国内外军用电子元器件质量等级及对应情况(精编文档).doc

国内外军用电子元器件质量等级及对应情况(精编文档).doc
国内外军用电子元器件质量等级及对应情况(精编文档).doc

【最新整理,下载后即可编辑】

国外军用电子元器件质量等级与国内对应情况为了保证元器件的质量,我国制定了一系列的元器件标准。在上世纪70年代末期制定了“七专”7905技术协议和80年代初制定了“七专”8406技术协议,已具备了军用器件标准的雏形,但标准是在改革开放之前制定的,有很多局限性,很难与国际接轨。从80年代开始,我国标准化部门参照了美国军用标准(MIL)体系建立了GJB体系,元器件的标准有规范、标准、指导性文件等三种形式。

1.国内军用元器件质量分级

2.美国军标质量等级体系:

MIL-PRF-19500 半导体器件试验总规范(依次低→高等级)

单片微电路规范(依次低→高等级)

照政府批准文件,包括卖方等效的B级要求进行采购。

(2)B-1级:完全符合MIL-STD-883(微电子器件试验方法和程序)的1.2.1节所要求,并按照标准军用图样(SMD –Standard Microcicuit Drawing),国防电子供应中心(DESC –Defence Electronic Supply Center)图样或政府批准的其它文件进行采购。即通常称883级,器件上有5962 –xxx号。

(3)S-1级:完全按照MIL-STD-975(NASA标准的电子电气和机电源器件目录)或MIL-STD-1547(航天飞行器和运载火箭用元器件、材料和工艺技术要求)进行采购,并有采购机关的规范批准。

MIL-PRF-38534D 混合集成电路规范(依次低→高等级)

电阻、电容、电感元件MIL 标准中有可靠性指标的元件失效等级分五级

MIL 标准中有可靠性指标的失效率等级和失效率的对应关系

3.欧空局元器件

半导体分立器件:

ESA/SCC(Europe Space Agency/Space Componet Cooperation)5000标准

试验等级:B级、C级(从高到低)

批接收等级:1级、2级、3级(从高到低)

微电路:

ESA/SCC(Europe Space Agency/Space Componet Cooperation)9000标准

试验等级:B级、C级(从高到低)

批接收等级:1级、2级、3级(从高到低)

电阻、电容、电感器件:

ESA/SCC(Europe Space Agency/Space Componet Cooperation)3000和4000标准

试验等级:B级、C级(从高到低)

批接收等级:1级、2级、3级(从高到低)

4.国外军用元器件与我国军用元器件质量等级对应关系

半导体分立器件质量等级对应关系

微电路质量对应等级

阻容电感失效率等级对应

军用电子元器件的质量等级

电子元器件的质量等级汇总整理张增照

目录 1元器件质量保证有关标准............................................................................... 错误!未定义书签。 1.1规范....................................................................................... 错误!未定义书签。 1.2标准....................................................................................... 错误!未定义书签。2可靠性表征方式............................................................................................... 错误!未定义书签。 2.1元件的失效率等级............................................................... 错误!未定义书签。 2.2产品保证等级....................................................................... 错误!未定义书签。3元器件的质量认证........................................................................................... 错误!未定义书签。4元器件的质量等级........................................................................................... 错误!未定义书签。 4.1用于元器件生产控制、选择和采购的质量等级............... 错误!未定义书签。 4.2用于电子设备可靠性预计的质量等级............................... 错误!未定义书签。 4.3元器件两种质量等级的比较............................................... 错误!未定义书签。5元器件的选用与质量标记............................................................................... 错误!未定义书签。 5.1元器件的选用....................................................................... 错误!未定义书签。 5.2质量标记............................................................................... 错误!未定义书签。6结束语............................................................................................................... 错误!未定义书签。

2013年电子元器件终端设备行业分析报告

2013年电子元器件终端设备行业分析报告 2013年12月

目录 一、终端增速放缓 (3) 1、智能手机市场增速放缓 (3) 2、平板电脑市场增速谨慎乐观 (5) 3、笔记本电脑市场持续下滑 (6) 4、平板电视市场增速下滑 (7) 二、终端创新不断 (8) 1、可穿戴产品渐行渐近 (8) 2、Tesla电动车变幻想为现实 (10) 3、移动支付蓄势待发 (12)

电子元器件产品应用领域主要集中在传统台式电脑、终端设备、工控设备、汽车电子等领域,其中终端设备是其重要应用领域。随着各家终端厂商创新产品的推出与成熟产品的放量,促进了市场的繁荣。同时,市场的繁荣将提升对电子元器件产品的需求,拉动电子行业的快速增长,行业景气度有望回升。 一、终端增速放缓 1、智能手机市场增速放缓 在新品推出和消费升级的双重推动下,全球智能手机出货量不断被刷新。IDC最新数据显示,全球智能手机出货量2013年预计将超过10亿部,较2012年增长39.3%。随着智能手机总量的持续增长,部分成熟市场已接近饱和,而新兴市场对于低成本设备的需求将继续推动智能手机市场的成长,但全球智能手机市场整体增速放缓。IDC 数据进一步显示,从2013年至2017年,全球智能手机出货量将以18.4%复合年增长率(CAGR)成长,其中亚太地区、拉丁美洲、中东和非洲在内的新兴市场的增长率都将超过整体市场的增长率,亚太地区的市场份额将有所增长,发达市场出货量也将增长,市场份额则会萎缩,全球年均增速放缓,并预计2017年出货量将达到17亿部。

