数控技术:插补原理

合集下载

数控技术第3章插补原理

数控技术第3章插补原理

5. 运算举例(第Ⅰ 象限逆圆弧) 运算举例( 象限逆圆弧) 加工圆弧AE 起点(4,3) AE, (4,3), 终点(0,5) E=(4-0)+(5加工圆弧AE,起点(4,3), 终点(0,5) ,E=(4-0)+(53)=6 插补过程演示
三.逐点比较法的进给速度 逐点比较法的进给速度
逐点比较法除能插补直线和圆弧之外,还能插补椭圆、 逐点比较法除能插补直线和圆弧之外,还能插补椭圆、 抛物线和双曲线等二次曲线。此法进给速度平稳, 抛物线和双曲线等二次曲线。此法进给速度平稳, 精度较高。在两坐标联动机床中应用普遍. 精度较高。在两坐标联动机床中应用普遍. 对于某一坐标而言, 对于某一坐标而言,进给脉冲的频率就决定了进给速 度 :
插补是数控系统最重要的功能; 插补是数控系统最重要的功能; 插补实际是数据密集化的过程; 插补实际是数据密集化的过程; 插补必须是实时的; 插补必须是实时的; 插补运算速度直接影响系统的控制速度; 插补运算速度直接影响系统的控制速度; 插补计算精度影响到整个数控系统的精度。 插补计算精度影响到整个数控系统的精度。 插补器按数学模型分类,可分为一次插补器、 插补器按数学模型分类,可分为一次插补器、二次插补器及高 次曲线插补器; 次曲线插补器; 根据插补所采用的原理和计算方法不同, 根据插补所采用的原理和计算方法不同,分为软件插补和硬件 插补。目前大多采用软件插补或软硬件结合插补。 插补。目前大多采用软件插补或软硬件结合插补。 根据插补原理可分为:脉冲增量插补和数字采样插补。 根据插补原理可分为:脉冲增量插补和数字采样插补。
脉冲当量: 脉冲当量:每一个脉冲使执行件按指令要求方向移动的直线 距离,称为脉冲当量, 表示。一般0.01mm 0.001mm。 0.01mm~ 距离,称为脉冲当量,用δ表示。一般0.01mm~0.001mm。 脉冲当量越小, 脉冲当量越小,则机床精度越高

插补原理

插补原理

插补原理:在实际加工中,被加工工件轮廓形状千差万别,严格说来,为了满足几何尺寸精度要求,刀具中心轨迹应该准确地依照工件轮廓形状来生成,对于简单曲线数控系统可以比较容易实现,但对于较复杂形状,若直接生成会使算法变得很复杂,计算机工作量也相应地大大增加,因此,实际应用中,常采用一小段直线或圆弧去进行拟合就可满足精度要求(也有需要抛物线和高次曲线拟合情况),这种拟合方法就是“插补”,实质上插补就是数据密化过程。

插补任务是根据进给速度要求,在轮廓起点和终点之间计算出若干个中间点坐标值,每个中间点计算所需时间直接影响系统控制速度,而插补中间点坐标值计算精度又影响到数控系统控制精度,因此,插补算法是整个数控系统控制核心。

插补算法经过几十年发展,不断成熟,种类很多。

一般说来,从产生数学模型来分,主要有直线插补、二次曲线插补等;从插补计算输出数值形式来分,主要有脉冲增量插补(也称为基准脉冲插补)和数据采样插补[26]。

脉冲增量插补和数据采样插补都有个自特点,本文根据应用场合不同分别开发出了脉冲增量插补和数据采样插补。

1数字积分插补是脉冲增量插补一种。

下面将首先阐述一下脉冲增量插补工作原理。

2.脉冲增量插补是行程标量插补,每次插补结束产生一个行程增量,以脉冲方式输出。

这种插补算法主要应用在开环数控系统中,在插补计算过程中不断向各坐标轴发出互相协调进给脉冲,驱动电机运动。

一个脉冲所产生坐标轴移动量叫做脉冲当量。

脉冲当量是脉冲分配基本单位,按机床设计加工精度选定,普通精度机床一般取脉冲当量为:0.01mm,较精密机床取1或0.5 。

采用脉冲增量插补算法数控系统,其坐标轴进给速度主要受插补程序运行时间限制,一般为1~3m/min。

脉冲增量插补主要有逐点比较法、数据积分插补法等。

逐点比较法最初称为区域判别法,或代数运算法,或醉步式近似法。

这种方法原理是:计算机在控制加工过程中,能逐点地计算和判别加工偏差,以控制坐标进给,按规定图形加工出所需要工件,用步进电机或电液脉冲马达拖动机床,其进给方式是步进式,插补器控制机床。

