因在染色体上的位置,为后续的基因克隆提供准确的目标。
基因定位可以通过物理方法、遗传方法和分子生物学方法等多种手段来实现。
1. 物理方法物理方法主要包括荧光原位杂交(FISH)和比较基因组杂交(CGH)等。
其中,荧光原位杂交可以通过标记特定探针并与目标基因序列进行杂交,从而在染色体上检测到目标基因的位置。
比较基因组杂交可以通过将目标基因与参考基因组进行杂交,通过比较两者的杂交强度,确定目标基因在染色体上的位置。
2. 遗传方法遗传方法主要包括连锁分析和关联分析等。
连锁分析是利用基因在染色体上的连锁关系,通过研究特定遗传标记和目标基因之间的连锁程度,来确定目标基因在染色体上的位置。
关联分析则是通过研究染色体多态性和目标基因之间的关联程度,来确定目标基因与某个特定区域的关系。
3. 分子生物学方法分子生物学方法主要包括PCR、Southern blotting和DNA测序等。
PCR可以通过目标基因的序列信息,设计特定引物并进行扩增,从而实现对目标基因的定位。
Southern blotting可以通过转移DNA片段到膜上,并进行测序等。
二、基因克隆基因克隆是基因工程的关键步骤,它通过将目标基因从来源生物体中分离出来,并进行扩增,得到足够多的DNA材料用于后续的实验。
1. DNA提取DNA提取是基因克隆的第一步,它可以通过细胞裂解、溶解和沉淀等步骤将DNA从生物体中提取出来。
常用的DNA提取方法包括酚-氯仿法、盐析法和商业DNA提取试剂盒等。
2. PCR扩增PCR扩增是基因克隆的关键技术,它可以通过DNA聚合酶的作用,将目标基因序列进行扩增。
基因定位常用的方法ppt课件

4)原位杂交的步骤
制备中期染色体 DNA原位变性 变性 放射性或非放射性标记探针 杂交(在载玻片上) 洗膜 放射性标记:放射自显影 检测 非放射性标记:荧光染料与抗体或蛋白结合 记录杂交信号 结合染色体形态进行基因定位
DMD女性患者的核型
X染色体与常染色体易位时X染色体失活的结果
两个研究小组分别采用两种不同的方法克隆了DMD基因: 一组是通过X常染色体易位,克隆了该基因的一部分。 另一研究组使用有Xp21.1微小缺失的男孩的DNA,利用消减技术,获得了在正常X染色体存在而在这个男孩DNA中缺乏的DNA克隆片段。
遗传做图:是以研究家族的减数分裂,以了解两个基因分离趋势为基础来绘制基因座位间的距离,它表明基因之间连锁关系和相对距离,并以重组率来计算和表示,以厘摩(cM)为单位。 染色体定位:只把基因定位到某条染色体上。 细胞水平上的基因图又称细胞遗传图 区域定位:从细胞遗传学水平,用染色体显带等技术在光学显微镜下观察,将基因定位到染色体的具体区带。
5)荧光原位杂交 (florescence in situ hybridization,FISH)
用特殊荧光素(dig或Biotin)标记探针DNA(Nick translation 标记法),变性成单链后与变性后的染色体或细胞核靶DNA杂交。在荧光显微镜下观察并记录结果。 FISH 优点:可用来作基因或特定DNA片段的染色体区 域定位。 缺点:必须在已知探针的情况下方可进行。
HAT选择系统:
人的突变细胞株:缺乏HGPRT酶 小鼠细胞株:缺乏TK酶 两者融合培养于HAT培养基中 HAT培养基: H为次黄嘌呤,是HGPRT的底物,为DNA合成提供原料(核苷酸旁路合成原料) A可阻断正常的DNA合成(嘌呤及TMP合成受抑制) T在胸苷激酶(TK)的作用下生成胸腺嘧啶核苷酸,为DNA合成提供原料
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
染色体定位:只把基因定位到某条染色体上。 细胞水平上的基因图又称细胞遗传图 区域定位:从细胞遗传学水平,用染色体显带等 技术在光学显微镜下观察,将基因定位到染色体 的具体区带。
3
一、基因定位的方法
1、体细胞杂交法基因定位: 体细胞:即生物体除生殖细胞外的任一细 胞。 1)体细胞杂交的概念: 也称细胞融合(cell infusion),是 将来源不同的两种细胞融合成一个新细胞。 新产生的细胞称杂种细胞(hybrid cell), 含双亲不同的染色体。
9
将筛选出来的杂种细胞转移到正常培 养基继续培养,由于人和鼠都有各自不同 的生化和免疫学特性,Miller等运用体细 胞杂交并结合杂种细胞的特征,证明杂种 细胞的存活需要胸苷激酶(TK)。凡是含 有人17号染色体的杂种细胞都因有TK活性 而存活,反之则死亡,从而推断TK基因定 位于17号染色体上,这是首例应用体细胞 杂交法进行的基因定位。
A B C
1 + + +
2 + + -
3 + +
4 + -
5 6 7 8 - - - + + - + - + 12
2.原位杂交和荧光原位杂交
1)原位杂交(in situ hybridization):是最 直接的基因定位方法之一,是分子生物学技术在 基因定位中的应用,胰岛素基因用此方法定位于 11p15。
10
TKHPRT+
TK+
鼠
X
人
HPRT-
鼠