随着智能手机出货量放缓,其平均售价(ASP)出现下滑。Android 系统推出了各种交钥匙解决方案,降低了技术进入门槛,使得部分新兴厂商顺利进入智能手机市场。除了苹果、三星等少数厂商专注于高端设备,其余众多手机厂商都聚焦于低端设备以建立品牌知名度。IDC数据显示,预计2013年智能手机的ASP进一步下滑至337美元,相对2012年的387美元下降12.8%,未来几年这一趋势仍将延续,2017年智能手机的ASP将下降至265美元。

国内外军用电子元器件质量等级及对应情况

国外军用电子元器件质量等级与国内对应情况 为了保证元器件的质量,我国制定了一系列的元器件标准。在上世纪70年代末期制定了“七专”7905技术协议和80年代初制定了“七专”8406技术协议,已具备了军用器件标准的雏形,但标准是在改革开放之前制定的,有很多局限性,很难与国际接轨。从80年代开始,我国标准化部门参照了美国军用标准(MIL)体系建立了GJB体系,元器件的标准有规范、标准、指导性文件等三种形式。 2.美国军标质量等级体系: 等效的B级要求进行采购。 (2)B-1级:完全符合MIL-STD-883(微电子器件试验方法和程序)的1.2.1节所要求,并按照标准军用图样(SMD –Standard Microcicuit Drawing),国防电子供应中心(DESC –Defence Electronic Supply Center)图样或政府批准的其它文件进行采购。即通常称883级,器件上有5962 –xxx号。 (3)S-1级:完全按照MIL-STD-975(NASA标准的电子电气和机电源器件目录)或MIL-STD-1547(航天飞行器和运载火箭用元器件、材料和工艺技术要求)进行采购,并有采购机关的规范

批准。 电阻、电容、电感元件MIL 标准中有可靠性指标的元件失效等级分五级 3.欧空局元器件 半导体分立器件: ESA/SCC(Europe Space Agency/Space Componet Cooperation)5000标准 试验等级:B级、C级(从高到低) 批接收等级:1级、2级、3级(从高到低) 微电路: ESA/SCC(Europe Space Agency/Space Componet Cooperation)9000标准 试验等级:B级、C级(从高到低) 批接收等级:1级、2级、3级(从高到低) 电阻、电容、电感器件: ESA/SCC(Europe Space Agency/Space Componet Cooperation)3000和4000标准试验等级:B级、C级(从高到低) 批接收等级:1级、2级、3级(从高到低) 4.国外军用元器件与我国军用元器件质量等级对应关系 微电路质量对应等级

航天电子产品中的电子元器件质量控制

航天电子产品中的电子元器件质量控制 伴随当前我国航天载人工程及研制逐步向智能化、电子化的方向发展,电子元器件的作用也越来越突出,中国航天六十余年的发展历程中,电子元器件的质量控制及可靠性问题备受关注。多年来,作为航天复杂庞大系统的基础之一,元器件依然是质量控制保证工作的重点,其特征是用户牵引、问题导向、统一认识。本文重点分析和研究在航天产品中电子特殊性及质量控制。 1电子元器件的定义与现状 1.1电子元器件的定义 电子元器件是指在电子设备或者电子电路当中进行电子、光电、机电、电气控制的基本元器件,需要符合相关的规定要求,由一个或多个单位共同组成,具有完整性,在不进行暴力破坏的条件下无法对其进行分解。 1.2加强电子元器件的可靠性的重要意义 通过大量电子整机故障统计分析发现电子元器件无法工作是造成整机出现故障的重要原因。美国惠普公司曾经分析整机在保用过程中出现问题的主要原因,其中,3/4是由元器件故障产生的。法国阿里安火箭在8次发射失败当中,元器件故障导致了其中7次发射失败。如果,某个设备当中的元器件有15,000个,为了保证系统的可靠性达到95%,需要保证每个元器件的可靠度达到99.99987%,所以在应用科学技术、卫星运载火箭和导弹武器为基础的航天领域发展过程中,元器件的质量稳定性具有非常重要的作用。战略导弹以及运载火箭等

的控制系统、遥测系统、地面设备等都需要成千上万的电子元器件稳定地工作,这些元器件对航天器在工作过程中的可靠性和质量有着直接影响,因此加强电子元器件的质量控制及可靠性逐步成为航天工作者需要重点关注的问题。 2航天对电子元器件的特殊要求 2.1高可靠性 在进行测试的过程中,依照元器件的适应环境进行分析,如果一批电子元器件在实验室环境下进行使用产生故障概率为1,那么这批电子元器件在飞机使用过程中出现的故障概率为6.5,在火箭飞行过程中出现故障的可能性能达到80。这些主要是由于使用过程中环境条件的不同,在电子元件失效方面的情况也各不相同。依照短期、中期、长期工作寿命,在器件失效方面需要控制在100非特,10非特,1非特,所以加强元器件的可靠性是非常关键的。 2.2特殊的环境适应性 在恶劣条件下进行工作时,航天产品的工作和储存都需要较高的要求。在航天器的零部件当中,通常来说,电子元器件非常精密,相对较为脆弱,在使用中面临指非常严苛的条件,因为需要经受振动、冲击、潮热、辐射等各种不良环境,因此需要加强管理,保证元器件可靠性的要求逐步提高。而不同用途的战略武器在烟雾抗湿热方面的要求也较为特殊,需要在这种极端恶劣的环境下具有较强的适应能力。 2.3重量轻、体积小、功耗低 为了提高效率,让航天产品在运行发射过程中消耗的能量降低,

