初一下数学第5章压轴题综合训练精选24题

合集下载

七年级数学下册压轴题训练

七年级数学下册压轴题训练

武汉七年级数学压轴题训练1.如图,已知MA//NB ,CA 平分∠BAE ,CB 平分∠ABN ,点D 是射线AM 上一动点,连DC ,当D 点在射线AM (不包括A 点)上滑动时,∠ADC+∠ACD+∠ABC 的度数是否发生变化?若不变,说明理由,并求出度数。

2.如图,AB//CD ,PA 平分∠BAC ,PC 平分∠ACD ,过点P 作PM 、PE 交CD 于M ,交AB 于E ,则(1)∠1+∠2+∠3+∠4不变;(2)∠3+∠4-∠1-∠2不变,选择正确的并给予证明。

3.如图,在平面直角坐标系中,已知点A (-5,0),B (5.0),D (2,7), (1)求C 点的坐标;(2)动点P 从B 点出发以每秒1个单位的速度沿BA 方向运动,同时动点Q 从C 点出发也以每秒1个单位的速度沿y 轴正半轴方向运动(当P 点运动到A 点时,两点都停止运动)。

设从出发起运动了x 秒。

①请用含x 的代数式分别表示P,Q 两点的坐标;②当x=2时,y 轴上是否存在一点E ,使得△AQE 的面积与△APQ 的面积相等?若存在,求E 的坐标,若不存在,说明理由?BNAD4.如图,在平面直角坐标系中,∠ABO=2∠BAO ,P 为x 轴正半轴上一动点,BC 平分∠ABP ,PC 平分∠APF ,OD 平分∠POE 。

(1)求∠BAO 的度数; (2)求证:∠C=15°+12∠OAP ;(3)P 在运动中,∠C+∠D 的值是否变化,若发生变化,说明理由,若不变求其值。

5.如图,A 为x 轴负半轴上一点,C (0,-2),D (-3,-2)。

(1)求△BCD 的面积;(2)若AC ⊥BC ,作∠CBA 的平分线交CO 于P ,交CA 于Q ,判断∠CPQ 与∠CQP 的大小关系,并说明你的结论。

xx(3)若∠ADC=∠DAC ,点B 在x 轴正半轴上任意运动,∠ACB 的平分线CE 交DA 的延长线于点E ,在B 点的运动过程中,∠E ∠ABC的值是否变化?若不变,求出其值;若变化,说明理由。

专题05 一元一次方程选填题压轴训练(原卷版)-2020-2021学年七年级数学期末复习压轴题训练

专题05 一元一次方程选填题压轴训练(原卷版)-2020-2021学年七年级数学期末复习压轴题训练

专题05 一元一次方程选择题压轴训练(原卷版)选择填空题(共30小题)1.小明计划和爸爸一起自驾游,图A是这月份的日历,用图B框住5个日期,他们的和是50,图B中x是出行日期,爸爸的车牌尾号是“9”,则出行日期是几号,这天能出行吗?()(注:郑州市限行政策:周一到周五限行,周末和节假日不限行,每周一限行尾号为1和6,每周二限行尾号为2和7,以此类推)图A:周日周一周二周三周四周五周六12345678910111213141516171819202122232425262728293031A.11,不能B.11,能C.10,能D.10,不能2.在2019年10月份的月历表中,任意框出表中竖列上三个相邻的数(如图,如框出了10,17,24),则这三个数的和不可能的是()A.30B.40C.45D.513.一个密封的瓶子里装着一些水(如图所示),已知瓶子的底面积为10cm2,请你根据图中标明的数据,计算瓶子的容积是()cm3.A.80B.70C.60D.504.如图,在矩形ABCD中,BC=15cm,动点P从点B开始沿BC边以每秒2cm的速度运动;动点Q从点D开始沿DA边以每秒1cm的速度运动,点P和点Q同时出发,当其中一点到达终点时,另一点也随之停止运动,设动点的运动时间为t秒,则当t=()秒时,四边形ABPQ为矩形.A.3B.4C.5D.65.在某月的月历中圈出相邻的3个数,其和为15.这3个数的位置可能是()A.B.C.D.6.若整数a使关于x的方程ax+3=﹣9﹣x有负整数解,且a也是四条直线在平面内交点的个数,则满足条件的所有a的个数为()A.3B.4C.5D.67.如图,三个天平的托盘中形状相同的物体质量相等,图①②所示的两个天平处于平衡状态,要使第3个天平也保持平衡,则需在它的右盘中放置()个球.A.5B.6C.7D.88.已知关于x方程x﹣=﹣1的解是非正整数,则符合条件的所有整数a的和是()A.﹣4B.﹣3C.2D.39.如图,数轴上的点O和点A分别表示0和10,点P是线段OA上一动点.点P沿O→A→O以每秒2个单位的速度往返运动1次,B是线段OA的中点,设点P运动时间为t秒(t不超过10秒).若点P在运动过程中,当PB=2时,则运动时间t的值为()A.秒或秒B.秒或秒秒或秒C.3秒或7秒D.3秒或秒或7秒或秒10.有一玻璃密封器皿如图①,测得其底面直径为20厘米,高20厘米,先内装蓝色溶液若干.若如图②放置时,测得液面高10厘米;若如图③放置时,测得液面高16厘米;则该玻璃密封器皿总容量为()立方厘米.(结果保留π)A.1250πB.1300πC.1350πD.1400π11.小明在某月的日历上圈出了三个数a,b,c,并求出了它们的和为39,则这三个数在日历中的排位位置不可能的是()A.B.C.D.12.某企业接到为地震灾区生产活动房的任务,此企业拥有九个生产车间,现在每个车间原有的成品活动房一样多,每个车间的生产能力也一样.有A、B两组检验员,其中A组有8名检验员前两天时间将第一、二车间的所有成品(原来的和这两天生产的)检验完毕后,再去检验第三、四车间所有成品,又用去三天时间;同时这五天时间B组检验员也检验完余下的五个车间的所有成品.如果每个检验员的检验速度一样快,那么B组检验员人数为()A.8人B.10人C.12人D.14人13.桌面上有甲、乙、丙三个圆柱形的杯子,杯深均为15公分,各装有10公分高的水,且表记录了甲、乙、丙三个杯子的底面积.今小明将甲、乙两杯内一些水倒入丙杯,过程中水没溢出,使得甲、乙、丙三杯内水的高度比变为3:4:5.若不计杯子厚度,则甲杯内水的高度变为多少公分?()底面积(平方公分)甲杯60乙杯80丙杯100A.5.4B.5.7C.7.2D.7.514.正方形ABCD的轨道上有两个点甲与乙,开始时甲在A处,乙在C处,它们沿着正方形轨道顺时针同时出发,甲的速度为每秒1cm,乙的速度为每秒5cm,已知正方形轨道ABCD的边长为2cm,则乙在第2018次追上甲时的位置()A.AB上B.BC上C.CD上D.AD上15.李飒的妈妈买了几瓶饮料,第一天,他们全家喝了全部饮料的一半零半瓶;第二天,李飒招待来家中做客的同学,又喝了第一天剩下的饮料的一半零半瓶;第三天,李飒喝了剩下的一半零半瓶,正好喝完,则妈妈买的饮料一共有()A.5瓶B.6瓶C.7瓶D.8瓶16.规定:用{m}表示大于m的最小整数,例如{}=2,{4}=5,{﹣1.5}=﹣1等;用[m]表示不大于m的最大整数,例如[]=3,[2]=2,[﹣3.2]=﹣4.(1){2.4}+[﹣8]=;(2)如果整数x满足关系式:3{x}+2[x]=18,则x=.17.一个两位数,若交换其个位数与十位数的位置,则所得新两位数比原两位数大18,这样的两位数共有个.18.2019年义乌客运站行车时刻表如图,假设客车运行全程保持匀速行驶,则当快车出发小时后,两车相距25km.义乌﹣上海出发时间到站时间里程(km)普通车7:0011:00300快车7:3010:3030019.《算法统宗》中记有“李白沽酒”的故事.诗云:今携一壶酒,游春郊外走.逢朋加一倍,入店饮半斗.相逢三处店,饮尽壶中酒.试问能算士:如何知原有?(古代一斗是10升)大意是:李白在郊外春游时,做出这样一条约定:遇见朋友,先到酒店里将壶里的酒增加一倍,再喝掉其中的5升酒.按照这样的约定,在第3个店里遇到朋友正好喝光了壶中的酒.则李白的酒壶中原有升酒.20.阅读框图,在五个步骤中,依据等式的性质2的步骤有(只填序号).21.有两根木条,一根AB长为100cm,另一根CD长为150cm,在它们的中点处各有一个小圆孔M、N(圆孔直径忽略不计,M、N抽象成两个点),将它们的一端重合,放置在同一条直线上,此时两根木条的小圆孔之间的距离MN是cm.22.有2020个数排成行,对于任意相邻的三个数,都有中间的数等于前后两数的和.如果第一个数是0,第二个数是1,那么前6个数的和是0,这2020个数的和是.23.如图,将一个矩形分割成11个大小不同的正方形,记图中最大正方形的周长是C1,最小正方形的周长是C2,则=.24.商家把某商品的进价增加20%定为售价出售,后因库存积压降价出售,结果还盈利8%,则这种商品按原售价的折出售.25.春节来临之际,元祖蛋糕店对凤梨味,核桃味、绿茶味年糕(分别记为A、B、C)进行混装,推出了甲、乙两种礼盒.礼盒的成本是盒中年糕的成本与包装盒成本之和,每盒甲装有6个A,2个B,2个C,每盒乙装有2个A,4个B,4个C,每盒甲中年糕的成本之和是1个A成本的15倍,甲礼盒每盒的包装盒成本与乙礼盒每盒的包装盒成本的之比为3:4,每盒乙的利润率为20%,每盒乙的售价比每盒甲的售价高20%,当该店销售这两种礼盒的总利润率为25%时,甲、乙两种礼盒的销售量之比为.26.已知a,b为定值,关于x的方程=1﹣,无论k为何值,它的解总是1,则a+b=.27.在环行自行车赛场内,甲、乙、丙三人骑自行车进行训练,他们的速度是:甲每分钟圈,乙每分钟圈,丙每分钟圈,他们同时出发,起点如图所示(甲从A点出发,沿圆周逆时针运动;乙从B点出发,沿圆周逆时针运动;丙从C点出发,沿圆周顺时针运动),则出发后分三人第一次相遇.28.20个质量分别为1,2,3,…,19,20克的砝码放在天平两边,正好达到平衡.(1)试将砝码①,②,…,⑳(①,②,…分别代表1克,2克,…的砝码)分别放在天平两边,使之达到平衡,且可从每边各取下同样多的偶数个砝码,仍能使天平保持平衡;(2)试将砝码①,②,…,⑳(①,②,…分别代表1克,2克,…的砝码)分别放在天平两边,使之达到平衡,且从每边无论怎样取下同样多个砝码,都不能再使天平保持平衡.29.小蕙是一位热爱读书的人,她买了一本畅销书,书名是《数学是美丽的》.第一天小蕙读了全书的又12页,第二天她读了剩下的又15页,第三天她读了再剩下的又18页,此时她发现还剩下62页未读,她将于次日继续读.试问这本书总共有几页?(A)120(B)180(C)240(D)300(E)360.30.在2019年全国信息学奥利匹克联赛中,重庆八中学子再创辉煌,竞赛成绩全市领先,共56人获得全国一等奖,同时摘下高一年级组冠军,高二年级组第二名,包揽初二年级组冠、亚、季军.在校内选拔赛时,某位同学连续答题40道,答对一题得5分,答错一题扣2分,最终该同学获得144分.请问这位同学答对多少道题?下面共列出4个方程,其中正确的是.(多选)A.设答对了x道题,则可列方程:5x﹣2(40﹣x)=144B.设答错了y道题,则可列方程:5(40﹣y)﹣2y=144C.设答对题目得a分,则可列方程:+=40D.设答错题目扣b分,则可列方程﹣=40。

2023-2024学年七年级数学下册 实数 压轴题(十大题型)(原卷版)

2023-2024学年七年级数学下册 实数 压轴题(十大题型)(原卷版)

(1)如图1,当2n =时,拼成的大正方形ABCD 的边长为
如图2,当5n =时,拼成的大正方形1111D C B A 的边长为
如图3,当10n =时,拼成的大正方形2222A B C D 的边长为
(2)小李想沿着正方形纸片1111D C B A 边的方向能否裁出一块面积为()22.42dm
的长方形纸片,使它的长宽之比
为21:?他能裁出吗?请说明理由.
(1)仿照康康上述的方法,探究7
(2)继续仿照上述方法,在(1)中得到的
确,精确到0.001(画出示意图,标明数据,并写出求解过程)
(3)综合上述具体探究,已知非负整数
的估算值.
(1)有44⨯的网格,每个方格的边长为1,把正方形ABCD画在网格中,要求顶点在格点上.
(2)如图,把正方形ABCD放到数轴上,使得点A与数1-重合,边
为________.
任务:
(1)在图3中画图确定表示10的点M.
(2)把5个小正方形按图中位置摆放,并将其进行裁剪,拼成一个大正方形.请在图中画出裁剪线,并在图中画出所拼得的大正方形的示意图.
(3)小丽想用一块面积为36cm
它的长是宽的2倍.小丽能用这块纸片裁出符合要求的纸片吗?请你通过计算说明理由.
(4)在图6中的数轴上分别标出表示数。

七年级下数学压轴题

七年级下数学压轴题

七年级下数学压轴题一、相交线与平行线。

题1:如图,直线AB、CD相交于点O,OE平分∠BOD,OF平分∠COE,∠AOD:∠BOE = 4:1,求∠AOF的度数。

解析:设∠BOE = x,因为OE平分∠BOD,所以∠BOD = 2∠BOE=2x。

又因为∠AOD + ∠BOD = 180°,且∠AOD:∠BOE = 4:1,所以∠AOD = 4x。

则4x + 2x=180°,6x = 180°,解得x = 30°。

所以∠COE = 180° - ∠BOE = 150°。

因为OF平分∠COE,所以∠COF=(1)/(2)∠COE = 75°。

∠AOC=∠BOD = 60°,所以∠AOF=∠AOC+∠COF = 60°+ 75°=135°。

题2:已知直线l_1∥ l_2,直线l_3和直线l_1、l_2交于点C和D,在C、D之间有一点P。

(1)如果P点在C、D之间运动时,问∠PAC,∠APB,∠PBD之间的关系是否发生变化。

(2)若点P在C、D两点的外侧运动时(P点与点C、D不重合),试探索∠PAC,∠APB,∠PBD之间的关系又是如何?解析:(1)过点P作PE∥ l_1,因为l_1∥ l_2,所以PE∥ l_2。