鼠 人 HAT
人
TK+
鼠人 17 3 TK+
TK+
HPRT+ 17 3 3
17
TK11
②克隆嵌板法(clone panel method) 根据不同杂种细胞保留或丢失的人染色体有 时是重叠的情况,设计的一种简便而实用的基因 定位方法。 克隆嵌板
杂种克隆 保留的人染色体
1
明确几个基本概念 基 因:DNA的功能片段。 基因组:有机体全部DNA序列(它包括基因 外的非基因DNA序列),它是基因和 非基因DNA序列的总和。 基因定位:是用一定的方法将基因确定到染 色体的实际位置。
2
遗传做图:是以研究家族的减数分裂,以了解两 个基因分离趋势为基础来绘制基因座位间的距离, 它表明基因之间连锁关系和相对距离,并以重组 率来计算和表示,以厘摩(cM)为单位。
16
单色FISH
17
多色FISH
18
3.连锁分析(Linkage analysis)
1)概念: 基因定位的连锁分析是根据基因在染 色体上呈直线排列,不同基因相互连锁成 连锁群的原理,即应用被定位的基因与同 一染色体上另一基因或遗传标记相连锁的 特点进行定位。
19
2)重组值(recombination fraction) 是基因定位时两个基因间遗传图距的量 度,即基因间的遗传距离。如果两个基因 间有1%的重组值,其遗传图的距离为1厘摩。 (centimorgan,cM) 3)遗传标记(genetic marker) 用连锁分析发法进行基因定位需要已知 的记忆内作为遗传标记,这些标记按孟德 尔方式遗传,标记位点应是多态的。
2)原理:碱基的互补配对,同源的DNA-DNA双链 或DNA-RNA双链在一定条件下能结合成双链。用放 射性或非放射性物质标记的DNA、RNA或与mRNA互 补的cDNA作探针,可检测细胞基因组中的同源部 分。
13
3)原位杂交的特点:
杂交在载玻片上的中期染色体上进行, 而不是在溶液和膜上进行。所谓原位是指 在标本上DNA原位变性,再与放射性或非放 射性物质(通常用3H)标记的已知核酸探 针杂交,通过放射自显影来检测染色体上 特异DNA或RNA顺序,用放射性颗粒在某条 染色体的区带出现的最高频率或荧光的强 度来确定探针的位置,从而准确地进行基 因定位。
14
4)原位杂交的步骤
制备中期染色体
DNA原位变性 变性 放射性或非放射性标记探针 杂交(在载玻片上)
洗膜
检测 放射性标记:放射自显影 非放射性标记:荧光染料与抗体或蛋白结合 结合染色体形态进行基因定位
15
记录杂交信号
5)荧光原位杂交
(florescence in situ hybridization ,FISH)
用 特 殊 荧 光 素 ( dig 或 Biotin ) 标 记 探 针 DNA(Nick translation 标记法),变性成单 链后与变性后的染色体或细胞核靶 DNA 杂交。 在荧光显微镜下观察并记录结果。
FISH
优点:可用来作基因或特定DNA片段的染色体区 域定位。 缺点:必须在已知探针的情况下方可进行。
4
2)对象: 人的细胞
鼠类:大鼠、小鼠、仓鼠
3)杂种细胞的特点: 在繁殖传代过程中,人的染色体优先 丢失,以至最后只剩几条或一条人的染色 体,而啮齿类的染色体被保留下来。
5
4)原理:
细胞进行融合时,培养液中只有部分细 胞融合成杂种细胞,还有大量未融合的双 亲细胞。这就需要选择分离纯化杂种细胞。 为此要创造一种只让杂种细胞生长繁殖而 亲本细胞死亡的环境。这就要利用杂种细 胞和亲本细胞对生长条件的要求和代谢的 差异来进行选择。其中最常用的是HAT选择 系统。
7
因此在HAT培养基上
人细胞: ①由于A的存在,正常的DNA 合成通路受 阻 。 ②同时由于HGPRT的缺乏,无法利用次黄 嘌呤通过旁路合成DNA( 嘌呤合成障碍)
8
鼠细胞:由于A的存在正常的DNA合成通 道受阻,有HGPRT可以利用次黄嘌呤合成 腺嘌呤,鸟嘌呤,但由于无TK,无法合 成胸腺嘧啶。(嘧啶合成障碍 ) 杂种细胞:有HGPRT旁路合成腺嘌呤,鸟 嘌呤;并可以利用TK合成胸腺嘧啶(嘌 呤和嘧啶都可以正常合成)
6
HAT选择系统:
人的突变细胞株:缺乏HGPRT酶 小鼠细胞株:缺乏TK酶 两者融合培养于HAT培养基中
HAT培养基: H为次黄嘌呤,是HGPRT的底物,为DNA合成提 供原料(核苷酸旁路合成原料) A可阻断正常的DNA合成(嘌呤及TMP合成受抑 制) T在胸苷激酶(TK)的作用下生成胸腺嘧啶核 苷酸,为DNA合成提供原料
第四节
基因定位常用的方法
Wilson于1911年将红绿色盲基因首次定位于X 染色体上,开创了人类基因定位的先河.1968 年,Donahue利用系谱分析的方法将Duffy血型基因 定位于1 号染色体上,是人类首次在常染色体上进 行的基因定位.20世纪70年代后,体细胞杂交重组 DNA、分子杂交和PCR等技术的出现和应用,基因 定位的方法愈加先进,基因定位的速度、数量明 显加快。人类基因组计划的实施和完成,更加促 进了基因定位的进程。 基因定位对提高人类对疾病产生的病因学的 认识有重要意义。