数控系统和插补原理
数控机床插补原理

对圆弧,提供起点、终点、顺圆或逆圆、以及圆心相对于起点的位置。为满
足零件几何尺寸精度要求,必须在刀具(或工件)运动过程中实时计算出满足 线形和进给速度要求的若干中间点(在起点和终点之间),这就是数控技术中
插补(Interpolation)的概念。据此可知,插补就是根据给定进给速度和给定
轮廓线形的要求,在轮廓已知点之间,确定一些中间点的方法,这种方法称 为插补方法或插补原理。
Xm+1=Xm+1, Ym+1=Ym
新的偏差为
Fm+1=Ym+1Xe-Xm+1Ye=Fm-Ye
若Fm<0时,为了逼近给定轨迹,应向+Y方向进给一步,走一步后新的坐标值为
Xm+1=Xm, Ym+1=Ym +1
新的偏差为
Fm+1=Fm+Xe
4. 终点判别法
逐点比较法的终点判断有多种方法,下面主要介绍两种:
直到∑为零时,就到了终点。
2.2
不同象限的直线插补计算
上面讨论的为第一象限的直线插补计算方法,其它三个象
限的直线插补计算法,可以用相同的原理获得,表5-1列出了
四个象限的直线插补时的偏差计算公式和进给脉冲方向,计 算时,公式中Xe,Ye均用绝对值。
表1-1 四个象限的直线插补计算
第5章 数控插补原理

3.时间分割法插补精度 直线插补时,轮廓步长与被加工直线重合,没有插 补误差。
圆弧插补时,轮廓步长作为弦线或割线对圆弧进行 逼近,存在半径误差。
Y A(Xe,Ye) l l △X β O l △Y
α
第5章 数控装置的轨迹控制原理
FT l er 8r 8r
2
2
式中 er——最大径向误差; r——圆弧半径。 圆弧插补时的半径误差er与圆弧半径r成反比,与插补周期T和进 给速度F 的平方成正比。 插补周期是固定的,该误差取决于进给速度和圆弧半径。 当加工圆弧半径确定后,为了使径向误差不超过允许值,对进给 速度有一个限制。 例如:当要求er≤1μ m,插补周期为T=8ms,则进给速度为:
第5章 数控装置的轨迹控制原理
5.2 脉冲增量插补
-------逐点比较法
插补原理:每次仅向一个坐标轴输 出一个进给脉冲,每走一步都要通 过偏差计算,判断偏差点的瞬时坐 标同规定加工轨迹之间的偏差,然 后决定下一步的进给方向。 每个插补循环由四个步骤组成。
Y P1 P2 B
A 0
P0(x,y)
X 终点到?
设刀具由A点移动到B点,A(Xi-1,Yi-1 )为圆弧上一插补 点, B(Xi,Yi)为下一插补点。AP为A点的切线,AB为本次插补的合成 进给量,AB=f。M为AB之中点。 通过计算可以求得下一插补点B点的坐标值
X i X i1 X
Yi Yi 1 Y
第5章 数控装置的轨迹控制原理
∑=5-1=4 ∑=4-1=3 ∑=3-1=2
9
10
F8>0
F9>0
-X
-X
F9=4-2×2+1=1,X9=2-1=1,Y9=5
数控机床插补原理

3.4.3.偏差计算 3.4.3.
进给一步后,计算新加工点与规定的 轮 廓的新偏差,为下一次偏差判别做准备, 根据偏差判别的结果给出计算方法. 当F≥0时,为F-Y,即沿+X方向走一步; 当F<0时,为F+X,即沿方+Y向走一步;
宋成伟
3.4.4.终点判别 3.4.4.
判断加工点是否到达终点,若已到 终点,则停止插补,否则再继续按此四 个节拍继续进行插补. 1.讨论累计步数∑的问题. 2.讨论终点坐标时所要完成的插补步数 的问题.
宋成伟
逐点比较法既可以实现直线 插补也可以实现圆弧等插补,它 的特点是运算直观,插补误差小 于一个脉冲当量,输出脉冲均匀 ,速度变化小,调节方便,因此 在两个坐标开环的CNC系统中应 用比较普遍.
宋成伟
该方法一般不用于多轴联动,应用范围 有一定限制.它的算法特点是: 3.2.1.1.每次插补的结果仅产生一个单 位的位移增量(一个脉冲当量),以一个 脉冲的方式输出给步进电机,采用以用折 线逼近曲线的思维方式.
宋成伟
3.2.3.3.该算法比脉冲增量插补算 法较为复杂,对计算机运算速度有 一定要求. 它主要用于交,直流伺服电机驱 动的闭环,半闭环CNC系统.也可 用于步进电动机开环系统.
宋成伟
3.4.直线插补计算 Y .
这种插补方法是以 阶梯折线来逼近直线和Ye 圆弧等曲线的,而阶梯 折线与规定的加工直线 或圆弧之间的最大误差 不超过一个脉冲当量,Ym 因此如果数控机床的脉 冲当量足够小,就能够 满足一定的加工精度的 0.0 要求.
宋成伟
使用数据采样插补的数控系统, 其位置伺服通过计算机及测量装置 构成闭环.计算机定时地对反馈回 路采样,采样的数据与插补程序所 产生的指令数据相比较,用其误差 信号输出去驱动伺服电动机.采样 周期一般为10ms左右.
数控机床插补原理