∠PAC = ∠APE,∠PBD=∠BPE。

所以∠APB = ∠APE+∠BPE = ∠PAC + ∠PBD。

(2)当点P在l_1上方时,过点P作PF∥ l_1,因为l_1∥ l_2,所以PF∥ l_2。

∠PAC = ∠APF,∠PBD + ∠BPF=180°,所以∠PBD = 180°-(∠APB - ∠PAC),即∠PAC=∠APB + ∠PBD。

当点P在l_2下方时,过点P作PG∥ l_2,同理可得∠PBD = ∠APB+∠PAC。

二、实数。

题3:已知a、b满足√(2a + 8)+| b - √(3)|=0,解关于x的方程(a + 2)x + b^2=a - 1。

七年级下册数学动点问题及压轴题(带答案)

七年级下册数学动点问题及压轴题(带答案)

七年级下册动点问题及压轴题1.如图1,在平面直角坐标系中,A(a,0)是x轴正半轴上一点,C是第四象限一点,CB⊥y轴,交y轴负半轴于B(0,b),且(a﹣3)2+|b+4|=0,S四边形AOBC=16.(1)求C点坐标;(2)如图2,设D为线段OB上一动点,当AD⊥AC时,∠ODA的角平分线与∠CAE 的角平分线的反向延长线交于点P,求∠APD的度数.(3)如图3,当D点在线段OB上运动时,作DM⊥AD交BC于M点,∠BMD、∠DAO的平分线交于N点,则D点在运动过程中,∠N的大小是否变化?若不变,求出其值,若变化,说明理由.【解答】解:(1)∵(a﹣3)2+|b+4|=0,∴a﹣3=0,b+4=0,∴a=3,b=﹣4,∴A(3,0),B(0,﹣4),∴OA=3,OB=4,∵S四边形AOBC=16.∴(OA+BC)×OB=16,∴(3+BC)×4=16,∴BC=5,∵C是第四象限一点,CB⊥y轴,∴C(5,﹣4)(2)如图,延长CA,∵AF是∠CAE的角平分线,∴∠CAF=∠CAE,∵∠CAE=∠OAG,∴∠CAF=∠OAG,∵AD⊥AC,∴∠DAO+∠OAG=∠PAD+∠PAG=90°,∵∠AOD=90°,∴∠DAO+∠ADO=90°,∴∠ADO=∠OAG,∴∠CAF=∠ADO,∵DP是∠ODA的角平分线∴∠ADO=2∠ADP,∴∠CAF=∠ADP,∵∠CAF=∠PAG,∴∠PAG=∠ADP,∴∠APD=180°﹣(∠ADP+∠PAD)=180°﹣(∠PAG+∠PAD)=180°﹣90°=90°即:∠APD=90°(3)不变,∠ANM=45°理由:如图,∵∠AOD=90°,∴∠ADO+∠DAO=90°,∵DM⊥AD,∴∠ADO+∠BDM=90°,∴∠DAO=∠BDM,∵NA是∠OAD的平分线,∴∠DAN=∠DAO=∠BDM,∵CB⊥y轴,∴∠BDM+∠BMD=90°,∴∠DAN=(90°﹣∠BMD),∵MN是∠BMD的角平分线,∴∠DMN=∠BMD,∴∠DAN+∠DMN=(90°﹣∠BMD)+∠BMD=45°在△DAM中,∠ADM=90°,∴∠DAM+∠DMA=90°,在△AMN中,∠ANM=180°﹣(∠NAM+∠NMA)=180°﹣(∠DAN+∠DAM+∠DMN+∠DMA)=180°﹣[(∠DAN+DMN)+(∠DAM+∠DMA)]=180°﹣(45°+90°)=45°,∴D点在运动过程中,∠N的大小不变,求出其值为45°2.如图1,直线MN与直线AB、CD分别交于点E、F,∠1与∠2互补.(1)试判断直线AB与直线CD的位置关系,并说明理由;(2)如图2,∠BEF与∠EFD的角平分线交于点P,EP与CD交于点G,点H是MN上一点,且GH⊥EG,求证:PF∥GH;(3)如图3,在(2)的条件下,连接PH,K是GH上一点使∠PHK=∠HPK,作PQ平分∠EPK,问∠HPQ的大小是否发生变化?若不变,请求出其值;若变化,说明理由.【考点】JB:平行线的判定与性质.【分析】(1)利用对顶角相等、等量代换可以推知同旁内角∠AEF、∠CFE互补,所以易证AB∥CD;(2)利用(1)中平行线的性质推知°;然后根据角平分线的性质、三角形内角和定理证得∠EPF=90°,即EG⊥PF,故结合已知条件GH⊥EG,易证PF∥GH;(3)利用三角形外角定理、三角形内角和定理求得∠4=90°﹣∠3=90°﹣2∠2;然后由邻补角的定义、角平分线的定义推知∠QPK=∠EPK=45°+∠2;最后根据图形中的角与角间的和差关系求得∠HPQ的大小不变,是定值45°.【解答】解:(1)如图1,∵∠1与∠2互补,∴∠1+∠2=180°.又∵∠1=∠AEF,∠2=∠CFE,∴∠AEF+∠CFE=180°,∴AB∥CD;(2)如图2,由(1)知,AB∥CD,∴∠BEF+∠EFD=180°.又∵∠BEF与∠EFD的角平分线交于点P,∴∠FEP+∠EFP=(∠BEF+∠EFD)=90°,∴∠EPF=90°,即EG⊥PF.∵GH⊥EG,∴PF∥GH;(3)∠HPQ的大小不发生变化,理由如下:如图3,∵∠1=∠2,∴∠3=2∠2.又∵GH⊥EG,∴∠4=90°﹣∠3=90°﹣2∠2.∴∠EPK=180°﹣∠4=90°+2∠2.∵PQ平分∠EPK,∴∠QPK=∠EPK=45°+∠2.∴∠HPQ=∠QPK﹣∠2=45°,∴∠HPQ的大小不发生变化,一直是45°.3.如图①,在矩形ABCD中,AB=10cm,BC=8cm,点P从A出发,沿A→B→C→D 路线运动,到D停止,点P的速度为每秒1cm,a秒时点P改变速度,变为每秒bcm,图②是点P出发x秒后△APD的面积S(cm2)与x(秒)的关系图象,(1)参照图②,求a、b及图②中的c值;(2)设点P离开点A的路程为y(cm),请写出动点P改变速度后y与出发后的运动时间x(秒)的关系式,并求出点P到达DC中点时x的值.(3)当点P出发多少秒后,△APD的面积是矩形ABCD面积的.4.星光橱具店购进电饭煲和电压锅两种电器进行销售,其进价与售价如表:进价(元/台)售价(元/台)电饭煲200250电压锅160200(1)一季度,橱具店购进这两种电器共30台,用去了5600元,并且全部售完,问橱具店在该买卖中赚了多少钱?(2)为了满足市场需求,二季度橱具店决定用不超过9000元的资金采购电饭煲和电压锅共50台,且电饭煲的数量不少于电压锅的,问橱具店有哪几种进货方案?并说明理由;(3)在(2)的条件下,请你通过计算判断,哪种进货方案橱具店赚钱最多?【考点】一元一次不等式组的应用;二元一次方程组的应用.【分析】(1)设橱具店购进电饭煲x台,电压锅y台,根据图表中的数据列出关于x、y的方程组并解答即可,等量关系是:这两种电器共30台;共用去了5600元;(2)设购买电饭煲a台,则购买电压锅(50﹣a)台,根据“用不超过9000元的资金采购电饭煲和电压锅共50台,且电饭煲的数量不少于电压锅的”列出不等式组;(3)结合(2)中的数据进行计算.【解答】解:(1)设橱具店购进电饭煲x台,电压锅y台,依题意得,解得,所以,20×+10×=1400(元).答:橱具店在该买卖中赚了1400元;(2)设购买电饭煲a台,则购买电压锅(50﹣a)台,依题意得,解得22≤a≤25.又∵a为正整数,∴a可取23,24,25.故有三种方案:①防购买电饭煲23台,则购买电压锅27台;②购买电饭煲24台,则购买电压锅26台;③购买电饭煲25台,则购买电压锅25台.(3)设橱具店赚钱数额为W元,当a=23时,W=23×+27×=2230;当a=24时,W=24×+26×=2240;当a=25时,W=25×+25×=2250;综上所述,当a=25时,W最大,此时购进电饭煲、电压锅各25台.5.(本题12分)已知:在平面直角坐标系中,直线AB 分别与x 轴负半轴、y 轴正半轴交于点B (b ,0)、点A (0,a ),且a 、b 满足0|32|34=++++--b a b a ,点D (h ,m )是直线AB 上且不与A 、B 两点重合的动点(1) 求△AOB 的面积;(2) 如图1,点P 、点T 分别是线段OA 、x 轴正半轴上的动点,过T 作TE ∥AB ,连接TP .若∠ABO =n °,请探究∠APT 与∠PTE 之间的数量关系?(注:可用含n 的式子表达并说明理由)(3) 若32S △BOD ≥S △AOD ,求出m 的取值范围.。

(完整)人教版七年级数学下册第五章测试题(含答案),推荐文档

(完整)人教版七年级数学下册第五章测试题(含答案),推荐文档

∵ DH∥EG∥BC,
③错误,角平分线分成的两个角相等但不是对顶角; ④错误,同位角只有在两直线平行的情况下才相等.
∴ ∠GEF=∠EFB,∠DCB=∠HDC,∠DCB=∠CMG=∠DME,
故①②正确,③④错误,所以错误的有两个,
故与∠DCB 相等的角共有 5 个.故选 定理依次推理判断.
因此与∠CAB 互余的角为∠ABC,∠BCD,∠1. 故选 C. 7. A 解析:选项 B 中,∵ ∠3=∠4,∴ AB∥CD (内错角相等,两直线平行), 故正确; 选项 C 中,∵ ∠5=∠B,∴ AB∥CD (内错角相等,两直线平行),故正确; 选项 D 中,∵ ∠B+∠BDC=180°,∴ AB∥CD(同旁内角互补,两直线平行),故 正确; 而选项 A 中,∠1 与∠2 是直线 AC、BD 被直线 AD 所截形成的内错角,∵
∵ CM 平分∠BCE,∴ ∠ECM= ∠BCE =57.5°.
∵ a∥b,∴ ∠ADC=∠DBE=50°. ∴ ∠ACB=∠ADC +28°=50°+28°=78°.
故应填 78°.
∵ ∠ECM +∠MCN +∠NCD =180°,∠MCN=90°,
18. 120 解析:∵AB∥CD,∴∠1=∠3, 而∠1=60°,∴∠3=60°.
∴ ∠BCD= ∠ACB=40°,∴ ∠EDC=∠BCD=40°.
又∵ EG 平分∠BEF,∴ ∠BEG=∠BEF=×108°=54°,
24. 解:∵ AB∥CD,∴ ∠B+∠BCE=180°(两直线平行,同旁内角互补).
本故∠文2=∠B下EG=54载°.后请自行对内容编辑修改删∵除∠B=6,5°,上∴ ∠传BCE=1更15°.多的专业资料给更多有需 17. 78° 解析:延长 BC 与直线 a 相交于点 D,

(压轴题)人教版初中七年级数学下册第五章《相交线与平行线》模拟测试题(包含答案解析)(4)