国外军用电子元器件质量等级与国内对应一览表

国外军用电子元器件质量等级与国内对应一览 表 The manuscript was revised on the evening of 2021

国外军用电子元器件质量等级与国内对应一览表 为了保证元器件的质量,我国制定了一系列的元器件标准。在上世纪70年代末期制定了“七专”7905技术协议和80年代初制定了“七专”8406技术协议,已具备了军用器件标准的雏形,但标准是在改革开放之前制定的,有很多局限性,很难与国际接轨。 从80年代开始,我国标准化部门参照了美国军用标准(MIL)体系建立了GJB 体系,元器件的标准有规范、标准、指导性文件等三种形式。 一、国内军用元器件质量分级 二、美国军标质量等级体系: MIL-PRF-19500半导体器件试验总规范(依次低→高等级) 单片微电路规范(依次低→高等级) B-2级:不完全符合MIL-STD-883的节的要求,并按照政府批准文件,包括卖方等效的B级要求进行采购。 B-1级:完全符合MIL-STD-883(微电子器件试验方法和程序)的节所要求,并按照标准军用图样(SMD – Standard Microcicuit Drawing),国防电子供应

中心(DESC –DefenceElectronic Supply Center)图样或政府批准的其它文件进行采购。即通常称883级,器件上有5962 – xxx号。 S-1级:完全按照MIL-STD-975(NASA标准的电子电气和机电源器件目录)或MIL-STD-1547(航天飞行器和运载火箭用元器件、材料和工艺技术要求)进行采购,并有采购机关的规范批准。 MIL-PRF-38534D混合集成电路规范(依次低→高等级) 电阻、电容、电感元件 MIL 标准中有可靠性指标的元件失效等级分五级MIL 标准中有可靠性指标的失效率等级和失效率的对应关系 三、欧空局元器件 半导体分立器件: ESA/SCC(Europe SpaceAgency/Space Componet Cooperation)5000标准 试验等级:B级、C级(从高到低) 批接收等级:1级、2级、3级(从高到低) 微电路: ESA/SCC(Europe SpaceAgency/Space Componet Cooperation)9000标准 试验等级:B级、C级(从高到低) 批接收等级:1级、2级、3级(从高到低) 电阻、电容、电感器件: ESA/SCC(Europe SpaceAgency/Space Componet Cooperation)3000和4000标准 试验等级:B级、C级(从高到低) 批接收等级:1级、2级、3级(从高到低) 四、国外军用元器件与我国军用元器件质量等级对应关系 半导体分立器件质量等级对应关系

常用电子元器件培训资料

常用电子元器件参考资料第一节部分电气图形符号

二.半导体管 三.其它电气图形符号

第二节常用电子元器件型号命名法及主要技术参数一.电阻器和电位器 1.电阻器和电位器的型号命名方法 示例: (1)精密金属膜电阻器 R J7 3 第四部分:序号 第三部分:类别(精密) 第二部分:材料(金属膜) 第一部分:主称(电阻器) (2) 多圈线绕电位器 W X D 3 第四部分:序号 第三部分:类别(多圈) 第二部分:材料(线绕) 第一部分:主称(电位器)

2.电阻器的主要技术指标 (1) 额定功率 电阻器在电路中长时间连续工作不损坏,或不显著改变其性能所允许消耗的最大功率称为电阻器的额定功率。电阻器的额定功率并不是电阻器在电路中工作时一定要消耗的功率,而是电阻器在电路工作中所允许消耗的最大功率。不同类型的电阻具有不同系列的额定功率,如表2所示。 (2) 标称阻值 阻值是电阻的主要参数之一,不同类型的电阻,阻值范围不同,不同精度的电阻其阻值系列亦不同。根据国家规范,常用的标称电阻值系列如表3所示。E24、E12和E6系列也适用于电位器和电容器。 (3) 允许误差等级 3.电阻器的标志内容及方法 (1)文字符号直标法:用阿拉伯数字和文字符号两者有规律的组合来表示标称阻值,额定功率、允许误差等级等。符号前面的数字表示整数阻值,后面的数字依次表示第一位小数阻值和第二位小数阻值,其文字符号所表示的单位如表5所示。如1R5表示1.5Ω,2K7表示2.7kΩ, 表5

例如: RJ71-0.125-5k1-II 允许误差±10% 标称阻值(5.1kΩ) 额定功率1/8W 型号 由标号可知,它是精密金属膜电阻器,额定功率为1/8W,标称阻值为5.1kΩ,允许误差为±10%。 (2)色标法:色标法是将电阻器的类别及主要技术参数的数值用颜色(色环或色点)标注在它的外表面上。色标电阻(色环电阻)器可分为三环、四环、五环三种标法。其含义如图1和图2所示。 标称值第一位有效数字 标称值第二位有效数字 标称值有效数字后0的个数 允许误差 图1 两位有效数字阻值的色环表示法 三色环电阻器的色环表示标称电阻值(允许误差均为±20%)。例如,色环为棕黑红,表示10?102=1.0kΩ±20%的电阻器。 四色环电阻器的色环表示标称值(二位有效数字)及精度。例如,色环为棕绿橙金表示15?103=15kΩ±5%的电阻器。 五色环电阻器的色环表示标称值(三位有效数字)及精度。例如,色环为红紫绿黄棕表示275?104=2.75MΩ±1%的电阻器。