X轴实际位置 X轴位置
比较
X坐标轴的位置增量/本周期
插 补 程 序
X轴位置 跟踪误差
Y坐标轴的位置增量/本周期
Y轴位置
采样反馈
比较
Y轴位置 跟踪误差
Y轴实际位置
伺 服 位 置 控 制 软 件
X轴 速度
X 驱 动 Y 驱 动
Y轴 速度
2插补的分类
2.4数据采样插补算法分类
1、直接函数法
数 据 采 样 插 补 算 法
Σ =5
Σ =4 Σ =3
6
7 8
F5<0
F6>0 F7<0
+y
-x -x
F6=F5+2y5+1=4
F7=F6-2x6+1=1 F8=F7-2x7+1=0
x6=4, y6=0
x7=4, y7=0 x8=4, y8=0
Σ =2
Σ =1 Σ =0
四、总结
插补原理,就是根据加工要求,确定出起 点和终点坐标之间的中间点,进而控制刀具 沿规定的轨迹运动,以加工出规定的轮廓的 方法。
X i 1 X i 1 2 2 2 Fi 1 ( X i 1) Yi R Fi 2 X i 1
3.3.4终点判别
双向计数:Σ=|Xb-Xa|+|Yb-Ya|,Σ=0停止 单向计数:Σ=max{|Xb-Xa|,|Yb-Ya|},Σ=0停止 分别计数:Σ1=|Xb-Xa|,Σ2=|Yb-Ya|,Σ1&Σ2=0停止
y
4 2 2 3
E(4,2)
o
1 1
x
2.投影法(单向计数) 取X方向和Y方向最多的步数作为计 数长度,此方向每走一步减一,直 到减为0停止。 Σ=max{|Xe|,|Ye|} Σ=0插补停止
数控机床装置的插补原理

▪ ④终点判别:
▪ 可采用二种方法,一是每走一步判断最大坐标的终点坐标 值(绝对值)与该坐标累计步数坐标值之差是否为零,若 等于零,插补结束。二是把每个程序段中的总步数求出来, 即N=Xe+Ye,每走一步,进行N-1,直到N=0时为止。因 而直线插补方法可归纳为:
▪ 当F0时,沿+X方向走一步,然后计算新的偏差和终点判 别计算
▪ c:只设置一个计数器J,存入两坐标方向的进 给总步数之和,无论X还是Y进了一步,J就减1, 直至J=0,表示达到终点。
▪ d:设置一个长度计数器J,存入某个选定计数 方向的计数长度,加工时,该方向每进一步,J 就减去1,直至J=0,表示达到终点。
▪ 加工直线时,计数方向的选取原则是:取终点坐 标值较大(即进给距离较大)的坐标方向作为计 数方向。
▪ 其中(Xi,Yi)为第一象限内任一点坐标, Y
▪ 根据动点所在区域不同,有下列三种情况:
▪
F>0
动点在圆弧外
▪
F=0
动点在圆弧上
▪
F<0
动点在圆弧内
X
▪ 设圆弧上任点坐标为(X,Y),则下式成
立:
( x 2 y 2 ) ( xo2 yo2 ) 0
选择判别函数F为
F ( xi2 yi2 ) ( xo2 yo2 )
其中(Xi,Yi)为第一象限内任一点坐标,
根据动点所在区域不同,有下列三种情况:
F>0
动点在圆弧外
F=0
动点在圆弧上
F<0
动点在圆弧内
我们把F〉0和F=0合并在一起考虑,按下述原则,就可以实现第一象限逆时针方
▪ F(x,y)>0,点在曲线上方;
▪ F(x,y)=0,点在曲线上;
数控系统插补的方法和原理