一、选择题1.(0分)[ID :68946]如图,两个直角三角形重叠在一起,将ABC 沿AB 方向平移2cm 得到DEF ,2cm CH =,4cm EF =,下列结论:①//BH EF ;②AD BE =;③BD CH =:④C BHD ∠=∠;⑤阴影部分的面积为26cm .其中正确的是( )A .①②③④B .②③④⑤C .①②③⑤D .①②④⑤ 2.(0分)[ID :68943]下面的语句,不正确的是( )A .对顶角相等B .相等的角是对顶角C .两直线平行,内错角相等D .在同一平面内,经过一点,有且只有一条直线与已知直线垂直3.(0分)[ID :68929]下列命题中,是真命题的是( )A .对顶角相等B .两直线被第三条直线所截,截得的内错角相等C .等腰直角三角形都全等D .如果a b >,那么22a b > 4.(0分)[ID :68926]下列语句是命题的是( ) A .平分一条线段B .直角都相等C .在直线AB 上取一点D .你喜欢数学吗? 5.(0分)[ID :68917]现有以下命题:①斜边中线和一个锐角分别对应相等的两个直角三角形全等;②一组对边平行,另一组对边相等的四边形是平行四边形;③在圆中,平分弦的直径垂直于弦;④平行于同一条直线的两直线互相平行.其中真命题的个数为( ) A .1个 B .2个 C .3个 D .4个6.(0分)[ID :68915]如图,将三角形ABC 沿BC 方向平移3,cm 得到三角形,DEF 若5BC cm =,则EC 的长为( )A .2cmB .4cmC .6cmD .8cm7.(0分)[ID :68912]下列命题:①两边及其中一边的对角对应相等的两个三角形全等;②两角及其中一角的对边对应相等的两个三角形全等;③有两条边和第三条边上的高对应相等的两个三角形全等;④面积相等的两个三角形肯定全等;⑤有两条直角边对应相等的两个直角三角形全等.其中正确的个数是()A.1个B.2个C.3个D.4个8.(0分)[ID:68902]交换下列命题的题设和结论,得到的新命题是假命题的是() A.两直线平行,同位角相等B.相等的角是对顶角C.所有的直角都是相等的D.若a=b,则a﹣3=b﹣39.(0分)[ID:68889]下列四个说法:①两点之间,线段最短;②连接两点之间的线段叫做这两点间的距离;③经过直线外一点,有且只有一条直线与这条直线平行;④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.其中正确的个数有()A.1个B.2个C.3个D.4个10.(0分)[ID:68880]如图,直线a∥b,则∠A的度数是()A.28°B.31°C.39°D.42°11.(0分)[ID:68879]如图是郝老师的某次行车路线,总共拐了三次弯,最后行车路线与开始的路线是平行的,已知第一次转过的角度120︒,第三次转过的角度135︒,则第二次拐弯的角度是()A.75︒B.120︒C.135︒D.无法确定∕∕,AF交CD于点E,且12.(0分)[ID:68872]如图,已知AB CD⊥∠=︒,则ABE AF BED,40∠的度数是()A.40︒B.50︒C.80︒D.90︒13.(0分)[ID:68869]下列选项中,不是运用“垂线段最短”这一性质的是()A.立定跳远时测量落点后端到起跳线的距离 B.从一个村庄向一条河引一条最短的水渠C.把弯曲的公路改成直道可以缩短路程D.直角三角形中任意一条直角边的长度都比斜边短14.(0分)[ID:68865]下列命题是真命题的是()A.如果一个数的相反数等于这个数本身,那么这个数一定是0B.如果一个数的倒数等于这个数本身,那么这个数一定是1C.如果一个数的平方等于这个数本身,那么这个数一定是0D.如果一个数的算术平方根等于这个数本身,那么这个数一定是015.(0分)[ID:68862]在如图所示的四个汽车标识图案中,能用平移变换来分析其形成过程的是()A.B.C.D.二、填空题∠=∠=∠=︒,则∠4的度数是___________.16.(0分)[ID:69047]已知:如图,1235417.(0分)[ID:69044]用一组a,b的值说明命题“若a b>,则22>”是错误的,这组值a b可以是a=____,b= ____18.(0分)[ID:69043]下列说法:①对顶角相等;②两点间线段是两点间距离;③过一点有且只有一条直线与已知直线平行;④过一点有且只有一条直线与已知直线垂直;⑤若AC BC=,则点C是线段AB的中点;⑥同角的余角相等正确的有_________.(填序号)19.(0分)[ID:69036]小明在楼上点A处行到楼下点B处的小丽的俯角是32︒,那么点B 处的小丽看点A处的小明的仰角是_______________度.20.(0分)[ID:69032]两条直线相交所构成的四个角,其中:①有三个角都相等;②有一对对顶角相等;③有一个角是直角;④有一对邻补角相等,能判定这两条直线垂直的有_______.21.(0分)[ID:69025]如图,长8米宽6米的草坪上有一条弯折的小路(小路进出口的宽度相等,且每段小路均为平行四边形),小路进出口的宽度均为1米,则绿地的面积为__平方米.22.(0分)[ID:69022]如图,AB∥CD,AB⊥AE,∠CAE=42°,则∠ACD的度数为__.23.(0分)[ID :69010]如图,AB ∥CD ,AD 与BC 交于点O ,OP 平分∠BOD ,交CO 的延长线于P ,若∠A=100º,∠B=30º,则∠P 的度数是__________24.(0分)[ID :69003]如图,长方形ABCD 的周长为30,则图中虚线部分总长为____________.25.(0分)[ID :68996]小明用一副三角板自制对顶角的“小仪器”,第一步固定直角三角板ABC ,并将边AC 延长至点P ,第二步将另一块三角板CDE 的直角顶点与三角板ABC 的直角顶点C 重合,摆放成如图所示,延长DC 至点F ,PCD ∠与ACF ∠就是一组对顶角,若30ACF ∠=,则PCD ∠=__________,若重叠所成的(090)BCE n n ∠=<<,则PCF ∠的度数__________.26.(0分)[ID :68984]如果一张长方形的纸条,如图所示折叠,那么∠α等于____.27.(0分)[ID :68983]一副直角三角尺叠放如图 1 所示,现将 45°的三角尺ADE 固定不动,将含 30°的三角尺 ABC 绕顶点 A 顺时针转动(旋转角不超过 180 度),使两块三角尺至少有一组边互相平行.如图 2:当∠BAD=15°时,BC ∥DE .则∠BAD (0°<∠BAD <180°)其它所有可能符合条件的度数为________.三、解答题28.(0分)[ID :69074]求证:顶角是锐角的等腰三角形腰上的高与底边夹角等于其顶角的一半(1)在图中按照下面“已知”的要求,画出符合题意的图形,并根据题设和结论,结合图形,用符号语言补充写出“己知”和“求证”.已知:在锐角ABC 中,AB AC =,______求证:______(2)证明上述命题29.(0分)[ID :69071]如图:AD 是BAC ∠的角平分线,点E 是射线AC 上一点,延长ED 至点F ,180CAD ADF ︒∠+∠=.求证:(1)//AB EF ;(2)2ADE CEF ∠=∠30.(0分)[ID :69068]已知:如图,//,12180EF CD ︒∠+∠=.(1)求证://GD CA .(2)若CD 平分,ACB DG 平分CDB ∠,且36A ︒∠=,求ACB ∠的度数.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.D2.B3.A4.B5.B6.A7.B8.C9.C10.C11.A12.B13.C14.A15.D二、填空题16.126°【分析】由∠1=∠2及对顶角相等可得出∠1=∠5利用同位角相等两直线平行可得出l1∥l2利用两直线平行同旁内角互补可求出∠6的度数再利用对顶角相等可得出∠4的度数【详解】解:给各角标上序号如17.1(答案不唯一)-2(答案不唯一)【分析】举出一个反例:a=1b=-2说明命题若a>b 则a2>b2是错误的即可【详解】解:当a=1b=-2时满足a>b但是a2=1b2=4a2<b2∴命题若a>b则a18.①④⑥【分析】利用对顶角的性质判断①利用两点距离定义判定②利用平行公理判定③利用垂线公里判定④利用线段中点定义判定⑤利用余角的性质判定⑥【详解】①对顶角相等正确;②由两点间线段的长度是两点间距离所以19.【分析】根据题意画出图形然后根据平行线的性质可以求得点B处的小丽看点A处的小明的仰角的度数本题得以解决【详解】解:由题意可得∠BAC=32°∵AC∥BO∴∠ABO=∠BAC∴∠ABO=32°即点B处20.①③④【分析】①根据对顶角相等可以判定四个角相等由周角360°可知四个角都为90°则AB⊥CD;②因为对顶角相等但不能说明有角为90°不能说明这两条直线垂直;③根据垂直定义得:AB⊥CD;④因为邻补21.42【分析】利用平移表示出草坪的长和宽然后根据长方形的面积公式列式计算即可得解【详解】解:由平移的性质得:草坪的长为8﹣1=7(米)宽为6米草坪的面积=7×6=42(平方米)故答案为:42【点睛】本22.132°【分析】直接利用平行线的性质结合垂直定义得出∠BAC度数以及∠ACD的度数【详解】解:∵AB⊥AE∠CAE=42°∴∠BAC=90°﹣42°=48°∵AB∥CD∴∠BAC+∠ACD=180°23.35°【分析】根据平行性质求出利用互补和角平分线便可求出了【详解】解:AB∥CD∠A=100º∠B=30º∴°°∵OP平分∠BOD∴∴故答案为35°【点睛】本题考查平行线性质以及三角形内角和知识掌握24.15【分析】由长方形的性质和平移的性质即可求出答案【详解】解:根据题意虚线部分的总长为:故答案为:15【点睛】本题考查了长方形的性质平移变换等知识解题的关键是理解题意灵活运用所学知识解决问题属于中考25.30°180°-n°【分析】(1)根据对顶角相等可得答案;(2)根据角的和差可得答案【详解】解:(1)若∠ACF=30°则∠PCD=30°理由是对顶角相等(2)由角的和差得∠ACD+∠BCE=∠AC26.70°【分析】依据平行线的性质可得∠BAE=∠DCE=140°依据折叠即可得到∠α=70°【详解】解:如图∵AB∥CD∴∠BAE=∠DCE=140°由折叠可得:∴∠α=70°故答案为:70°【点睛】27.45°60°105°135°【解析】分析:根据题意画出图形再由平行线的判定定理即可得出结论详解:如图当AC∥DE时∠BAD=∠DAE=45°;当BC∥AD时∠DAE=∠B=60°;当BC∥AE时∵∠三、解答题28.29.30.2016-2017年度第*次考试试卷 参考解析【参考解析】**科目模拟测试一、选择题1.D解析:D【分析】根据平移的性质可直接判断①②③,根据平行线的性质可判断④,阴影部分的面积=S 梯形BEFH ,于是可判断⑤,进而可得答案.【详解】解:因为将ABC 沿AB 方向平移2cm 得到DEF ,所以//BH EF ,AD BE =,DF ∥AC ,故①②正确;所以C BHD ∠=∠,故④正确;而BD 与CH 不一定相等,故③不正确;因为2cm CH =,4cm EF BC ==,所以BH=2cm ,又因为BE=2cm ,所以阴影部分的面积=S △ABC -S △DBH = S △DEF -S △DBH =S 梯形BEFH =()12422⨯+⨯=26cm ,故⑤正确;综上,正确的结论是①②④⑤.故选:D .【点睛】本题考查了平移的性质,属于基础题目,正确理解题意、熟练掌握平移的性质是解题的关键. 2.B解析:B根据对顶角的性质、平行线的性质和垂线的基本性质逐项进行分析,即可得出答案.【详解】A、根据对顶角的性质可知,对顶角相等,故本选项正确;B、相等的角不一定是对顶角,故本选项错误;C、两直线平行,内错角相等,故本选项正确;D、根据垂线的基本性质可知在同一平面内,过直线上或直线外的一点,有且只有一条直线和已知直线垂直.故本选项正确.故选:B.【点睛】本题主要考查了对顶角的性质、平行线的性质和垂线的基本性质等知识点,解题的关键是了解垂线的性质、对顶角的定义、平行线的性质等知识,难度不大.3.A解析:A【分析】分别利用对顶角的性质、平行线的性质及不等式的性质分别判断后即可确定正确的选项.【详解】解:A.对顶角相等,正确,是真命题;B.两直线被第三条直线所截,内错角相等,错误,是假命题;C.等腰直角三角形不一定都全等,是假命题;D.如果0>a>b,那么a2<b2,是假命题.【点睛】本题考查了命题与定理的知识,解题的关键是了解对顶角的性质、平行线的性质及不等式的性质,难度不大.4.B解析:B【分析】根据命题的定义分别进行判断.【详解】A.平分一条线段,为描述性语言,不是命题;B.直角都相等,是命题;C.在直线AB上取一点,为描述性语言,不是命题;D.你喜欢数学吗?是疑问句,不是命题.故选:B.【点睛】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.5.B解析:B根据全等三角形的判定、平行四边形的判定、垂径定理、平行线的性质一一判断即可.【详解】①斜边中线和一个锐角分别对应相等的两个直角三角形全等,是真命题;②一组对边平行,另一组对边相等的四边形是平行四边形,是假命题,比如等腰梯形; ③在圆中,平分弦的直径垂直于弦,是假命题(此弦非直径);④平行于同一条直线的两直线互相平行,是真命题;故选B .【点睛】本题考查命题与定理、全等三角形的判定、平行四边形的判定、垂径定理、平行线的性质等知识,解题的关键是熟练掌握基本概念.6.A解析:A【分析】由平移性质可得:BC=EF ,CF=3,cm 可得EC=EF-CF .【详解】因为将三角形ABC 沿BC 方向平移3,cm 得到三角形,DEF所以EF=5BC cm ,CF=3,cm所以EC=5-3=2(cm)故选:A【点睛】考核知识点:平移性质.