电子元器件行业分析报告

电子元器件行业分析报告

目录 一、2012年电子元器件行业行情回顾 (3) 二、电子行业上游景气度平淡,下游需求冷暖不一 (4) 1、先行指标显示景气度平淡 (4) 2、下游需求总量下滑,智能终端风景独好 (5) (1)PC 增长停滞,平板异军突起 (5) (2)手机销量同比衰退,智能机有亮点 (7) (3)电视市场增速趋缓,智能电视渗透率攀升 (8) 三、市场结构性变化下的智能终端产业链 (9) 1、智能移动终端软硬件门槛明显降低,呈现两极分化趋势 (10) (1)高端市场:苹果优势仍存,但在逐渐减弱 (11) (2)中低端智能移动终端快速向新兴市场下沉 (12) 2、苹果筹谋“最后一屏”有望引爆智能电视需求 (13) (1)智能电视首先带动芯片需求增长 (14) (2)语音控制推动高品质电声器件需求 (15) (3)体感操作基于影像识别,光学器件是关键 (17) 四、投资策略及重点公司分析 (18) 1、行业判断 (18) (1)基本面:成长股有望从下游消费电子增长中获益,周期股尚需时机 (18) (2)估值:PE 低于历史均值,溢价率有所回落 (19) 2、投资策略 (20) 3、重点公司 (21) (1)歌尔声学(002241):无新业务不富,无大客户不稳 (21) (2)欧菲光(002456):垂直一体化布局,成本优势明显 (23) (3)水晶光电(002273):产品组合优化,新品市场开拓 (24) 五、主要风险 (25)

一、2012年电子元器件行业行情回顾 2012 年年初以来,A 股电子行业上涨1.13%(截至12 月19 日),年度表现位于中信29 个一级行业的第10 位。同期上证综指下跌1.69%,沪深300 上涨1.08%,电子板块走势强于大盘。但全年一波三折:在2011 年连续四个季度大幅跑输大盘之后,今年一季度为行业景气度的低点,电子板块仍然弱于大盘。二、三季度,电子板块明显跑赢大盘。但是9 月-12 月初的调整中,电子板块由于溢价率相对全部A 股仍然较高,跌幅居前。12 月4 日以来的反弹中,电子板块与大盘的涨幅相当。在电子的子板块当中,年度表现最好的是光学元件和电子系统组装。

电子元器件可靠性评价与质量控制策略研究

电子元器件可靠性评价与质量控制策略研究 摘要:电子元器件是电子产品中重要的一个组成部分,是电子产品和相关设备 正常运行的基础。统计表明,最常出现的故障原因大多数都和电子元器件有关, 为确保电子产品运行稳定性,我们必须注意电子元器件的可靠性评价与质量控制。对于此,本文分析了电子元器件可靠性评价,并提出了电子元器件质量控制策略,以供参考。 关键词:电子元器件;可靠性评价;质量控制策略 1电子元器件的可靠性评价 1.1芯片级可靠性评价方法 芯片级可靠性评价方法,即WLR评价方法,指的是在芯片的生产中,对芯片 的失效模式进行的评价,从根本上提高芯片的可靠性和质量,其中运用的是工艺 监测的方式。通过监测数据,可以对集成电路的电子效应能力和与时间有关的击 穿的可靠性进行准确的、科学的评价。在热电应力的作用下,对芯片上金属化层 上的数据进行检测,通过分析相关数据,来评价系统电路的可靠性。 1.2微电子测试结构可靠性评价方法 近些年,微电子测试结构在集成电路生产中是常见的工艺监测手段。在可靠 性评价技术不断发展的今天,微电子测试结构也作为对集成电路可靠性评价的一 种方式,它不仅可以应用在电子产品的研发阶段,还可以应用在生产阶段,在不 同的阶段进行不同的可靠性评价。对于不同器件的失效模式,再结合元器件的结 构特点,可以设计出不同的微电子结构图形,而这些测试结构图形,不仅仅能够 在工艺中进行测试,同时也可以将其进行封装,并施加应力来进行可靠性的试验。通过测试所得到的相关数据,结合VLSI的结构,最终进行可靠性评价。 1.3表面贴装MOSFET产品失效案例分析 1)失效现象:已经测试合格的产品,经过生产线贴装后,电参数失效现象严重,产品短路,D、S之间漏电,失效率较高。 2)分析思路:由于电子产品的芯片面积大,对产品的耐潮湿等级和气密性也相对较高,所以在产品进行表面贴装时,会遇到应力匹配的问题。 3)分析方法:模拟SMT生产条件对同封装批次产品进行分析,采用超声扫 描仪(C—SAM)对产品进行离层扫描。 4)分析结论:通过对经过SMT工艺试验的产品抽样进行超声扫描,发现产 品载片区(PAD)与模塑料之间存在较为严重的离层现象。 对失效产品进行解剖,从图1和图2中可以看出,失效的芯片内部已经发生 裂纹。 从解剖结果来看,产品的表面进行贴装后,经过高温芯片内部发生了裂纹, 从而最终影响了电参数。 图1 红圈区域为裂纹 图2 芯片取下后呈断裂状 2电子元器件的质量控制策略 2.1加强电子元器件的可靠性筛选 电子元器件的固有可靠性,其根源是产品的可靠性设计保证,在设计制造的 过程中,由于多种因素的影响所致,使得生产出来的产品不能完全按照预期所想。