第三章 数控插补原理

第三章 数控插补原理

解:插补完这段直线刀具沿X和Y轴应走的总步数为 = x e + y e =5 + 3=8。 Y 刀具的运动轨迹如图 E(5,3) 3
2 1 O 1 2 3 4 5 X
第二节 基准脉冲插补
插补运算过程见表:
循环序号 偏差判别 F ≥0 坐标进给 +X 偏差计算 Fi+1=Fi-ye
教案 3
终点判别
m
Y
m(Xm,Ym) B(XB,YB)
+Y2
2 m-R
若Fm=0,表示动点在圆弧上;
若Fm>0,表示动点在圆弧外; 若Fm<0,表示动点在圆弧内。
Rm
R A(XA,YA)
第Ⅰ象限逆圆弧
X
第二节 基准脉冲插补
2)坐标进给
教案 3
与直线插补同理,坐标进给应使加工点逼近给定圆弧,规定如下: 当Fm≥0时,向-X方向进给一步; 当Fm<0时,向+Y方向进给一步。
教案 3
若Fi=0,表示动点在直线OE上,如P; 若Fi>0,表示动点在直线OE上方,如P′; 若Fi<0,表示动点在直线OE下方,如P″。
O
xi 第Ι象限直线
X
第二节 基准脉冲插补
2)坐标进给
教案 3
坐标进给应逼近给定直线方向,使偏差缩小的方向进给一步,由插补装 置发出一个进给脉冲控制向某一方向进给。
教案 3
直线线型 进给方向 偏差计算 直线线型
L1、L4 L2、L3 +X -X Fi+1=Fi-ye L1、L2 L3、L4
偏差计算
Fi+1=Fi+xe
注:表中L1、L2、L3、L4分别表示第Ⅰ、第Ⅱ、 第Ⅲ、第Ⅳ象限直线,偏差计算式中xe、ye均代 入坐标绝对值。

数控机床插补原理

数控机床插补原理
宋成伟
3.4.3.偏差计算 3.4.3.
进给一步后,计算新加工点与规定的 轮 廓的新偏差,为下一次偏差判别做准备, 根据偏差判别的结果给出计算方法. 当F≥0时,为F-Y,即沿+X方向走一步; 当F<0时,为F+X,即沿方+Y向走一步;
宋成伟
3.4.4.终点判别 3.4.4.
判断加工点是否到达终点,若已到 终点,则停止插补,否则再继续按此四 个节拍继续进行插补. 1.讨论累计步数∑的问题. 2.讨论终点坐标时所要完成的插补步数 的问题.
宋成伟
逐点比较法既可以实现直线 插补也可以实现圆弧等插补,它 的特点是运算直观,插补误差小 于一个脉冲当量,输出脉冲均匀 ,速度变化小,调节方便,因此 在两个坐标开环的CNC系统中应 用比较普遍.
宋成伟
该方法一般不用于多轴联动,应用范围 有一定限制.它的算法特点是: 3.2.1.1.每次插补的结果仅产生一个单 位的位移增量(一个脉冲当量),以一个 脉冲的方式输出给步进电机,采用以用折 线逼近曲线的思维方式.
宋成伟
3.2.3.3.该算法比脉冲增量插补算 法较为复杂,对计算机运算速度有 一定要求. 它主要用于交,直流伺服电机驱 动的闭环,半闭环CNC系统.也可 用于步进电动机开环系统.
宋成伟
3.4.直线插补计算 Y .
这种插补方法是以 阶梯折线来逼近直线和Ye 圆弧等曲线的,而阶梯 折线与规定的加工直线 或圆弧之间的最大误差 不超过一个脉冲当量,Ym 因此如果数控机床的脉 冲当量足够小,就能够 满足一定的加工精度的 0.0 要求.
宋成伟
使用数据采样插补的数控系统, 其位置伺服通过计算机及测量装置 构成闭环.计算机定时地对反馈回 路采样,采样的数据与插补程序所 产生的指令数据相比较,用其误差 信号输出去驱动伺服电动机.采样 周期一般为10ms左右.