抓住平移性质:对应边相等,是解题关键.7.B解析:B【分析】根据全等三角形的判断定理逐项判断即可.【详解】解:①两边及其夹角对应相等的两个三角形全等,故该项错误;②两角及其中一角的对边对应相等的两个三角形全等,符合AAS 定理,故该项正确; ③有两条边和第三条边上的高对应相等的两个三角形不一定全等,有可能是锐角三角形,也有可能是钝角三角形,故该项错误;④面积相等的两个三角形不一定全等,因为形状可能不相同,故该项错误;⑤有两条直角边对应相等的两个直角三角形全等,符合ASA 定理,故该项正确. 故选:B .【点睛】此题主要考查对全等三角形的判定定理的掌握,正确理解判定定理是解题关键. 8.C解析:C【分析】写出原命题的逆命题,根据相关的性质、定义判断即可.【详解】解:交换命题A的题设和结论,得到的新命题是同位角相等,两直线平行是真命题;交换命题B的题设和结论,得到的新命题是对顶角相等是真命题;交换命题C的题设和结论,得到的新命题是所有的相等的角都是直角是假命题;交换命题D的题设和结论,得到的新命题是若a-3=b-3,则a=b是真命题,故选C.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.9.C解析:C【分析】根据线段公理,两点之间的距离的概念,平行公理,垂线段最短等知识一一判断即可.【详解】解:①两点之间,线段最短,正确.②连接两点之间的线段叫做这两点间的距离,错误,应该是连接两点之间的线段的距离叫做这两点间的距离.③经过直线外一点,有且只有一条直线与这条直线平行,正确.④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.正确.故选C.【点睛】本题考查线段公理,两点之间的距离的概念,平行公理,垂线段最短等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.10.C解析:C【解析】试题分析:根据平行线的性质可得∠1=70°,再根据三角形的一个外角等于和它不相邻的两个内角的和可得∠A=70°-31°=39°.故选C.考点:平行线的性质11.A解析:A【解析】分析:根据两直线平行,内错角相等,得到∠BFD 的度数,进而得出∠CFD 的度数,再由三角形外角的性质即可得到结论.详解:如图,延长ED 交BC 于F .∵DE ∥AB ,∴∠DFB =∠ABF =120°,∴∠CFD =60°.∵∠CDE =∠C +∠CFD ,∴∠C =∠CDE -∠CFD =135°-60°=75°.故选A .点睛:本题考查了平行线的性质及三角形外角的性质.解题的关键是理解题意,灵活应用平行线的性质解决问题,属于中考常考题型.12.B解析:B【分析】直接利用垂线的定义结合平行线的性质得出答案.【详解】解:∵,40BE AF BED ⊥∠=︒,∴50FED ∠=︒,∵AB CD ∕∕,∴50A FED ∠=∠=︒.故选B .【点睛】此题主要考查了平行线的性质以及垂线的定义,正确得出FED ∠的度数是解题关键. 13.C解析:C【分析】垂线段最短,指的是从直线外一点到这条直线所作的垂线段最短.它是相对于这点与直线上其他各点的连线而言.据此逐个分析即可.【详解】解:A .立定跳远时测量落点后端到起跳线的距离,运用“垂线段最短”这一性质; B .从一个村庄向一条河引一条最短的水渠,运用“垂线段最短”这一性质;C .把弯曲的公路改成直道可以缩短路程,运用“两点之间,线段最短”这一性质;D .直角三角形中任意一条直角边的长度都比斜边短,运用“垂线段最短”这一性质; 故选:C .【点睛】本题主要考查了垂线段最短,实际问题中涉及线路最短问题时,其理论依据应从“两点之间,线段最短”和“垂线段最短”这两个中去选择.14.A解析:A【分析】根据相反数是它本身的数为0;倒数等于这个数本身是±1;平方等于它本身的数为1和0;算术平方根等于本身的数为1和0进行分析即可.【详解】A、如果一个数的相反数等于这个数本身,那么这个数一定是0,是真命题;B、如果一个数的倒数等于这个数本身,那么这个数一定是1,是假命题;C、如果一个数的平方等于这个数本身,那么这个数一定是0,是假命题;D、如果一个数的算术平方根等于这个数本身,那么这个数一定是0,是假命题;故选A.【点睛】此题主要考查了命题与定理,关键是掌握正确的命题为真命题,错误的命题为假命题.15.D解析:D【分析】根据平移作图是一个基本图案按照一定的方向平移一定的距离,连续作图设计出的图案进行分析即可.【详解】解:A、不能用平移变换来分析其形成过程,故此选项错误;B、不能用平移变换来分析其形成过程,故此选项错误;C、不能用平移变换来分析其形成过程,故此选项正确;D、能用平移变换来分析其形成过程,故此选项错误;故选:D.【点睛】本题考查利用平移设计图案,解题关键是掌握图形的平移只改变图形的位置,而不改变图形的形状、大小和方向.二、填空题16.126°【分析】由∠1=∠2及对顶角相等可得出∠1=∠5利用同位角相等两直线平行可得出l1∥l2利用两直线平行同旁内角互补可求出∠6的度数再利用对顶角相等可得出∠4的度数【详解】解:给各角标上序号如解析:126°.【分析】由∠1=∠2及对顶角相等可得出∠1=∠5,利用“同位角相等,两直线平行”可得出l1∥l2,利用“两直线平行,同旁内角互补”可求出∠6的度数,再利用对顶角相等可得出∠4的度数.【详解】解:给各角标上序号,如图所示.∵∠1=∠2,∠2=∠5,∴∠1=∠5,∴l1∥l2,∴∠3+∠6=180°.∵∠3=54°,∴∠6=180°-54°=126°,∴∠4=∠6=126°.故答案为:126°.【点睛】本题考查了平行线的判定与性质,牢记平行线的各判定与性质定理是解题的关键.17.1(答案不唯一)-2(答案不唯一)【分析】举出一个反例:a=1b=-2说明命题若a>b则a2>b2是错误的即可【详解】解:当a=1b=-2时满足a>b但是a2=1b2=4a2<b2∴命题若a>b则a解析:1(答案不唯一) -2(答案不唯一)【分析】举出一个反例:a=1,b=-2,说明命题“若a>b,则a2>b2”是错误的即可.【详解】解:当a=1,b=-2时,满足a>b,但是a2=1,b2=4,a2<b2,∴命题“若a>b,则a2>b2”是错误的.故答案为:1、-2.(答案不唯一)【点睛】此题主要考查了命题与定理,要熟练掌握,解答此题的关键是要明确:任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.18.①④⑥【分析】利用对顶角的性质判断①利用两点距离定义判定②利用平行公理判定③利用垂线公里判定④利用线段中点定义判定⑤利用余角的性质判定⑥【详解】①对顶角相等正确;②由两点间线段的长度是两点间距离所以解析:①④⑥【分析】利用对顶角的性质判断①,利用两点距离定义判定②,利用平行公理判定③,利用垂线公里判定④,利用线段中点定义判定⑤,利用余角的性质判定⑥.【详解】①对顶角相等正确;②由两点间线段的长度是两点间距离,所以两点间线段是两点间距离不正确;③由过直线外一点有且只有一条直线与已知直线平行,所以过一点有且只有一条直线与已知直线平行不正确;④过一点有且只有一条直线与已知直线垂直正确;=,点C在AB上,则点C是线段AB的中点,所以若⑤由线段中点的性质,若AC BC=,则点C是线段AB的中点不正确;AC BC⑥同角的余角相等正确;正确的有①④⑥.故答案为:①④⑥.【点睛】本题考查对顶角性质,两点间的距离,平行公理,垂线公里,线段的中点,余角的性质等问题,掌握对顶角性质,两点间的距离,平行公理,垂线公里,线段的中点,余角的性质是解题关键.19.【分析】根据题意画出图形然后根据平行线的性质可以求得点B处的小丽看点A处的小明的仰角的度数本题得以解决【详解】解:由题意可得∠BAC=32°∵AC∥BO∴∠ABO=∠BAC∴∠ABO=32°即点B处解析:32【分析】根据题意画出图形,然后根据平行线的性质可以求得点B处的小丽看点A处的小明的仰角的度数,本题得以解决.【详解】解:由题意可得,∠BAC=32°,∵AC∥BO,∴∠ABO=∠BAC,∴∠ABO=32°,即点B处的小丽看点A处的小明的仰角等于32度,故答案为32.【点睛】本题利用平行线间角的关系求仰角俯角问题,解答本题的关键是明确题意,利用数形结合的思想解答.20.①③④【分析】①根据对顶角相等可以判定四个角相等由周角360°可知四个角都为90°则AB⊥CD;②因为对顶角相等但不能说明有角为90°不能说明这两条直线垂直;③根据垂直定义得:AB⊥CD;④因为邻补解析:①③④【分析】①根据对顶角相等可以判定四个角相等,由周角360°可知,四个角都为90°,则AB⊥CD;②因为对顶角相等,但不能说明有角为90°,不能说明这两条直线垂直;③根据垂直定义得:AB⊥CD;④因为邻补角的和为180°,又相等,所以每个角为90°,则AB⊥CD.【详解】①如图,若∠AOC=∠COB=∠BOD,∵∠AOD=∠COB,∴∠AOC=∠COB=∠BOD=∠AOD,∵∠AOC+∠COB+∠BOD+∠AOD=360°,∴∠AOC=∠COB=∠BOD=∠AOD=90°,∴AB⊥CD;所以此选项能判定这两条直线垂直;②∠AOC=∠BOD,∠AOD=∠COB,但不能说明有角为90°,所以此选项不能判定这两条直线垂直;③若∠AOC=90°,∴AB⊥CD,所以此选项能判定这两条直线垂直;④若∠AOC=∠AOD,∵∠AOC+∠AOD=180°,∴∠AOC=∠BOD=90°,所以此选项能判定这两条直线垂直;故能判定这两条直线垂直的有:①③④;故答案为:①③④.【点睛】本题考查了对顶角、邻补角以及垂直的定义,熟练掌握两条直线垂直的定义是关键.21.42【分析】利用平移表示出草坪的长和宽然后根据长方形的面积公式列式计算即可得解【详解】解:由平移的性质得:草坪的长为8﹣1=7(米)宽为6米草坪的面积=7×6=42(平方米)故答案为:42【点睛】本解析:42【分析】利用平移表示出草坪的长和宽,然后根据长方形的面积公式列式计算即可得解.【详解】解:由平移的性质,得:草坪的长为8﹣1=7(米),宽为6米,草坪的面积=7×6=42(平方米).故答案为:42.【点睛】本题考查了平移的性质,熟记性质并理解求出与草坪的面积相当的长方形的长和宽是解题的关键.22.132°【分析】直接利用平行线的性质结合垂直定义得出∠BAC度数以及∠ACD的度数【详解】解:∵AB⊥AE∠CAE=42°∴∠BAC=90°﹣42°=48°∵AB∥CD∴∠BAC+∠ACD=180°解析:132°【分析】直接利用平行线的性质结合垂直定义得出∠BAC度数以及∠ACD的度数.【详解】解:∵AB⊥AE,∠CAE=42°,∴∠BAC=90°﹣42°=48°,∵AB∥CD,∴∠BAC+∠ACD=180°,∴∠ACD=132°.故答案为:132°.【点睛】此题主要考查了平行线的性质,正确得出∠BAC度数是解题关键.23.35°【分析】根据平行性质求出利用互补和角平分线便可求出了【详解】解:AB∥CD∠A=100º∠B=30º∴°°∵OP平分∠BOD∴∴故答案为35°【点睛】本题考查平行线性质以及三角形内角和知识掌握解析:35°【分析】根据平行性质,求出COD ∠,利用互补和角平分线便可求出了.【详解】解:AB ∥CD ,∠A=100º,∠B=30º∴30C ∠=° 100ODC ∠=°18050COD C ODC ∴∠=-∠-= 80ODP ∠=∵OP 平分∠BOD ∴11(180)6522DOP BOD COD ∠=∠=-∠= ∴18035P DOP ODP ∠=-∠-∠=故答案为35°【点睛】本题考查平行线性质,以及三角形内角和知识,掌握基础知识才是关键.24.15【分析】由长方形的性质和平移的性质即可求出答案【详解】解:根据题意虚线部分的总长为:故答案为:15【点睛】本题考查了长方形的性质平移变换等知识解题的关键是理解题意灵活运用所学知识解决问题属于中考 解析:15【分析】由长方形的性质和平移的性质,即可求出答案.【详解】解:根据题意, 虚线部分的总长为:130152AB BC +=⨯=. 故答案为:15.【点睛】本题考查了长方形的性质,平移变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型. 25.30°180°-n°【分析】(1)根据对顶角相等可得答案;(2)根据角的和差可得答案【详解】解:(1)若∠ACF=30°则∠PCD=30°理由是对顶角相等(2)由角的和差得∠ACD+∠BCE=∠AC解析:30° 180°-n°【分析】(1)根据对顶角相等,可得答案;(2)根据角的和差,可得答案.【详解】解:(1)若∠ACF=30°,则∠PCD=30°,理由是对顶角相等.(2)由角的和差,得∠ACD+∠BCE=∠ACB+∠BCD+∠BCE=∠ACB+∠DCE=180°, ∴∠ACD=180°-∠BCE=180°-n°.故答案为:30°,180°-n°.【点睛】本题考查了对顶角的性质、角的和差,由图形得到各角之间的数量关系是解答本题的关键.26.70°【分析】依据平行线的性质可得∠BAE=∠DCE=140°依据折叠即可得到∠α=70°【详解】解:如图∵AB∥CD∴∠BAE=∠DCE=140°由折叠可得:∴∠α=70°故答案为:70°【点睛】解析:70°.【分析】依据平行线的性质,可得∠BAE=∠DCE=140°,依据折叠即可得到∠α=70°.【详解】解:如图,∵AB∥CD,∴∠BAE=∠DCE=140°,由折叠可得:12DCF DCE ∠=∠,∴∠α=70°.故答案为:70°.【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.27.45°60°105°135°【解析】分析:根据题意画出图形再由平行线的判定定理即可得出结论详解:如图当AC∥DE时∠BAD=∠DAE=45°;当BC∥AD时∠DAE=∠B=60°;当BC∥AE时∵∠解析:45°,60°,105°,135°.【解析】分析:根据题意画出图形,再由平行线的判定定理即可得出结论.详解:如图,。