电子元器件的筛选与电子元器件质量控制

电子元器件的筛选与电子元器件质量控制 摘要:随着我国经济建设和电子技术的持续发展,电子行业也得到了相应的促 进和快速的发展,电子元器件在业内也受到了广泛地运用,其质量控制问题和筛 选技术受到了越来越多的重视,相关的分析研究和试验应用不断地在开展。 关键词:元器件;选择;质量 引言 电子元器件进行科学筛选的同时对电子元器件的质量也进行有效的控制来使 其性能得到充分的发挥。也就是说,电子元器件在厂家进行筛选之后其质量仍不 能满足使用者的要求,或者一些生产厂家根本就没有对电子元器件进行筛选等。 所以在对电子元器件进行筛选和质量控制就必须要重视,使其筛选的力度能进一 步得到提升,同时也能促进质量控制工作的完善。 1电子元器件的筛选概述 对电子元器件进行筛选的原因是厂家在进行筛选之后,没有满足用户对其质 量上的要求,因此就要对电子元器件在厂家筛选的基础上再一次进行筛选,同时 这也是对厂家筛选工作的补充和验证。电子元器件在成产时会受很多因素的影响,比如:人为因素、原材料、设备条件的限制、工艺条件等,这些因素都会使产品 无法全部满足用户要求的水平,同时这些因素也会导致部分电子元器件存在缺陷,而这些存在缺陷的产品,其使用寿命就会大大缩减,使之成为早期失效产品。因 此在对电子元器件进行筛选时就要选用不同的模式,使其通过有关的试验,进一 步来提高电子元器件在使用时的可靠性。电子元器件进行筛选的范围为厂家生产 的电子元器件没有规范使用筛选技术和相关流程,还有用户对电子元器件有特殊 的要求,但生产厂家自身的筛选条件和技术无法使用户得到满足,因此用户对厂 家电子元器件筛选的有效性和筛选技术有了质疑,要求对其使用科学的筛选方式 进行质量上的验证,从而实现对电子元器件质量上的控制。 2筛选概述 2.1原因 在元器件生产厂商进行相关元器件的筛选后,其质量仍不能达到用户的实际 应用要求时,会在其筛选的基础上让其他相关单位或使用方对元器件进行进一步 的筛选,这是对元器件生产厂商所做的筛选工作的进一步验证和补充。由于在元 器件的生产过程中存在许多的影响因素,如:原材料、工艺条件、人为因素、设 备条件的波动等,这造成了最终的元器件成品无法全部达到固定的用户预期的要 求水平,其中仍会有一部分存在缺陷或是不可靠因素的产品,而且其使用寿命也 会低于实际应用要求的使用寿命,成为早期失效产品。所以应对不同的失效模式 进行筛选并通过相关的试验进行剔除,从而对元器件的使用可靠性予以提高。 2.2适用范围 进行元器件筛选适用于元器件厂商对相关的元器件已经进行了一次筛选的情 况下仍不符合使用者的要求。对生产厂商提供的元器件根本没有进行筛选。生产 厂商所提供的元器件相关的筛选技术和流程不规范。使用者对元器件有着特殊的 需要,元器件厂商的筛选技术和条件无法得到满足。使用者对生产厂商的筛选技 术及筛选的有效性持有一定的质疑并需要进一步进行质量验证。所以需要通过科 学地方式选择筛选方式对电子元器件进行筛选,对其质量实现有效地控制。 3筛选方法 3.1功率老化

国外军用电子元器件质量等级与国内对应一览表

国外军用电子元器件质量等级与国内对应一览表 为了保证元器件的质量,我国制定了一系列的元器件标准。在上世纪70年代末期制定了“七专”7905技术协议和80年代初制定了“七专”8406技术协议,已具备了军用器件标准的雏形,但标准是在改革开放之前制定的,有很多局限性,很难与国际接轨。 从80年代开始,我国标准化部门参照了美国军用标准(MIL)体系建立了GJB体系,元器件的标准有规范、标准、指导性文件等三种形式。 一、国内军用元器件质量分级 二、美国军标质量等级体系: MIL-PRF-19500半导体器件试验总规范(依次低→高等级) 单片微电路规范(依次低→高等级) B-2级:不完全符合MIL-STD-883的1.2.1节的要求,并按照政府批准文件,包括卖方等效的B级要求进行采购。 B-1级:完全符合MIL-STD-883(微电子器件试验方法和程序)的1.2.1节所要求,并按照标准军用图样(SMD –Standard Microcicuit Drawing),国防电子供应中心(DESC –DefenceElectronic Supply Center)图样或政府批准的其它文件进行采购。即通常称883级,