数控机床插补原理

数控机床插补原理
采样反馈
X轴实际位置 X轴位置
比较
X坐标轴的位置增量/本周期
插 补 程 序
X轴位置 跟踪误差
Y坐标轴的位置增量/本周期
Y轴位置
采样反馈
比较
Y轴位置 跟踪误差
Y轴实际位置
伺 服 位 置 控 制 软 件
X轴 速度
X 驱 动 Y 驱 动
Y轴 速度
2插补的分类
2.4数据采样插补算法分类
1、直接函数法
数 据 采 样 插 补 算 法
Σ =5
Σ =4 Σ =3
6
7 8
F5<0
F6>0 F7<0
+y
-x -x
F6=F5+2y5+1=4
F7=F6-2x6+1=1 F8=F7-2x7+1=0
x6=4, y6=0
x7=4, y7=0 x8=4, y8=0
Σ =2
Σ =1 Σ =0
四、总结
插补原理,就是根据加工要求,确定出起 点和终点坐标之间的中间点,进而控制刀具 沿规定的轨迹运动,以加工出规定的轮廓的 方法。
X i 1 X i 1 2 2 2 Fi 1 ( X i 1) Yi R Fi 2 X i 1
3.3.4终点判别
双向计数:Σ=|Xb-Xa|+|Yb-Ya|,Σ=0停止 单向计数:Σ=max{|Xb-Xa|,|Yb-Ya|},Σ=0停止 分别计数:Σ1=|Xb-Xa|,Σ2=|Yb-Ya|,Σ1&Σ2=0停止
y
4 2 2 3
E(4,2)
o
1 1
x
2.投影法(单向计数) 取X方向和Y方向最多的步数作为计 数长度,此方向每走一步减一,直 到减为0停止。 Σ=max{|Xe|,|Ye|} Σ=0插补停止

数控系统插补的方法和原理

数控系统插补的方法和原理

数控系统插补的方法和原理数控机床上进行加工的各种工件,大部分由直线和圆弧构成。

因此,大多数数控装置都具有直线和圆弧的插补功能。

对于非圆弧曲线轮廓轨迹,可以用微小的直线段或圆弧段来拟合。

插补的任务就是要根据进给速度的要求,在轮廓起点和终点之间计算出若干中间掌握点的坐标值。

由于每个中间点计算的时间直接影响数控装置的掌握速度,而插补中间点的计算精度又影响整个数控系统的精度,所以插补算法对整个数控系统的性能至关重要,也就是说数控装置掌握软件的核心是插补。