最新人教版七年级数学下册第五章专题复习试题及答案全套

最新人教版七年级数学下册第五章专题复习试题及答案全套专训1应用平行线的判定和性质的几种常用作辅助线的方法名师点金:在解决平行线的问题时,当无法直接得到角的关系或两条线之间的位置关系时,通常借助辅助线来帮助解答,如何作辅助线需根据已知条件确定.辅助线的添加既可以产生新的条件,又能与题目中原有的条件联系在一起.加截线(连接两点或延长线段相交)1.【中考·河北】如图,AB∥EF,CD⊥EF,∠BAC=50°,则∠ACD=()A.120°B.130°C.140° D.150°(第1题)过“拐点”作平行线a.“”形图2.如图,AB∥CD,P为AB,CD之间的一点,已知∠2=28°,∠BPC=58°,求∠1的度数.(第2题)b.“”形图3.(1)如图①,若AB∥DE,∠B=135°,∠D=145°.求∠BCD的度数;(2)如图①,在AB∥DE的条件下,你能得出∠B,∠BCD,∠D之间的数量关系吗?请说明理由;(3)如图②,AB∥EF,根据(2)中的猜想,直接写出∠B+∠C+∠D+∠E的度数.(第3题)c.“”形图4.如图,AB∥DE,则∠BCD,∠B,∠D有何关系?为什么?(第4题)d.“”形图5.如图,已知AB∥DE,∠BCD=30°,∠CDE=138°,求∠ABC的度数.(第5题)e.“”形图6.(1)如图,AB∥CD,若∠B=130°,∠C=30°,求∠BEC的度数;(2)如图,AB∥CD,探究∠B,∠C,∠BEC三者之间有怎样的数量关系?试说明理由.(第6题)平行线间多折点角度问题探究7.(1)在图①中,AB∥CD,则∠E+∠G与∠B+∠F+∠D有何关系?(2)在图②中,若AB∥CD,又能得到什么结论?(第7题)答案1.C2.解:方法一:过点P作射线PN∥AB,如图①.∵PN∥AB,AB∥CD,∴PN∥CD.∴∠4=∠2=28°.∵PN∥AB,∴∠3=∠1.又∵∠3=∠BPC-∠4=58°-28°=30°.∴∠1=30°.方法二:过点P作射线PM∥AB,如图②.∵PM∥AB,AB∥CD,∴PM∥CD.∴∠4=180°-∠2=180°-28°=152°.∵∠4+∠BPC+∠3=360°,∴∠3=360°-∠BPC-∠4=360°-58°-152°=150°.∵AB∥PM,∴∠1=180°-∠3=180°-150°=30°.(第2题)3.解:(1)过点C向左作CF∥AB,则∠B+∠BCF=180°.又∵AB∥DE,∴CF∥DE,∴∠FCD+∠D =180°,∴∠B+∠BCF+∠FCD+∠D=180°+180°,即∠B+∠BCD+∠D=360°,∴∠BCD=360°-∠B -∠D=360°-135°-145°=80°.(2)∠B+∠BCD+∠D=360°.理由如下:过点C向左作CF∥AB,则∠B+∠BCF=180°.又∵AB∥DE,=360°.(3)∠B+∠C+∠D+∠E=540°.4.解:∠BCD=∠B-∠D.理由如下:如图,过点C作CF∥AB.∵CF∥AB,∴∠B=∠BCF(两直线平行,内错角相等).∵AB∥DE,CF∥AB,∴CF∥DE(平行于同一条直线的两条直线互相平行).∴∠DCF =∠D(两直线平行,内错角相等).∴∠B-∠D=∠BCF-∠DCF.∵∠BCD=∠BCF-∠DCF,∴∠BCD =∠B-∠D.点拨:已知图形中有平行线和折线时,常过折点作平行线,构造出同位角、内错角或同旁内角,这样就可利用角之间的关系求解了.(第4题)(第5题)5.解:如图,过点C作CF∥AB.∵AB∥DE,CF∥AB,∴DE∥CF.∴∠DCF=180°-∠CDE=180°-138°=42°.∴∠BCF=∠BCD+∠DCF=30°+42°=72°.又∵AB∥CF,∴∠ABC=∠BCF=72°.6.解:(1)过E点向左侧作EF∥AB,则∠B+∠BEF=180°,∴∠BEF=180°-∠B=50°,又∵AB∥CD,且EF∥AB,∴EF∥CD,∴∠FEC=∠C=30°,∴∠BEC=∠BEF+∠FEC=50°+30°=80°.(2)∠B+∠BEC-∠C=180°.理由如下:过E点向左侧作EF∥AB,又∵AB∥CD,∴EF∥CD,∴∠FEC =∠C,又∵∠BEF=∠BEC-∠FEC,∴∠BEF=∠BEC-∠C.∵AB∥EF,∴∠B+∠BEF=180°,即∠B+∠BEC-∠C=180°.(第7题)7.解:(1)∠E+∠G=∠B+∠F+∠D.理由:过折点E,F,G分别作EM∥AB,FN∥AB,GH∥AB,如图所示,由AB∥CD,得AB∥EM∥FN∥GH∥CD,这样∠1=∠B,∠2=∠3,∠4=∠5,∠6=∠D.因此∠BEF+∠FGD=∠1+∠2+∠5+∠6=∠B+∠3+∠4+∠D=∠B+∠EFG+∠D.(2)∠E1+∠E2+∠E3+…+∠E n=∠B+∠F1+∠F2+…+∠F n-1+∠D.专训2与相交线、平行线相关的四类角的计算名师点金:与相交线、平行线有关的角的计算大致有两类呈现形式,一类是利用余角、补角、对顶角、角平分线等进行相关的计算,另一类是利用平行线的性质和判定进行相关的计算.利用余角、平角、对顶角转换求角1.如图,已知直线AB,CD相交于点O,OA平分∠EOC,若∠EOC∶∠EOD=2∶3,求∠BOD的度数.设∠EOC =2x °,则∠EOD =3x °.因为∠EOC +∠ =180°( ),(第1题)所以2x +3x =180,解得x =36. 所以∠EOC =72°.因为OA 平分∠EOC (已知), 所以∠AOC =12∠EOC =36°.因为∠BOD =∠AOC ( ), 所以∠BOD = W.利用垂线求角2.如图,已知FE ⊥AB 于点E ,CD 是过点E 的直线,且∠AEC =120°,则∠DEF = °.(第2题)3.如图,MO ⊥NO 于点O ,OG 平分∠MOP ,∠PON =3∠MOG ,则∠GOP 的度数为 .(第3题)4.如图,两直线AB ,CD 相交于点O ,OE 平分∠BOD ,∠AOC ∶∠AOD =7∶11. (1)求∠COE 的度数;(2)若OF ⊥OE ,求∠COF 的度数.(第4题)直接利用平行线的性质求角5.如图,已知AB∥CD,∠AMP=150°,∠PND=60°.试说明:MP⊥PN.(第5题)综合应用平行线的性质与判定求角6.如图,∠1与∠2互补,∠3=135°,则∠4的度数是()(第6题)A.45° B.55° C.65° D.75°7.如图,∠1=72°,∠2=72°,∠3=60°,求∠4的度数.(第7题)答案1.EOD;平角的定义(邻补角的性质);对顶角相等;36°2.303.54°点拨:设∠GOP=x°,则∠MOG=x°,∠PON=3x°,由题意得x+x+3x=360-90,解得x =54.∴∠GOP=54°.4.解:(1)∵∠AOC∶∠AOD=7∶11,∠AOC+∠AOD=180°,∴∠AOC=70°,∠AOD=110°.又∵OE平分∠BOD,∴∠DOE=12∠DOB=12∠AOC=12×70°=35°.∴∠COE=180°-∠DOE=180°-35°=145°.(2)∵OF⊥OE,∴∠FOE=90°.又∵∠DOE=35°,∴∠FOD=90°-∠DOE=90°-35°=55°.∴∠COF=180°-∠FOD=180°-55°=125°.(第5题)5.解:如图,过点P作PE∥AB.∵PE∥AB,∴∠AMP+∠MPE=180°.∴∠MPE=180°-∠AMP=180°-150°=30°.∵AB∥CD,PE∥AB,∴PE∥CD,∴∠EPN=∠PND=60°.∴∠MPN=∠MPE+∠EPN=30°+60°=90°,即MP⊥PN.6.A7.解:∵∠1=72°,∠2=72°,∴∠1=∠2.∴a∥b.∴∠3+∠4=180°.又∵∠3=60°,∴∠4=120°.专训3相交线与平行线中的思想方法名师点金:1.本章体现的主要方法有:基本图形(添加辅助线)法、分离图形法、平移法.2.几种主要的数学思想:方程思想、转化思想、数形结合思想、分类讨论思想等.基本图形(添加辅助线)法1.已知AB∥CD,探讨图中∠APC与∠P AB、∠PCD的数量关系,并请你说明成立的理由.(第1题)分离图形法2.若平行直线EF,MN与相交直线AB,CD相交成如图所示的图形,则共得出同旁内角多少对?(第2题)平移法3.如图,在水平地面上有几级高度和宽度不均匀的台阶,它们的总宽度是3米,总高度是2米,图中所成角度均为直角,现要在从A到B的台阶上铺上地毯,求地毯的总长度.(第3题)4.如图,某住宅小区内有一长方形地块,想在长方形地块内修筑同样宽的两条小路,余下部分绿化,小路的宽为2 m,则绿化的面积为多少?(第4题)方程思想5.如图,由点O引出六条射线OA,OB,OC,OD,OE,OF,且AO⊥OB,OF平分∠BOC,OE平分∠AOD,若∠EOF=170°,求∠COD的度数.(第5题)转化思想6.如图,AB∥CD,∠1=∠B,∠2=∠D,试说明BE⊥DE.(第6题)数形结合思想7.如图,直线AB,CD被EF所截,∠1=∠2,∠CNF+∠BMN=180°.试说明:AB∥CD,MP∥NQ.(第7题)分类讨论思想8.如图,已知直线l1∥l2,直线l3交l1于C点,交l2于D点,P是线段CD上的一个动点,当P在线段CD上运动时,请你探究∠1,∠2,∠3之间的关系.(第8题)答案1.解析:要探究三个角的数量关系,可找出联系这三个角的平行线,因此联想到作平行线.(第1题)解:∠APC=∠P AB+∠PCD.理由如下:如图,过点P作PE∥AB.∵AB∥CD,∴PE∥AB∥CD.∴∠P AB=∠APE,∠PCD=∠CPE(两直线平行,内错角相等).∵∠APC=∠APE+∠CPE,∴∠APC=∠P AB+∠PCD(等量代换).2.解:如图,将给出的图形分离为8个“三线八角”的基本图形,由每个基本图形都有2对同旁内角,知共有16对同旁内角.(第2题)3.解:由平移的性质可知,地毯的总长度为3+2=5(米).方法规律:此题运用了平移法,这些台阶不均匀,无法具体计算每级台阶的宽度和高度,但若把所有台阶的宽平移至BC上,发现总和恰好与BC相等,若把所有台阶的高平移到AC上,发现总和恰好与AC 相等.4.解:如图,把两条小路平移到长方形地块ABCD的最上边和最左边,则余下部分EFCG是长方形.∵CF=32-2=30(m),CG=20-2=18(m),∴长方形EFCG的面积=30×18=540(m2).即绿化的面积为540 m2.(第4题)(第6题)5.解:设∠COD =x .因为OF 平分∠BOC ,OE 平分∠AOD ,所以∠COF =12∠BOC ,∠EOD =12∠AOD .因为∠EOF =x +∠COF +∠EOD =170°,所以∠COF +∠EOD =170°-x .又因为x +2∠COF +2∠EOD +90°=360°,所以x +2(170°-x )+90°=360°,所以x =70°,即∠COD =70°.方法规律:有些复杂的求角度的问题用方程思想求解非常简单,注意方程思想的应用. 6.解:如图,过点E 作EF ∥AB . ∵EF ∥AB ,AB ∥CD ,∴EF ∥CD .∴∠DEF =∠D (两直线平行,内错角相等). 又∵∠D =∠2,∴∠DEF =∠2(等量代换).同理:由EF ∥AB ,∠1=∠B ,可得∠BEF =∠1. 又∵∠1+∠2+∠BEF +∠DEF =180°(平角的定义), ∴∠1+∠2=∠BEF +∠DEF =∠BED =90°.∴BE ⊥DE .方法规律:解该类问题需转化为比较简单、熟悉的几何问题,通过在“拐点”处作平行线为辅助线,把一个大角分成两个小角,分别与已知角建立联系,这种转化思想在解题时经常用到.7.解:由对顶角相等,得∠CNF =∠END . 又∠CNF +∠BMN =180°,所以∠END +∠BMN =180°.所以AB ∥CD . 所以∠EMB =∠END .又因为∠1=∠2, 所以∠END +∠2=∠EMB +∠1, 即∠ENQ =∠EMP .所以MP ∥NQ .点拨:平行线的判定是由角与角的数量关系到“形”的判定,而性质则是由“形”到“数”的说理,研究两条直线的垂直或平行的共同点是把研究它们的位置关系转化为研究角和角之间的数量关系.8.解:当点P 在C ,D 之间时,过P 点作PE ∥AC ,则PE ∥BD ,如图①. ∵PE ∥AC , ∴∠APE =∠1(两直线平行,内错角相等). ∵PE ∥BD ,∴∠BPE =∠3(两直线平行,内错角相等). ∵∠2=∠APE +∠BPE ,∴∠2=∠1+∠3. 当点P 与点C 重合时,∠1=0°,如图②.∵l 1∥l 2(已知),∴∠2=∠3(两直线平行,内错角相等). ∵∠1=0°, ∴∠2=∠1+∠3.当点P 与点D 重合时,∠3=0°,如图③.∵l 1∥l 2(已知),∴∠2=∠1(两直线平行,内错角相等). ∵∠3=0°,∴∠2=∠1+∠3.综上所述,当点P 在线段CD 上运动时,∠1,∠2,∠3之间的关系为∠2=∠1+∠3.(第8题)专训4识别相交线中的几种角名师点金:我们已经学习了对顶角、邻补角和“三线八角”,能够准确地识别这几种角,对我们以后的学习起着铺垫作用.识别“三线八角”中的两个角属于何种类别时可联想英文大写字母,即“F”形的为同位角,“Z”形的为内错角,“U”形的为同旁内角,每类角都有一个共同点,即:有两条边在截线上,另外两条边在被截直线上.识别对顶角1.下列选项中,∠1与∠2互为对顶角的是()2.如图所示,直线AB,CD相交于点O,OE,OF是过点O的射线,其中构成对顶角的是()(第2题)A.∠AOF和∠DOE B.∠EOF和∠BOEC.∠BOC和∠AOD D.∠COF和∠BOD识别邻补角3.下列图形中:(第3题)其中∠α与∠β互为邻补角的是________(填序号).4.下列选项中,∠1与∠2互为邻补角的是()5.下列说法中错误的是()A.互为邻补角的两个角一定是互补的角B.互补的两个角不一定是邻补角C.相邻的两个角一定是邻补角D.两条直线相交形成的四个角中,一个角有两个邻补角6.如图,∠1的邻补角是()(第6题)A.∠BOFB.∠AOC和∠BODC.∠BODD.∠BOF和∠BOD识别同位角、内错角、同旁内角7.如图,试判断∠1与∠2,∠1与∠7,∠1与∠BAD,∠2与∠9,∠2与∠6,∠5与∠8各对角的位置关系.(第7题)8.如图,请结合图形找出图中所有的同位角、内错角和同旁内角.(第8题)答案1.D 2.C 3.② 4.D5.C点拨:同时满足“相邻”和“互补”这两个条件的两个角才是邻补角,故选项C是错误的.6.B点拨:根据邻补角的定义,与∠1有公共顶点且有一条公共边,另一边互为反向延长线的角为∠BOD与∠AOC,故选项B正确.7.解:∠1与∠2是同旁内角,∠1与∠7是同位角,∠1与∠BAD是同旁内角,∠2与∠9没有特殊的位置关系,∠2与∠6是内错角,∠5与∠8是对顶角.8.解:当直线AB,BE被AC所截时,所得到的内错角有:∠BAC与∠ACE,∠BCA与∠F AC;同旁内角有:∠BAC与∠BCA,∠F AC与∠ACE.当直线AD,BE被AC所截时,内错角有:∠ACB与∠CAD;同旁内角有:∠DAC与∠ACE.