器件上有5962 –xxx号。 S-1级:完全按照MIL-STD-975(NASA标准的电子电气和机电源器件目录)或MIL-STD-1547(航天飞行器和运载火箭用元器件、材料和工艺技术要求)进行采购,并有采购机关的规范批准。 MIL-PRF-38534D混合集成电路规范(依次低→高等级) 电阻、电容、电感元件MIL 标准中有可靠性指标的元件失效等级分五级 MIL 标准中有可靠性指标的失效率等级和失效率的对应关系 三、欧空局元器件 半导体分立器件: ESA/SCC(Europe SpaceAgency/Space Componet Cooperation)5000标准 试验等级:B级、C级(从高到低) 批接收等级:1级、2级、3级(从高到低) 微电路: ESA/SCC(Europe SpaceAgency/Space Componet Cooperation)9000标准 试验等级:B级、C级(从高到低) 批接收等级:1级、2级、3级(从高到低) 电阻、电容、电感器件: ESA/SCC(Europe SpaceAgency/Space Componet Cooperation)3000和4000标准 试验等级:B级、C级(从高到低) 批接收等级:1级、2级、3级(从高到低) 四、国外军用元器件与我国军用元器件质量等级对应关系 半导体分立器件质量等级对应关系

电子元件行业数据报告

电子元件(c4060)行业2004年5月标准化行业数据报告 行业状况摘要

主要规模指标发展趋势图 行业销售收入发展趋势图行业利润总额发展趋势图 月度主要赢利指标发展趋势行业资产收益率及相关指标发展趋势

2004年5月不同大区各细分行业销售收入综合对比图细分行业2004年5月主要规模指标数据对比 细分行业2004年5月主要规模指标及增长率电子元件的年度产量及增长率 主要产品价格指数同比分析

目录 行业状况摘要............................................................................................................................................................. I 第一部分:行业运行数据综合分析 (1) 第1章.行业综合运行数据 (1) .行业基础面分析 (1) 1.1.1.行业规模指标 (1) 1.1.2.赢利能力指标 (3) 1.1.3.经营发展能力月度指标 (5) 1.1.4.偿债能力指标 (5) .行业结构性分析 (6) 1.2.1.行业大区分布概况 (6) 1.2.2.行业省份分布概况 (8) 1.2.3.行业企业性质结构分析 (10) 1.2.4.行业销售收入集中度分析 (15) 1.2.5.行业利润总额集中度分析 (16) 1.2.6.行业总资产集中度分析 (16) .行业标杆企业分析 (16) 第2章.细分行业横向分析 (18) .细分行业基础面分析 (18) 2.1.1.细分行业规模指标 (18) 2.1.2.各细分行业盈利能力分析 (20) 2.1.3.各细分行业经营发展能力指标 (21)

电子元器件质量控制与可靠性分析关键技术总结

电子元器件质量控制与可靠性分析关键技术总结 1.研究背景及意义 1.1. 研究背景 电子元器件作为航天产品的重要组成部分,其性能好坏直接影响到整体系统的稳定性,所以近些年来对于电子元器件行业的质量要求也越来越严格。在目前的生产过程当中,质量保证方法基本上停留在事后检验的水平上,这种方式只能在一定程度上发现废品,但是很难预防废品的产生,而且在半成品、成品的检验过程当中仍然继续产生新的废品,这在很大程度上增加了企业产品的制造成本,给企业带来重大的经济损失。 此外,虽然企业拥有一定量的检验数据,但是这些检验数据来源广泛,异构性强,存在着严重的信息孤岛问题。企业缺乏必要的理论基础对这些数据进行合理有效的分析,也无法充分利用这些数据改进工艺生产流程,为质量控制提供指导。 1.2. 研究意义 电子元器件行业作为航天制造供应链中的一环,其质量问题对于整个后续系统的影响极大。在发现质量问题时如果能够准确把握到问题发生的原因,不仅对提高其自身的质量管理和生产管理水平具有重要意义,而且从长远的角度上看更能提高企业的核心竞争力。由于航天产品电子元器件的特殊性,存在着许多质量方面的问题函待解决。目前这类企业在质量管理控制方面存在如下特点: (1)典型的多品种小批量生产,质量管理难度大。航天产品的专一性高,通用性不强,单个产品精度要求极高,并且电子元器件产品的规格由较多参数决定,而每个参数都存在一定的变动范围。所以有必要采取某种手段,将产品以大类为基础进行质量管理和控制。 (2)生产的不确定性大。由于产品的规格众多,所以很难对特定种类的产品进行质量统计分析,通常只能凭经验进行投产。 (3)工艺过程中工序参数较多,质量波动不确定性大。对质量问题的发现停留在事后检验水平,无法及时有效的发现工序过程中存在的各种异常因素。 (4)过程质量检验自动化程度低,缺乏及时有效的实时数据采集系统。 (5)检验部门的检验数据量大,但是数据利用率低。 由此可以看到,电子元器件行业在质量管理方面存在着较多严重的问题,这些问题能否合理有效的解决,关系着企业未来是否能够更快更好的适应行业的发展要求。因此,有效利用数据采集及数据共享技术,将采集到的数据对产品进行质量管理及控制,最后开发出相应的质量管理软件或系统,是提高质量的管理能力的关键。 1.3. 国内外研究现状 1.3.1统计过程控制研究现状 在过去将近一个世纪的时间内,国内外很多学者在质量管理和控制技术研究领域做了大量工作,并取得了一系列的研究成果,其中一个很重要的方向就是统计过程控制(SPC: Statistical Process Control)技术的研究与应用推广。20世纪20年代,Shewhart在贝尔实验室开创了统计过程控制理论,随后又提出了监控过程的工具--控制图;基于统计学相关理论,道奇和罗米格在随后提出了抽样检验理论和抽样检查表,推动了统计过程控制的发展,在随后各个学者的研究过程中,都是以他们的相关理论为基础。 针对传统SPC的局限性,国内外的许多学者对SPC相关理论和技术进行了广泛的研究,