数控系统插补的方法和原理数控机床上进行加工的各种工件,大部分由直线和圆弧构成。
因此,大多数数控装置都具有直线和圆弧的插补功能。
对于非圆弧曲线轮廓轨迹,可以用微小的直线段或圆弧段来拟合。
插补的任务就是要根据进给速度的要求,在轮廓起点和终点之间计算出若干中间掌握点的坐标值。
由于每个中间点计算的时间直接影响数控装置的掌握速度,而插补中间点的计算精度又影响整个数控系统的精度,所以插补算法对整个数控系统的性能至关重要,也就是说数控装置掌握软件的核心是插补。
插补的方法和原理许多,依据数控系统输出到伺服驱动装置的信号的不同,插补方法可归纳为脉冲增量插补和数据采样插补两种类型。
一、脉冲增量插补这类插补算法是以脉冲形式输出,每次插补运算一次,最多给每一轴一个进给脉冲。
把每次插补运算产生的指令脉冲输出到伺服系统,以驱动工作台运动。
一个脉冲产生的进给轴移动量叫脉冲当量,用δ表示。
脉冲当量是脉冲安排计算的基本单位,依据加工的精度选择,一般机床取δ=0.01mm,较为精密的机床取δ=1μm或0.1μm 。
插补误差不得大于一个脉冲当量。
这种方法掌握精度和进给速度低,主要运用于以步进电动机为驱动装置的开环掌握系统中。
二、数据采样插补数据采样插补又称时间标量插补或数字增量插补。
这类插补算法的特点是数控装置产生的不是单个脉冲,而是数字量。
插补运算分两步完成。
第一步为粗插补,它是在给定起点和终点的曲线之间插入若干个点,即用若干条微小直线段来拟合给定曲线,每一微小直线段的长度△L 都相等,且与给定进给速度有关。
粗插补时每一微小直线段的长度△L 与进给速度F和插补T周期有关,即△L=FT。
图1 数据采样插补其次步为精插补,它是在粗插补算出的每一微小直线上再作“数据点的密化”工作。
这一步相当于对直线的脉冲增量插补。
数据采样插补方法适用于闭环、半闭环的直流或沟通伺服电动机为驱动装置的位置采样掌握系统中。
数控原理与系统——插补和刀补计算原理

一、逐点比较法直线插补 y
2. 算法分析(第Ⅰ 象限)
偏差判别
直线上 直线上方
y j ye xi xe
y j ye xi xe
xe y j xi ye 0
o
xe y j xi ye 0
A(xe,ye) F>0 P(xi,yj) F<0
x
直线下方 y j ye
xi xe
xe y j xi ye 0
一、逐点比较法直线插补
2. 算法分析(第Ⅰ 象限)
终点比较
用Xe+Ye作为计数器,每走一步对计数器进行减1计算, 直到计数器为零为止。
总结
Fij xe y j xi ye
第一拍 判别 第二拍 进给 第三拍 运算 第四拍 比较
Fij 0
Fij 0
x
y
Fi1, j Fi, j ye
Fi , j1 Fi , j xe
1. 基本原理
在刀具按要求轨迹运动加工零件轮廓的过程中,不 断比较刀具与被加工零件轮廓之间的相对位置,并根据 比较结果决定下一步的进给方向,使刀具向减小误差的 方向进给。其算法最大偏差不会超过一个脉冲当量δ。
每进给一步需要四个节拍: 偏差判别 坐标进给 新偏差计算
终点比较
数控机床原理与系统 §2-2 逐点比较法
1. 插补的定义
数据密集化的过程。数控系统根据输入的基本 数据(直线起点、终点坐标,圆弧圆心、起点、终 点坐标、进给速度等)运用一定的算法,自动的在 有限坐标点之间形成一系列的坐标数据,从而自动 的对各坐标轴进行脉冲分配,完成整个线段的轨迹 分析,以满足加工精度的要求。
要求:实时性好,算法误差小、精度高、速度均匀性好
Fi1, j Fi, j 2 xi 1 Fi, j1 Fi, j 2 y j 1
数控机床的插补原

多项式插补的优缺点
优点
多项式插补能够生成光滑的曲线,适用于复杂形状的加工;可以通过增加控制点来提高插补精度;可以处理多种 类型的插补需求。
缺点
计算量大,需要较高的计算能力;对于某些特殊形状的加工,可能需要特殊的多项式函数形式;需要精确的已知 数据点,否则可能导致插补误差较大。
05
样条插补
样条插补的定义
样条曲线法
样条曲线法是一种更加高级的插补方法,它使用多项式样 条曲线来描述加工路径,能够实现更加复杂的形状加工, 并提高加工精度和表面质量。
插补算法的精度和效率
精度
插补算法的精度是衡量其性能的重要指标之一。高精度的插 补算法能够生成更加精确的路径,从而提高加工精度和表面 质量。
效率
插补算法的效率也是需要考虑的因素之一。高效的插补算法 能够缩短加工时间,从而提高生产效率。在实际应用中,需 要根据具体需求选择精度和效率之间的平衡点。
确定已知数据点
首先需要确定起始点和终止点的坐标位置,以及可能的其他控制点。
构造多项式函数
根据已知数据点,选择合适的多项式函数形式,如线性函数、二次函 数或更高次的多项式。
求解插值方程
通过求解插值方程,得到多项式函数的系数,使得该函数在已知数据 点处的值与实际值相等。
生成加工路径
将多项式函数与机床的坐标系统关联起来,生成加工路径,控制机床 的运动轨迹。
04
多项式插补
多项式插补的定义
多项式插补是一种数学方法,用于在 两个已知数据点之间生成一条光滑曲 线。它通过构造一个多项式函数来逼 近给定的数据点,使得该函数在数据 点处的值与实际值尽可能接近。
VS
在数控机床中,多项式插补被用于生 成零件加工的路径,使得加工过程更 加精确和光滑。