当直线AD,BE被BF所截时,同位角有:∠F AD与∠B;同旁内角有:∠DAB与∠B.当直线AC,BE被AB所截时,同位角有:∠B与∠F AC;同旁内角有:∠B与∠BAC.当直线AB,AC被BE所截时,同位角有:∠B与∠ACE;同旁内角有:∠B与∠ACB.专训5活用判定两直线平行的六种方法名师点金:1.直线平行的判定方法很多,我们要根据图形的特征和已知条件灵活选择方法.2.直线平行的判定常结合角平分线、对顶角、邻补角、垂直等知识.3.直线平行的判定可解决有关角度的计算或说明角相等等问题.利用平行线的定义1.下面几种说法中,正确的是()A.同一平面内不相交的两条线段平行B.同一平面内不相交的两条射线平行C.同一平面内不相交的两条直线平行D.以上三种说法都不正确利用“同平行于第三条直线的两直线平行”2.如图,已知∠B=∠CDF,∠E+∠ECD=180°.试说明AB∥EF.(第2题)利用“同垂直于第三条直线的两直线平行(在同一平面内)”3.如图,AB⊥EF于B,CD⊥EF于D,∠1=∠2.(1)请说明AB∥CD的理由;(2)试问BM与DN是否平行?为什么?(第3题)利用“同位角相等,两直线平行”4.如图,已知∠ABC=∠ACB,∠1=∠2,∠3=∠F,试判断EC与DF是否平行,并说明理由.(第4题)利用“内错角相等,两直线平行”5.如图,已知∠ABC=∠BCD,∠1=∠2,试说明BE∥CF.(第5题)利用“同旁内角互补,两直线平行”6.如图,∠BEC=95°,∠ABE=120°,∠DCE=35°,则AB与CD平行吗?请说明理由.(第6题)答案1.C点拨:根据定义判定两直线平行,一定要注意前提条件:“同一平面内”,同时要注意在同一平面内,不相交的两条线段或两条射线不一定平行.2.解:因为∠B=∠CDF,所以AB∥CD(同位角相等,两直线平行).因为∠E+∠ECD=180°,所以CD∥EF(同旁内角互补,两直线平行).所以AB∥EF(平行于同一条直线的两直线平行).3.解:(1)∵AB⊥EF,CD⊥EF,∴AB∥CD(在同一平面内,垂直于同一条直线的两直线平行).(2)BM∥DN.理由如下:∵AB⊥EF,CD⊥EF,∴∠ABE=∠CDE=90°.又∵∠1=∠2,∴∠ABE-∠1=∠CDE-∠2(等式的性质).即∠MBE=∠NDE,∴BM∥DN(同位角相等,两直线平行).点拨:∠1和∠2不是同位角,不能误认为∠1和∠2是同位角,直接得出BM∥DN,要得到BM∥DN,可说明∠MBE=∠NDE.4.解:EC∥DF,理由如下:∵∠ABC=∠ACB,∠1=∠2,∴∠3=∠ECB.又∵∠3=∠F,∴∠ECB=∠F.∴EC∥DF(同位角相等,两直线平行).5.解:因为∠ABC=∠BCD,∠1=∠2,所以∠ABC-∠1=∠BCD-∠2,即∠EBC=∠FCB,所以BE∥CF(内错角相等,两直线平行).6.解:AB∥CD,理由如下:如图,延长BE,交CD于点F,则直线CD,AB被直线BF所截.因为∠BEC=95°,所以∠CEF=180°-95°=85°.又因为∠DCE=35°,(第6题)所以∠BFC=180°-∠DCE-∠CEF=180°-35°-85°=60°.又因为∠ABE=120°(已知),所以∠ABE+∠BFC=180°.所以AB∥CD(同旁内角互补,两直线平行).点拨:本题利用现有条件无法直接判断AB与CD是否平行,我们可考虑作一条辅助线,架起AB与CD之间的桥梁.专训6几何计数的四种常用方法名师点金:1.对于几何中的计数问题,掌握一定的方法能够让我们准确、高效地得出结果,常见的计数方法有:按顺序计数、按画图计数、按基本图形计数、按从特殊到一般的思想方法计数.2.计数的原则是不重复、不遗漏.按顺序计数问题1.(1)如图①,直线l上有2个点,则图中有2条可用图中字母表示的射线,有1条线段;(第1题)(2)如图②,直线l上有3个点,则图中有________条可用图中字母表示的射线,有________条线段;(3)如图③,直线l上有n个点,则图中有________条可用图中字母表示的射线,有__________条线段;(4)应用(3)中发现的规律解决问题:某校七年级共有6个班进行足球比赛,准备进行循环赛(即每两队之间赛一场),预计全部赛完共需________场比赛.按画图计数问题2.请你画图说明同一平面内的4条直线的位置关系,它们分别有几个交点?3.平面内有10条直线,无任何三线共点,要使它们恰好有31个交点,请你画出示意图.按基本图形计数问题4.如图,一组互相平行的直线有6条,它们和两条平行线a,b都相交,构成若干个“#”形,则此图中共有多少个“#”形?(第4题)按从特殊到一般的思想方法计数问题5.观察如图所示的图形,寻找对顶角(不含平角).(第5题)(1)两条直线相交于一点,如图①,共有________对对顶角;(2)三条直线相交于一点,如图②,共有________对对顶角;(3)四条直线相交于一点,如图③,共有________对对顶角;(4)根据以上结果探究:当n条直线相交于一点时,所构成的对顶角有____________对;(5)根据探究结果,求2 016条直线相交于一点时,所构成的对顶角的对数.6.平面内n条直线最多将平面分成多少个部分?答案1.解:(2)4;3(3)2n-2;n2(n-1)(4)152.解:图①有0个交点,图②有1个交点,图③、图④有3个交点,图⑤、图⑥有4个交点,图⑦有5个交点,图⑧有6个交点.(第2题)3.解:如图所示.(第3题)4.解:以一个“#”形为基本图形的有5个,以两个“#”形为基本图形的有4个,以三个“#”形为基本图形的有3个,以四个“#”形为基本图形的有2个,以五个“#”形为基本图形的有1个,所以共有5+4+3+2+1=15(个).5.解:(1)2 (2)6 (3)12 (4)n (n -1)(5)当2 016条直线相交于一点时,所构成的对顶角的对数为2 016×(2 016-1)=2 016×2 015=4 062 240.方法规律:本题运用了从特殊到一般的思想,前三题可以直接数出对顶角的对数.根据前三题中的结果,探究出一般规律,再运用规律来解决最后一个问题.6.解:首先画图如下,列表如下:(第6题)当n =1时,平面被分成2个部分;当n =2时,增加2个,最多将平面分成2+2=4(个)部分; 当n =3时,增加3个,最多将平面分成2+2+3=7(个)部分;当n =4时,增加4个,最多将平面分成2+2+3+4=11(个)部分;…;所以当有n 条直线时,最多将平面分成2+2+3+4+…+n =1+1+2+3+4+…+n =1+n (n +1)2=n 2+n +22(个)部分.全章热门考点整合应用名师点金:本章知识是中考的必考内容,也是后面学习有关几何中计算和证明的基础.其常见的题目涉及角度的计算、垂线段及其应用、平行线的判定和性质,命题形式有填空题、选择题、解答与说理题,题目难度不大.其热门考点可概括为:五个概念,两个判定,两个性质,两种方法,两种思想.五个概念概念1相交线1.图中的对顶角共有()A.1对B.2对C.3对D.4对(第1题)(第2题)2.如图,直线AB与CD相交于点O,EO⊥AB,则∠1与∠2()A.是对顶角B.相等C.互余D.互补3.如图,直线AB,CD相交于点O,OE平分∠AOC,∠COF=35°,∠BOD=60°,求∠EOF的度数.(第3题)概念2三线八角4.如图,点E在AB的延长线上,指出下面各组中的两个角是由哪两条直线被哪一条直线所截形成的?它们是什么角?(第4题)(1)∠A和∠D;(2)∠A和∠CBA;(3)∠C和∠CBE.概念3平行线5.在同一平面内,直线a与b满足下列条件,写出其对应的位置关系.(1)a与b没有公共点,则a与b;(2)a与b有且只有一个公共点,则a与bW.(第6题)6.如图,在方格纸中,有两条线段AB,BC.利用方格纸完成以下操作:(1)过点A作BC的平行线;(2)过点C作AB的平行线,与(1)中的平行线交于点D;(3)过点B作AB的垂线BE.概念4平移7.如图,将三角形ABC平移到三角形A′B′C′的位置(点B′在AC边上),若∠B=55°,∠C=100°,求∠AB′A′的度数.(第7题)概念5命题8.已知命题“如果两条射线是两条平行线被第三条直线所截得到的一对内错角的平分线,那么这两条射线互相平行”.(1)写出命题的题设和结论;(2)根据图形用数学符号叙述这个命题;(3)用推理证明的方法说明这个命题是真命题.两个判定判定1 垂 线9.如图,直线AB ,CD 相交于点O ,OM ⊥AB .(1)若∠1=20°,∠2=20°,则∠DON = 度;(2)若∠1=∠2,判断ON 与CD 的位置关系,并说明理由;(第9题)(3)若∠1=14∠BOC ,求∠AOC 和∠MOD 的度数.判定2 平行线10.如图,已知BE ∥DF ,∠B =∠D ,那么AD 与BC 有何位置关系?请说明理由.(第10题)11.如图,已知CF ⊥AB 于点F ,ED ⊥AB 于点D ,∠1=∠2,猜想FG 和BC 的位置关系,并说明理由.(第11题)两个性质性质1 垂线段的性质12.如图,AB 是一条河流,要铺设管道将河水引到C ,D 两个用水点,现有两种铺设管道的方案: 方案一:分别过点C ,D 作AB 的垂线,垂足分别为点E ,F ,沿CE ,DF 铺设管道; 方案二:连接CD 交AB 于点P ,沿PC ,PD 铺设管道.这两种铺设管道的方案哪一种更节省材料?为什么?(忽略河流的宽度)(第12题)性质2平行线的性质13.【中考·雅安】如图,已知AB∥CD,直线EF交AB于点E,交CD于点F,且EG平分∠FEB,∠1=50°,则∠2等于()A.50° B.60° C.70° D.80°(第13题)(第14题)14.【中考·抚顺】如图,分别过等边三角形ABC的顶点A,B作直线a,b,使a∥b.若∠1=40°,则∠2的度数为W.15.如图,在四边形ABCD中,AB∥CD,BC∥AD,那么∠A与∠C,∠B与∠D的大小关系如何?请说明理由.(第15题)两种方法方法1作辅助线构造“三线八角”16.如图,∠E=∠B+∠D,猜想AB与CD有怎样的位置关系,并说明理由.(第16题)方法2作辅助线构造“三线平行”17.如图,已知AB∥CD,试说明∠B+∠D+∠BED=360°.(第17题)两种思想思想1方程思想18.如图,AB∥CD,∠1∶∠2∶∠3=1∶2∶3,判断BA是否平分∠EBF,并说明理由.(第18题)思想2转化思想19.如图,在五边形ABCDE中,AE∥CD,∠A=107°,∠ABC=121°,求∠C的度数.(第19题)答案1.B 2.C3.解:根据对顶角的性质,得∠AOC =∠BOD =60°. ∵OE 平分∠AOC ,∴∠COE =12∠AOC =12×60°=30°,∴∠EOF =∠EOC +∠COF =30°+35°=65°.4.解:(1)∠A 和∠D 是由直线AE ,CD 被直线AD 所截形成的,它们是同旁内角. (2)∠A 和∠CBA 是由直线AD ,BC 被直线AE 所截形成的,它们是同旁内角. (3)∠C 和∠CBE 是由直线CD ,AE 被直线BC 所截形成的,它们是内错角. 5.(1)平行 (2)相交 6.解:如图.(第6题)(第8题)7.解:∵∠B =55°,∠C =100°,∴∠A =180°-∠B -∠C =180°-55°-100°=25°.∵三角形ABC 平移得到三角形A ′B ′C ′,∴AB ∥A ′B ′,∴∠AB ′A ′=∠A =25°.8.解:(1)题设:两条射线是两条平行线被第三条直线所截得到的一对内错角的平分线;结论:这两条射线互相平行(2)如图,如果AB ∥CD ,直线AB ,CD 被直线EF 所截,EG 平分∠AEF ,FH 平分∠EFD ,那么EG ∥FH .(3)∵EG 平分∠AEF ,FH 平分∠EFD ,∴∠GEF =12∠AEF ,∠EFH =12∠EFD .∵AB ∥CD ,∴∠AEF=∠EFD ,∴∠GEF =∠EFH ,∴EG ∥FH .9.解:(1)90(2)ON ⊥CD .理由:∵OM ⊥AB ,∴∠1+∠AOC =90°.又∵∠1=∠2,∴∠2+∠AOC =90°,∴∠CON =90°,∴ON ⊥CD .(3)∵∠1=14∠BOC ,∴∠BOC =4∠1,即∠BOM =3∠1.∵∠BOM =90°,∴∠1=30°,∴∠AOC =90°-∠1=60°,∠MOD =180°-∠1=150°.10.解:AD ∥BC .理由:因为BE ∥DF (已知), 所以∠EAG =∠D (两直线平行,内错角相等).又因为∠B =∠D (已知),所以∠EAG =∠B (等量代换), 所以AD ∥BC (同位角相等,两直线平行). 11.解:FG ∥BC .理由如下:∵CF ⊥AB ,ED ⊥AB ,∴CF ∥DE ,∴∠1=∠BCF . 又∵∠1=∠2,∴∠2=∠BCF .∴FG ∥BC .12.解:按方案一铺设管道更节省材料.理由如下:因为CE⊥AB,DF⊥AB,CD不垂直于AB,根据“垂线段最短”可知,CE<PC,DF<PD,所以CE+DF<PC+PD.所以按方案一铺设管道更节省材料.13.D14.80°15.解:∠A=∠C,∠B=∠D.理由如下:∵AB∥CD,BC∥AD,∴∠B+∠C=180°,∠A+∠B=180°(两直线平行,同旁内角互补).∴∠A=∠C(同角的补角相等).同理得∠B=∠D.(第16题)16.解:AB∥CD.理由如下:过点E作EF∥AB,则∠B=∠BEF.又∵∠BED=∠B+∠D,∴∠BED=∠BEF+∠D,即∠BEF+∠DEF=∠BEF+∠D,∴∠DEF=∠D,∴EF∥CD,∴AB∥CD.17.解:方法1:如图①,过点E作EF∥AB.∵AB∥CD,EF∥AB,∴EF∥CD,∴∠2+∠D=180°.∵EF∥AB,∴∠1+∠B=180°.∴∠1+∠B+∠2+∠D=360°.∴∠B+∠D+∠BED=360°.(第17题)方法2:如图②,过点E作EF∥AB.∵AB∥CD,EF∥AB,∴EF∥CD,∴∠2=∠D.∵EF∥AB,∴∠1=∠B.∵∠1+∠2+∠BED=360°,∴∠B+∠D+∠BED=360°.点拨:本题还有其他解法,如连接BD、延长DE交AB的延长线于点F等.18.解:BA平分∠EBF.理由如下:因为∠1∶∠2∶∠3=1∶2∶3,所以可设∠1=k,则∠2=2k,∠3=3k.因为AB∥CD,所以∠2+∠3=180°,即2k+3k=180°,解得k=36°.所以∠1=36°,∠2=72°,则∠ABE=180°-∠2-∠1=72°.所以∠2=∠ABE,即BA平分∠EBF.点拨:当问题中角的数量关系出现倍数、比例时,可根据其数量关系建立方程,通过方程解决问题.(第19题)19.解:如图,过点B作BF∥AE交ED于点F.∵BF∥AE,∠A=107°,∴∠ABF=180°-107°=73°.又∵∠ABC=121°,∴∠FBC=121°-73°=48°.∵AE∥CD,BF∥AE,∴BF∥CD.∴∠C=180°-∠FBC=132°.点拨:本题通过作辅助线构造基本图形,把问题转化为平行线的性质和判定的问题,从而建立起角之间的关系.。