2013年电子元器件行业分析报告

2013年电子元器件行业分析报告 2013年1月

目录 一、2012年电子元器件行业行情回顾 (3) 二、电子行业上游景气度平淡,下游需求冷暖不一 (4) 1、先行指标显示景气度平淡 (4) 2、下游需求总量下滑,智能终端风景独好 (5) (1)PC 增长停滞,平板异军突起 (5) (2)手机销量同比衰退,智能机有亮点 (7) (3)电视市场增速趋缓,智能电视渗透率攀升 (8) 三、市场结构性变化下的智能终端产业链 (9) 1、智能移动终端软硬件门槛明显降低,呈现两极分化趋势 (10) (1)高端市场:苹果优势仍存,但在逐渐减弱 (11) (2)中低端智能移动终端快速向新兴市场下沉 (12) 2、苹果筹谋“最后一屏”有望引爆智能电视需求 (13) (1)智能电视首先带动芯片需求增长 (14) (2)语音控制推动高品质电声器件需求 (15) (3)体感操作基于影像识别,光学器件是关键 (17) 四、投资策略及重点公司分析 (18) 1、行业判断 (18) (1)基本面:成长股有望从下游消费电子增长中获益,周期股尚需时机 (18) (2)估值:PE 低于历史均值,溢价率有所回落 (19) 2、投资策略 (20) 3、重点公司 (21) (1)歌尔声学(002241):无新业务不富,无大客户不稳 (21) (2)欧菲光(002456):垂直一体化布局,成本优势明显 (23) (3)水晶光电(002273):产品组合优化,新品市场开拓 (24) 五、主要风险 (25)

一、2012年电子元器件行业行情回顾 2012 年年初以来,A 股电子行业上涨1.13%(截至12 月19 日),年度表现位于中信29 个一级行业的第10 位。同期上证综指下跌1.69%,沪深300 上涨1.08%,电子板块走势强于大盘。但全年一波三折:在2011 年连续四个季度大幅跑输大盘之后,今年一季度为行业景气度的低点,电子板块仍然弱于大盘。二、三季度,电子板块明显跑赢大盘。但是9 月-12 月初的调整中,电子板块由于溢价率相对全部A 股仍然较高,跌幅居前。12 月4 日以来的反弹中,电子板块与大盘的涨幅相当。在电子的子板块当中,年度表现最好的是光学元件和电子系统组装。

军用电子元器件的质量等年级

电子元器件的质量等级 汇总整理张增照

目录

元器件质量保证有关标准 为了保证军用元器件的质量,我国制订了一系列的元器件标准。在七十年代末期制订的“七专”7905技术协议和八十年代初期制订的“七专”8406技术条件(以下统称“七专”条件),“七专”技术条件是建立我国军用元器件标准的基础,目前按“七专”条件或其加严条件控制生产的元器件仍是航天等部门使用的主要品种。(注:“七专”指专人、专机、专料、专批、专检、专技、专卡) 根据发展的趋势,“七专”条件将逐步向元器件的国家军用标准(GJB)过渡。因此,以下将主要介绍元器件国家军用标准的有关情况。 从八十年代开始,我国军用标准化组织参照美国军用标准(MIL)体系建立了GJB体系,其中元器件的标准有规范、标准、指导性技术文件三种形式: a.规范—主要包括:元器件的总规范和详细规范,这两种规范统称产品规范。 b.标准—主要包括:试验和测量标准、质量保证大纲和生产线认证标准、元器件材料和零件标准、型号命名标准、文字和图形符号标准等; c.指导性技术文件—主要包括:指导正确选择和使用元器件的指南、用于电子设备可靠性预计的手册、元器件系列型谱等。 根据我国的具体情况,军标分为国家军用标准、行业军用标准、企业军用标准三个级别。下面对组成国家军用元器件标准体系的三种形式:规范、标准和指导性技术文件分别举例作简要的介绍。 规范 元器件规范主要包括:元器件的总规范(通用规范)和详细规范两个层次。总规范对某一类元器件的质量控制规定了共性的要求,详细规范是对某一类元器件中的一个或一系列型号规定的具体的性能和质量控制要求,总规范必须与详细规范配套使用。元器件的产品规范是元器件生产线认证和元器件鉴定的依据之一,也是使用方选择、采购元器件的主要依据。 现在我国国防工业主管部门已发布了大量的元器件总规范,但是详细规范还没完全配套,所以往往由器件生产单位制定了详细规范(属于企业军标准级别)经标准化机构确认后贯彻执行。 已发布的军用元器件总规范中,影响较大的总规范及其参照采用的MIL标准如表1-1所示。 表1-1国军标总规范及其等效采用的美国军用标准 表1-1中序号1~3是器件的总规范,包括了分立器件、集成电路及混合集成电路,每一类器件只有一个总规范,但是对于同一类的元件,就可以有不止一个总规范,例如对于电容器这一大类的元件,已发布了21个总规范。对于电磁继电器已发布了3个总规范。每个器