插补的方法和原理许多,依据数控系统输出到伺服驱动装置的信号的不同,插补方法可归纳为脉冲增量插补和数据采样插补两种类型。

一、脉冲增量插补这类插补算法是以脉冲形式输出,每次插补运算一次,最多给每一轴一个进给脉冲。

把每次插补运算产生的指令脉冲输出到伺服系统,以驱动工作台运动。

一个脉冲产生的进给轴移动量叫脉冲当量,用δ表示。

脉冲当量是脉冲安排计算的基本单位,依据加工的精度选择,一般机床取δ=0.01mm,较为精密的机床取δ=1μm或0.1μm 。

插补误差不得大于一个脉冲当量。

这种方法掌握精度和进给速度低,主要运用于以步进电动机为驱动装置的开环掌握系统中。

二、数据采样插补数据采样插补又称时间标量插补或数字增量插补。

这类插补算法的特点是数控装置产生的不是单个脉冲,而是数字量。

插补运算分两步完成。

第一步为粗插补,它是在给定起点和终点的曲线之间插入若干个点,即用若干条微小直线段来拟合给定曲线,每一微小直线段的长度△L 都相等,且与给定进给速度有关。

粗插补时每一微小直线段的长度△L 与进给速度F和插补T周期有关,即△L=FT。

图1 数据采样插补其次步为精插补,它是在粗插补算出的每一微小直线上再作“数据点的密化”工作。

这一步相当于对直线的脉冲增量插补。

数据采样插补方法适用于闭环、半闭环的直流或沟通伺服电动机为驱动装置的位置采样掌握系统中。

数控机床的插补原

数控机床的插补原

多项式插补的优缺点
优点
多项式插补能够生成光滑的曲线,适用于复杂形状的加工;可以通过增加控制点来提高插补精度;可以处理多种 类型的插补需求。
缺点
计算量大,需要较高的计算能力;对于某些特殊形状的加工,可能需要特殊的多项式函数形式;需要精确的已知 数据点,否则可能导致插补误差较大。
05
样条插补
样条插补的定义
样条曲线法
样条曲线法是一种更加高级的插补方法,它使用多项式样 条曲线来描述加工路径,能够实现更加复杂的形状加工, 并提高加工精度和表面质量。
插补算法的精度和效率
精度
插补算法的精度是衡量其性能的重要指标之一。高精度的插 补算法能够生成更加精确的路径,从而提高加工精度和表面 质量。
效率
插补算法的效率也是需要考虑的因素之一。高效的插补算法 能够缩短加工时间,从而提高生产效率。在实际应用中,需 要根据具体需求选择精度和效率之间的平衡点。
确定已知数据点
首先需要确定起始点和终止点的坐标位置,以及可能的其他控制点。
构造多项式函数
根据已知数据点,选择合适的多项式函数形式,如线性函数、二次函 数或更高次的多项式。
求解插值方程
通过求解插值方程,得到多项式函数的系数,使得该函数在已知数据 点处的值与实际值相等。
生成加工路径
将多项式函数与机床的坐标系统关联起来,生成加工路径,控制机床 的运动轨迹。
04
多项式插补
多项式插补的定义
多项式插补是一种数学方法,用于在 两个已知数据点之间生成一条光滑曲 线。它通过构造一个多项式函数来逼 近给定的数据点,使得该函数在数据 点处的值与实际值尽可能接近。
VS
在数控机床中,多项式插补被用于生 成零件加工的路径,使得加工过程更 加精确和光滑。

数控插补

数控插补

运动轨迹的插补原理
三、逐点比较法
逐点比较法又称区域判别法或醉步式近似法。
原理:被控制对象在数控装置的控制下,按要求的轨
迹运动时,每走一步都要和规定的轨迹比较,根据 比较的结果决定下一步的移动方向。 逐点比较法可以实现直线和圆弧插补。 逐点比较法的应用对象主要在两坐标开环CNC系统 中应用。
(一) 原理
第1章 数控插补与刀补计算原理
学习目标
• 数控插补 • 刀补计算原理
1.1 数控插补 -- 运动轨迹的插补原理
1、运动轨迹插补的概念 在数控加工中,一般已知运动轨迹的起点 坐标、终点坐标和曲线方程,如何使切削加 工运动沿着预定轨迹移动呢?
数控系统根据这些信息实时地计算出各个 中间点的坐标,通常把这个过程称为“插 补”。 插补实质上是根据有限的信息完成“数据 点的密化”工作。
1)判别函数及判别条件 • 若P点在圆弧上,则: • X2+Y2=R2 • 若P点在圆弧外,则: • X2+Y2>R2 • 若P点在圆弧内,则: • X2+Y2<R2 定义F= X2+Y2-R2为偏差函数, 则 可得到如下结论: • F=0 动点在圆弧上 • F> 0 动点在圆弧外 • F<0 动点在圆弧内
i=3<N
i=4<N i=5<N i=6<N i=7<N i=8=N 到达 终点
Y A(5,3) 8
5
4 3
6
7
2
O 1
X
逐点比较法直线插补轨迹
4、四个象限直线插补进给方向
以II象限为例,直线起点在原点O,
终点位于A(-Xe,Ye)。 设点P(-Xi,Yi)为任一动点。 F≥0时向-X轴进给, Xi+1= Xi +1 , Yi+1 = Yi Fi+1= XeYi – Xi+1Ye= XeYi – (Xi+1)Ye = XeYi – XiYe - Ye=Fi – Ye F<0时向+Y轴进给, Xi+1= Xi, Yi+1 = Yi +1 Fi+1= XeYi+1 – XiYe= Xe(Yi+1) – XiYe = XeYi – XiYe +Xe=Fi + Xe
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档