初一下数学第5章压轴题综合训练(精选24题)

① 为定值,② 为定值;其中只有一个结论是正确的,请正确选择,并求其值.
19.(10分)如图,点E在直线BH、DC之间,点A为BH上一点,且AE⊥CE, .
(1)求证:BH∥CD.
(2)如图:直线AF交DC于F, 平分∠EAF, 平分∠BAE.
试探究∠ ,∠AFG的数量关系.
20.(y轴负半轴上,且a,b满足: .

⑵如图 ,∠ABE,∠CDE与∠BED之间的关系为.
⑶根据点E的不同位置,你还有新的猜想吗?如果有,请在图 中画出图形并写出相应的结论(不需要证明)
图 图
结论:
⑷小明同学将一幅直角三角板如图 放置,若AE∥BC,
则∠EFC的度数为.

5、如图,∠DAB+∠ABC+∠BCE=360°.
⑴说明AD与CE的位置关系,并说明理由;
(3)在(2)的条件下,若M为DF上一点,P为线段DC上一动点,Q为射线PC上一点,且满足∠MQP=∠QMP,MN为∠FMP的角平分线,当P点在线段CD上运动时,下列结论:①∠NMQ的度数不变;②保持∠NMQ=∠PMD不变,请你选择一个正确的结论,并求出其值.
10.如图,直线a∥b。点A为直线a上的动点,点B为直线a、b之间的定点,点C为直线b上的定点。
(1)当∠DAB与∠ECB互余(图一),AB与BC的位置关系是__________,说明理由。
(2)在(1)的条件下,将等腰直角三角尺的一个锐角顶点与点B重合放置(如图二)。BM平分∠ABP,交直线a于点M。BN平分∠QBC, 交直线b于点N。当三角尺绕点B转动,且BC始终在∠PBQ的内部时,∠DMB+∠ENB的值是否变化?若不变,求其值;若变化,求其变化范围。
(2)在y轴上是否存在点P,使得S△AOP=2S△ABP?若存在,请求出P点的坐标;若不存在,请说明理由.

人教版初一数学7年级下册 第5章(相交线与平行线)压轴培优(三)(含答案)

七年级数学下册第五章《平行线与相交线》压轴培优(三)1.如图,直线AB和CD交于点O,∠COF=90°,OC平分∠AOE,∠COE=40°.(1)求∠BOD的度数;(2)OF平分∠BOE吗?请说明理由.2.如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角板(∠M=30°)的直角顶点放在点O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方,将图1中的三角板绕点O以每秒3°的速度沿顺时针方向旋转一周.(1)几秒后ON与OC重合?(2)如图2,经过t秒后,MN∥AB,求此时t的值.(3)若三角板在转动的同时,射线OC也绕O点以每秒6°的速度沿顺时针方向旋转一周,那么经过多长时间OC与OM重合?请画图并说明理由.(4)在(3)的条件下,求经过多长时间OC平分∠MOB?请画图并说明理由.3.完成下面推理过程.在括号内的横线上填空或填上推理依据如图,已知:∠3=∠BAE,AC⊥BE,∠1=∠2,∠3+∠4=180°,求证:AB∥CD,AD∥BE证明:∵AC⊥BE(已知);∴∠3=90° ;∴∠BAE=∠3=90°;又∵∠3+∠4=180°(已知);∴∠4=180°﹣∠3=90°;∴∠ =∠BAE ;∴AB∥CD ;∵∠1=∠2(已知);∴∠1+∠CAE=∠2+∠CAE ;即∠BAE=∠CAD;∴∠3=∠CAD;∴AD∥BE .4.探究题:(1)如图1,若AB∥CD,则∠B+∠D=∠E,你能说明理由吗?(2)反之,若∠B+∠D=∠E,直线AB与直线CD有什么位置关系?简要说明理由;(3)若在(1)条件下,将点E移至图2的位置,此时∠B、∠D、∠E之间有什么关系?直接写出结论;(4)若在(1)条件下,将点E移至图3的位置,此时∠B、∠D、∠E之间有什么关系?直接写出结论.5.已知AB∥CD,定点E、F分别在直线AB,CD上,在平行线AB,CD之间有一动点P.(1)如图1所示时,试问∠AEP,∠EPF,∠PFC满足怎样的数量关系?并说明理由.(2)当∠EPF满足0°<∠EPF<180°,试问∠AEP,∠EPF,∠PFC又满足怎样的数量关系?(直接写出结论).(3)当∠EPF满足0°<∠EPF<180°,且EQ,FQ分别平分∠PEB和∠PFD,①若∠EPF=60°,则∠EQF= °.②猜想∠EPF与∠EQF的数量关系.(直接写出结论)6.完成下面的证明.如图,已知AB∥CD∥EF,写出∠A,∠C,∠AFC的关系,并说明理由.解:∠AFC= .理由如下:∵AB∥EF(已知),∴∠A= (两直线平行,内错角相等).∵CD∥EF(已知),∴∠C= .∵∠AFC= ﹣ ,∴∠AFC= (等量代换).7.如图,D,E,F,G,H,I是三角形ABC三边上的点,连接EI,EF∥BC,GH∥AC,DI∥AB.(1)判断∠GHC与∠FEC是否相等,并说明理由.(2)若∠FEC+∠FGH=210°,求∠A+∠C的度数.(3)若EI平分∠FEC,∠C=α,∠B=β,试用含α,β的代数式表示∠EID的度数.8.直线AB∥CD,直线EF分别交AB、CD于点A、C,CM是∠ACD的平分线,CM 交AB于点N.(1)如图①,过点A作AC的垂线交CM于点M,若∠MCD=55°,求∠MAN的度数;(2)如图②,点G是CD上的一点,连接MA、MG,∠MGD+∠EAB=180°,MC 平分∠AMG.①∠AMG和∠EAB满足怎么样的数量关系时EC⊥AM?②若∠AMG=36°,求∠ACD的度数.9.如图,直线AB,CD被直线EF,MN所截.(1)若AB∥CD,EF∥MN,∠1=115°,试求∠3和∠4的度数;(2)本题隐含着一个规律,请你根据(1)的结果填空:如果一个角的两边分别和另一个角的两边平行,那么这两个角 ;(3)利用(2)的结论解答:如果两个角的两边分别平行,其中一个角是另一个角的2倍,求这两个角的度数.10.如图,已知直线AB与CD相交于点O,OP是∠BOC的平分线,∠AOE=90°,∠DOF=90°(1)图中除直角外,请写出两对相等的角并说明理由.(2)如果∠AOD=40°,求∠BOF的度数.11.如图,两条射线AM∥BN,线段CD的两个端点C、D分别在射线BN、AM上,且∠A=∠BCD=108°.E是线段AD上一点(不与点A、D重合),且BD平分∠EBC.(1)求∠ABC的度数.(2)请在图中找出与∠ABC相等的角,并说明理由.(3)若平行移动CD,且AD>CD,则∠ADB与∠AEB的度数之比是否随着CD位置的变化而发生变化?若变化,找出变化规律;若不变,求出这个比值.12.如图,点C在∠AOB的边OA上,过点C的直线DE∥OB,CF平分∠ACD,CG⊥CF于C.(1)若∠O=40°,求∠ECF的度数;(2)试说明CG平分∠OCD;(3)当∠O为多少度时,CD平分∠OCF?并说明理由.13.推理填空.已知DG⊥BC,AC⊥BC,EF⊥AB,∠1=∠2,求证:CD⊥AB.证明:∵DG⊥BC,AC⊥BC,∴∠DGB=∠ACB=90°,∴DG∥AC.( )∴∠2= .( )∵∠1=∠2.(已知)∴∠1=∠ .(等量代换)∴EF∥CD.( )∴∠AEF=∠ADC.( )∵EF⊥AB,∴∠AEF=90°,∴∠ADC=90°,∴CD⊥AB.( )14.如图1,已知直线PQ∥MN,点A在直线PQ上,点C、D在直线MN上,连接AC、AD,∠PAC=50°,∠ADC=30°,AE平分∠PAD,CE平分∠ACD,AE与CE相交于E.(1)求∠AEC的度数;(2)若将图1中的线段AD沿MN向右平移到A1D1如图2所示位置,此时A1E平分∠AA1D1,CE平分∠ACD1,A1E与CE相交于E,∠PAC=50°,∠A1D1C=30°,求∠A1EC的度数.(3)若将图1中的线段AD沿MN向左平移到A1D1如图3所示位置,其他条件与(2)相同,求此时∠A1EC的度数.15.如图,已知点E,F为四边形ABDC的边CA的延长线上的两点,连接DE,BF,作∠BDH的平分线DP交AB的延长线于点P.若∠1=∠2,∠3=∠4,∠5=∠C.(1)判断DE与BF是否平行?并说明理由;(2)试说明:∠C=2∠P.参考答案1.解:(1)由∠COE=40°,OC平分∠AOE,∠AOC=40°,∠BOD=∠AOC=40°;(2)OF平分∠BOE,理由如下:由∠COE=40°,∠COF=90°得∠EOF=90°﹣40°=50°,又∵∠BOF=∠DOF﹣∠BOD=90°﹣40°=50°,∴∠EOF=∠BOF,∴OF平分∠BOE.2.解:(1)∵30÷3=10,∴10秒后ON与OC重合;(2)∵MN∥AB∴∠BOM=∠M=30°,∵∠AON+∠BOM=90°,∴∠AON=60°,∴t=60÷3=20∴经过t秒后,MN∥AB,t=20秒.(3)如图3所示:∵∠AON+∠BOM=90°,∠BOC=∠BOM,∵三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,设∠AON=3t,则∠AOC=30°+6t,∵OC与OM重合,∵∠AOC+∠BOC=180°,可得:(30°+6t)+(90°﹣3t)=180°,解得:t=20秒;即经过20秒时间OC与OM重合;(4)如图4所示:∵∠AON+∠BOM=90°,∠BOC=∠COM,∵三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,设∠AON=3t,∠AOC=30°+6t,∵∠BOM+∠AON=90°,∴∠BOC=∠COM=∠BOM=(90°﹣3t),由题意得:180°﹣(30°+6t)=(90°﹣3t),解得:t=秒;即经过秒时间OC平分∠MOB.3.证明:∵AC⊥BE(已知);∴∠3=90° (垂直的定义);∴∠BAE=∠3=90°;又∵∠3+∠4=180°(已知);∴∠4=180°﹣∠3=90°;∴∠4=∠BAE(等量代换);∴AB∥CD(同位角相等,两直线平行);∵∠1=∠2(已知);∴∠1+∠CAE=∠2+∠CAE(等式的性质);即∠BAE=∠CAD;∴∠3=∠CAD;∴AD∥BE(内错角相等,两直线平行);故答案为:垂直的定义;4;等量代换;同位角相等,两直线平行;等式的性质;内错角相等,两直线平行.4.解:(1)如图1,作EF∥AB,∵AB∥CD,∴∠B=∠1,∵AB∥CD,EF∥AB,∴EF∥CD,∴∠D=∠2,∴∠B+∠D=∠1+∠2,又∵∠1+∠2=∠E,∴∠B+∠D=∠E.(2)如图1,作EF∥AB,∵EF∥AB,∴∠B=∠1,∵∠E=∠1+∠2=∠B+∠D,∴∠D=∠2,∴EF∥CD,又∵EF∥AB,∴AB∥CD.(3)如图2,过E作EF∥AB,∵EF∥AB,∴∠BEF+∠B=180°,∵EF∥CD,∴∠D+∠DEF=180°,∵∠BEF+∠DEF=∠E,∴∠E+∠B+∠D=180°+180°=360°.(4)如图3,∵AB∥CD,∴∠B=∠BFD,∵∠D+∠E=∠BFD,∴∠D+∠E=∠B.5.解:(1)如图1,过点P作PG∥AB,∵PG∥AB,∴∠EPG=∠AEP,∵AB∥CD,∴PG∥CD,∴∠FPG=∠PFC,∴∠AEP+∠PFC=∠EPF;(2)如图1,由(1)知当P点在EF的左侧时,∠AEP,∠EPF,∠PFC满足数量关系为:∠EPF=∠AEP+∠PFC;如图2,当P点在EF的右侧时,∠AEP,∠EPF,∠PFC满足数量关系为:∠AEP+∠EPF+∠PFC=360°;(3)①如图3,若当P点在EF的左侧时,∵∠EPF=60°,∴∠PEB+∠PFD=360°﹣60°=300°,∵EQ,FQ分别平分∠PEB和∠PFD,∴,∴∠EQF=∠BEQ+∠QFD==150°;如图4,当P点在EF的右侧时,∵∠EPF=60°,∴∠PEB+∠PFD=60°,∴∠BEQ+∠QFD===30°;故答案为:150°或30°;②如图3,EQ,FQ分别平分∠PEB和∠PFD,设:∠BEQ=,∠QFD=,则∠EPF=180°﹣2∠BEQ+180°﹣2∠DFQ=360°﹣2(∠BEQ+∠PFD),∵∠EQF=∠BEQ+∠DFQ,∴∠EPF+2∠EQF=360°;如图4,EQ,FQ分别平分∠PEB和∠PFD,∴,∵∠EPF=∠BEP+∠PFD,∴∠EPF=2(∠BEQ+∠DFQ),∵∠BEQ+∠DFQ=∠EQF,∴∠EPF=2∠EQF;综合以上可得∠EPF与∠EQF的数量关系为:∠EPF+2∠EQF=360°或∠EPF=2∠EQF.6.解:∠AFC=∠A﹣∠C.理由如下:∵AB∥EF(已知),∴∠A=∠AFE (两直线平行,内错角相等).∵CD∥EF(已知),∴∠C=∠CFE.∵∠AFC=∠AFE﹣∠CFE,∴∠AFC=∠A﹣∠C(等量代换).故答案为:∠A﹣∠C,∠AFE,∠CFE,∠AFE,∠CFE,∠A﹣∠C.7.解:(1)∠GHC=∠FEC,理由:∵EF∥BC,∴∠FEC+∠C=180°,∵GH∥AC,∴∠GHC+∠C=180°,∴∠GHC=∠FEC;(2)∵GH∥AC,∴∠FGH+∠A=180°,∵EF∥BC,∴∠FEC+∠C=180°,∴∠FGH+∠FEC+∠C+∠A=360°,∵∠FEC+∠FGH=210°,∴∠A+∠C=360°﹣210°=150°;(3)∵EF∥BC,∴∠FEC+∠C=180°,∠FEI=∠EIC,∴∠FEC=180°﹣α,∵EI平分∠FEC,∴∠FEI=∠FEC=90°﹣,∴∠FEI=∠EIC=90°﹣,∵DI∥AB,∴∠DIC=∠B=β,∴∠EID=∠EIC﹣∠DIC=90°﹣﹣β.8.解:(1)∵CM是∠ACD的平分线,∠MCD=55°,∴∠ACD=2∠MCD=110°,又∵AB∥CD,∴∠BAC=180°﹣110°=70°,又∵AM⊥EF,∴∠MAN=90°﹣70°=20°;(2)①当∠AMG=∠EAB=90°时EC⊥AM,理由如下:∵CM是∠ACD的平分线,MC平分∠AMG,∴∠ACM=∠GCM,∠AMC=∠GMC,又∵CM=CM,∴△AMC≌△GMC(ASA),∴∠CGM=∠CAM,∵EC⊥AM,∴∠CGM=∠CAM=90°,∴∠MGD=90°,∵∠MGD+∠EAB=180°,∴∠EAB=∠BAF=90°,∵AB∥CD,∴∠ACG=90°,∴∠AMG=360°﹣90°﹣90°﹣90°=90°;②∵MC平分∠AMG且∠AMG=36°,∴∠CMG=18°,∵MC平分∠ACG,∴∠MCG=∠ACG,∵∠CAB+∠EAB=180°,∠MGD+∠EAB=180°,∴∠BAC=∠MGD,∵AB∥CD,∴∠BAC+∠ACD=180°,设∠ACD=α,则∠MCG=∠ACD=α,∠BAC=∠MGD=180°﹣α,∵∠MGD是△CMG的外角,∴∠MGD=∠CMG+∠MCG,即180°﹣α=α+18°,解得α=108°,∴∠ACD=108°.9.解:如图所示:(1)∵AB∥CD,∴∠1=∠2,又∵EF∥MN,∴∠2=∠3,又∵∠1=115°,∴∠3=115°,又∵∠3+∠4=180°,∴∠4=180°﹣115°=65°;(2)相等或互补,理由如下:∵∠1的两边是GB和GF,∠3的两边是HC和HM,GB∥HC,GF∥HM,∴∠1=∠2,∠2=∠3,∴∠1=∠3;又∵∠1的两边是GB和GF,∠4的两边是HC和HN,GB∥HC,GF∥HN,∴∠1=∠2,∠2+∠4=180°,∴∠1+∠4=180°;故答案为相等或互补.(3)设一个角为x,则另一个角为,依题意得,(舍去),,解得:x=120°,∴另一个角为60°即两个角的度数分别为120°和60°.10.解:(1)∵OP是∠BOC的平分线,∴∠BOP=∠COP,∠AOD=∠BOC(对顶角相等);(2)∠DOF=90°,∴∠AOD+∠BOF=90°,∴∠BOF=90°﹣∠AOD=90°﹣40°=50°.11.解:(1)∵AM∥BN,∴∠A+∠ABC=180°.∴∠ABC=180°﹣∠A=180°﹣108°=72°.(2)与∠ABC相等的角是∠ADC、∠DCN.∵AM∥BN,∴∠ADC=∠DCN,∠ADC+∠BCD=180°.∴∠ADC=180°﹣∠BCD=180°﹣108°=72°.∴∠DCN=72°.∴∠ADC=∠DCN=∠ABC.(3)不发生变化.∵AM∥BN,∴∠AEB=∠EBC,∠ADB=∠DBC.∵BD平分∠EBC,∴∠DBC=∠EBC,∴∠ADB=∠AEB,∴=.12.解:(1)∵DE∥OB,∠O=40°,∴∠ACE=∠O=40°,∵∠ACD+∠ACE=180°,∴∠ACD=140°,∵CF平分∠ACD,∴∠ACF=∠ACD=70°,∴∠ECF=∠ACE+∠ACF=110°.(2)∵CG⊥CF,∴∠FCG=90°,∴∠DCG+∠DCF=90°,又∵∠GCO+∠DCG+∠DCF+∠ACF=180°,∴∠GCO+∠FCA=90°,∵∠ACF=∠DCF,∴∠GCO=∠GCD,即CG平分∠OCD.(3)当∠O=60°时,CD平分∠OCF.理由如下:当∠O=60°时,∵DE∥OB,∴∠DCO=∠O=60°,∴∠ACD=120°,又∵CF平分∠ACD,∴∠DCF=60°,∴∠DCO=∠DCF,即CD平分∠OCF.13.证明:∵DG⊥BC,AC⊥BC(已知)∴∠DGB=∠ACB=90°(垂直定义)∴DG∥AC(同位角相等,两直线平行)∴∠2=∠ACD(两直线平行,内错角相等)∵∠1=∠2(已知)∴∠1=∠ACD(等量代换)∴EF∥CD(同位角相等,两直线平行)∴∠AEF=∠ADC(两直线平行,同位角相等)∵EF⊥AB(已知)∵∠AEF=90°(垂直定义)∴∠ADC=90°(等量代换)∴CD⊥AB(垂直定义).故答案为:同位角相等,两直线平行,∠ACD,两直线平行,内错角相等,ACD,同位角相等,两直线平行,垂直定义.14.解:(1)如图1所示:∵直线PQ∥MN,∠ADC=30°,∴∠ADC=∠QAD=30°,∴∠PAD=150°,∵∠PAC=50°,AE平分∠PAD,∴∠PAE=75°,∴∠CAE=25°,可得∠PAC=∠ACN=50°,∵CE平分∠ACD,∴∠ECA=25°,∴∠AEC=180°﹣25°﹣25°=130°;(2)如图2所示:∵∠A1D1C=30°,线段AD沿MN向右平移到A1D1,PQ∥MN,∴∠QA1D1=30°,∴∠PA1D1=150°,∵A1E平分∠AA1D1,∴∠PA1E=∠EA1D1=75°,∵∠PAC=50°,PQ∥MN,∴∠CAQ=130°,∠ACN=50°,∵CE平分∠ACD1,∴∠ACE=25°,∴∠CEA1=360°﹣25°﹣130°﹣75°=130°;(3)如图3所示:过点E作FE∥PQ,∵∠A1D1C=30°,线段AD沿MN向左平移到A1D1,PQ∥MN,∴∠QA1D1=30°,∵A1E平分∠AA1D1,∴∠QA1E=∠2=15°,∵∠PAC=50°,PQ∥MN,∴∠ACN=50°,∵CE平分∠ACD1,∴∠ACE=∠ECN=∠1=25°,∴∠CEA1=∠1+∠2=15°+25°=40°.15.解:(1)DE∥BF,理由是:∵∠3=∠4,∴BD∥CE,∴∠5=∠FAB,∵∠5=∠C,∴∠C=∠FAB,∴AB∥CD,∴∠2=∠BGD,∵∠1=∠2,∴∠1=∠BGD,∴DE∥BF;(2)∵AB∥CD,∴∠P=∠PDH,∵DP平分∠BDH,∴∠BDP=∠PDH,∴∠BDP=∠PDH=∠P,∵∠5=∠P+∠BDP,∴∠5=2∠P,∵∠C=∠5,∴∠C=2∠P.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
13.(12分)如图,AB∥CD,将一个三角形的纸板放在图1中,三角形的两条边分别与AB、CD交于G、F两点。设∠E=a°,∠AGE=x°,∠DFE=y°,且 .
(1)求∠E;
(2)求∠DFE;
(3)P是射线FE上一点(如图2),M在直线AB上,MN平分∠AMP,PQ∥MN,PH平分∠MPF,请问∠HPQ的度数是否发生改变?若不变,请求出其值;若变化,请说明理由。
⑵作∠BCF=∠BCG,CF与∠BAH的平分线交于点F,若∠F的余角等于2∠B的补角,求∠BAH的度数;
⑶在前面的条件下,如图,若P是AB上一点,Q是GE上任一点,QR平分∠PQG,PM∥QR,PN平分∠APQ,下列结论:①∠APQ+∠NPM的值不变;②∠NPM的度数不变.可以证明,只有一个是正确的,请你作出正确的选择并求值.
8、已知直线a∥b,点A在直线a上,点B、C在直线b上.
⑴如图1,求证:∠1+∠2+∠3=180°;
⑵如图2,点D在线段BC上,且恰有AB平分∠MAD,AC平分∠NAD,
若∠DEC=90°.
求证:∠1=∠2;
⑶若点F为线段AB上不与A、B重合的一动点,点H在AC上,FQ平分∠AFD交AC于Q,设∠HFQ=y°,(此时点D为线段BC不与点B、C重合的任一点),问当α、β、γ之间满足怎样的等量关系时,FH∥a.(如图3)
(3)点F为直线a上一点,使得∠AFB=∠ABF。∠ABC的平分线交直线a于点G。当点A移动时,求 的值。
11.如图,平面直角坐标系中,直线l与分别与x轴、y轴交于A(4, 0)、B两点,将线段AB沿x轴正方向平移至A’B’(A对应A’, B对应B’).
(1)若A点平移了1个单位长度,且此时S△OBB’=1,求B点的坐标;
9、(1)如图,AC平分∠DAB,∠1=∠2,试说明AB与CD的位置关系,并予以证明;
(2)如图,在(1)的条件下,AB的下方两点E,F满足:BF平分∠ABE,CF平分∠DCE,若∠F=20°,∠CDE=70º,求∠ABE的度数;
(3)在前面的条件下,若P是BE上一点,G是CD上任一点,PQ平分∠BPG,PQ∥GN,GM平分∠DGP,下列结论:①∠DGP-∠MGN的值不变;②∠MGN的度数不变。可以证明,只有一个是正确的,请你作出正确的选择并求值。
(1)当动点P在第①部分时,如图(1),∠APB、∠PAC、∠PBD的关系式为.
(2)当动点P在第②部分时,在图(2)中画图后,说明∠APB、∠PAC、∠PBD的关系.
(3)当动点P在第③部分时,在图(3)中画图后,说明∠APB、∠PAC、∠PBD的关系(分情况说明).
4、已知AB∥CD.
⑴如图 ,试探求∠ABE,∠CDE与∠BED之间存在的等量关系式,并给出你的证明;

⑵如图 ,∠ABE,∠CDE与∠BED之间的关系为.
⑶根据点E的不同位置,你还有新的猜想吗?如果有,请在图 中画出图形并写出相应的结论(不需要证明)
图 图
结论:
⑷小明同学将一幅直角三角板如图 放置,若AE∥BC,
则∠EFC的度数为.

5、如图,∠DAB+∠ABC+∠BCE=360°.
⑴说明AD与CE的位置关系,并说明理由;
14.(12分)如图1,在平面直角坐标系中,点A、B、C、D均在坐标轴上,AB//CD.
第五章综合训练
1.如图所示:AB∥CD.
(1)当∠EAF= ∠EAB,∠ECF= ∠ECD时,求证:∠AFC= ∠AEC.
(2)当∠EAF= ∠EAB,∠ECF= ∠ECD时,则∠AFC=∠AEC,并证明.
(3)当∠EAF= ∠EAB,∠ECF= ∠ECD时,则∠AFC=∠AEC(用含n的代数式表示).
(2)在y轴上是否存在点P,使得S△AOP=2S△ABP?若存在,请求出P点的坐标;若不存在,请说明理由.
12.如图,在平面直角坐标系中,△AOB是直角三角形,∠AOB=90°,边AB与y轴正半轴交于点C.
(1)若A点坐标为(-2,4),B点坐标为(2,b), 则b=_______.
(2)在(1)的条件下,将线段AB沿某一方向平移,使点A、B的对应点A′、B′分别落在x轴、y轴上。则线段A′B′上是否存在一点R,使得点R到x轴、y轴的距离相等?如果存在,请你画图并求出点R的坐标;如果不存在,请说明理由。
③结合实际情况,试考虑x与y的取值范围.
7、(14分)小明将一直角三角板(∠A=30º)放在如图所示的位置,且∠AGE+∠MFG=180.
(1)证明:a∥将三角板进行适当转动,直角顶点始终在两直线间,M在线段CD上,且∠CEM=∠CEH,给出下列结论:① 的值不变;②∠MEG-∠BDF的值不变.可以证明,其中只有一个是正确的,请你作出正确的选择并求值.
2.如图:AB∥CD.直线l交AB、CD于点E、F,点M在EF上,N是直线CD上一个动点(点N不与点F重合).
(1)如图①,当点N在射线FC上运动时,求证:∠FMN+∠FNM=∠AEF.
(2)如图②,当点N在射线FD上运动时,∠FMN+∠FNM与∠AEF有何关系?
3.如图:AC∥BD,连接AB,直线AC、BD及线段AB将平面分成①②③④四部分(规定:线上各点不属于任何一部分).点P在某一部分时,连PA、PB.
10.如图,直线a∥b。点A为直线a上的动点,点B为直线a、b之间的定点,点C为直线b上的定点。
(1)当∠DAB与∠ECB互余(图一),AB与BC的位置关系是__________,说明理由。
(2)在(1)的条件下,将等腰直角三角尺的一个锐角顶点与点B重合放置(如图二)。BM平分∠ABP,交直线a于点M。BN平分∠QBC, 交直线b于点N。当三角尺绕点B转动,且BC始终在∠PBQ的内部时,∠DMB+∠ENB的值是否变化?若不变,求其值;若变化,求其变化范围。
6、小明和同学们到郊外游玩,发现了一口井,他们很想知道井底的情况,于是,他们找来了一面镜子.
①试问:当时太阳光线跟水平方向成40°(如图)。要想使太阳光线垂直射向井底,小明他们应当把镜子放在跟水平面成多大角的位置上?
②当太阳光线跟水平方向成x°,镜面跟水平面成y°时,可使太阳光线垂直射向井底.求x与y的关系式.
相关文档
最新文档