电子元器件培训资料

一、电子及传感器基础知识、元器件基础知识前言: PCBA维修原则: 1、首先,要确认不良现象,排除误判误测,不良现象要有可重复性; 2、第二,要对外观进行复检,及时发现是否存在有错料,少料,多料等简单的外观不良; 3、第三,要找出维修记录或维修速查表,针对相应电子元件作检查。确认不良元件时可以与良 品交替互换或从电路板上拆除后单独测量; 4、第四,要找出PCBA功能的原理图,对照相应电路模块作检查,测量相关元件是否存在不良; 5、第五,如果是批量性不良,或以上方法无法维修的不良,可能是设计缺陷。 1、电子基础知识 电路的基本原理:电流,电压,电阻,电荷 电流是电荷在导线内流动的现象,电流的测量单位是安培(A)。电荷分为正电荷和负电荷二种。物质中的电子带有负电荷;而质子带有正电荷。电荷在导线内会由高电位的地方流向低电位的地方。电位的高低便形成了电位差,我们称为电压。电压愈大,流动的电流便愈大,电压的测量单位是伏特(V)。电流流动时会遇到阻力,就是电阻。每种物质都有电阻值,优良的导体如铜、白金等,它们的电阻很小,电流很容易通过。电阻很大,大到电流无法通过的物质就是绝缘体,而介于导体和绝缘体之间就是半导体。电阻的测量单位是欧姆(Ω)。 电流 是指电线中电子流动的相反方向,也就是质子流动的方向,通常以I表示,其单位为安培 A(Ampere)。直流电的电流方向固定由正极流向负极,并不会随时间而改变;而交流电的电流流向则会不断地交替变化,例如公司用电的电流便是每秒正负极交替变换50次的交流电,称为50赫兹(Hz)。而在台湾地区交流电的频率为60Hz。 电压 是指能使电在电线中流动的力量,通常以E表示,其单位为伏特V(Volt),电流一般都是从高电压流向低电压,通常电源电位较高的一端以"+"号表示,而电位较低的一端则以"_"表示。电池、水银电池等,电压包含1.5V、3V、9V等,而家庭用电电压在台湾、美国日本为交流110V;在大陆为220V;欧州为240V。 电阻 是指阻挡电流在电线流动的阻力,通常以R表示,其单位为欧姆,任何物体都具有电阻,如同水流一般,物体的电阻大小随材质、长度、大小而异。电阻值大到不能导电的物质称为「绝缘体」,如塑料、木材等。电阻会消耗能量,消耗的能量通常以热的形式呈现,所以传输材料的电阻值愈低愈好,因此一般电线便采用导电性佳的铜线,为了减低能源的消耗,「低温超导体」已成为新兴的科技了。 电路符号示例 电路是由各种不同的组件组成,其相互关系通常使用电路图描述,而电路图的每个基本组件均使用电路符号表示。下图是摘取ATA2001(1866)一部分电路图为例。 如下图:

航天产品电子元器件的质量控制

航天产品电子元器件的质量控制 【论文关键词】:航天产品电子元器件二次筛选失效分析 DPA 元器件质量数据库 【论文摘要】:电子元器件是电子设备和系统的最基本单元,电子产品的可靠与否决定于电子元器件的可靠性,没有高可靠性的电子元器件,设计再好的电子产品也难以发挥其作用。本文从元器件的选择、内在质量评价、二次筛选、DPA、失效分析、元器件质量跟踪、元器件质量数据库等环节讨论了电子元器件的质量控制问题并提出了一些建议。 1 引言 电子元器件是组成电子产品的最小单元,是整机可靠性的基础。没有质量可靠的元器件就不可能有高可靠的电子整机产品,没有高可靠性的电子元器件,设计再好的电子产品也难以发挥其作用。元器件的质量控制贯穿其选用、试验、采购、检验、电装、调试以及失效分析几个方面,为了保证航天产品的可靠性,在研制过程中应从元器件的选用、内在质量评价、二次筛选、破坏性物理分析、失效分析、建立元器件质量跟踪及建立元器件质量数据库等环节入手,形成一种闭环控制系统。 2 电子元器件的选用 元器件的选用是电子产品设计中最关键的一步,设计人员在满足产品性能参数要求的前提下,同时考虑到电子产品适用的温度、湿度等环境要求,电网电压和失真度的要求,以及产品的电磁兼容性、安全性、稳定性、寿命等要求,确定元器件的基本参数,再根据其应用部位、空间、间距的要求选择符合产品要求元器件。 选择优选的元器件,限制选择非标准的和新研制的元器件,压缩选用的元器件品种和规格,达到正确选择型号用元器件的要求,保证产品的质量和可靠性。目前航天产品所出现的故障中多数是由电子元器件引发的,而这些故障又可分为两类:一是由于使用者选择不当所致;二是元器件本身的质量问题。其中第一类故障占大多数。因此,加强电子元器件选用过程的质量控制,具有重要的意义。加强电子元器件选用过程的质量控制具有重要意义。为了保证航天产品的可靠性要求,编制产品元器件优选目录是一种行之有效的方法。 在电子元器件选用过程中应注意以下几个方面问题。 ⑴航天产品中所使用的电子元器件应选择军品级以上(包含军品级),以保证其可靠性。 ⑵须选用满足产品要求的品种。不同的产品由于使用要求不同,选用元器件的出发点必然也有差异。要求过高,必然加大成本;要求过低,则不能满足产品的要求。这往往又表现在对电子元器件的质量等级要求及其它一些特殊要求上。 ⑶要选择质量比较稳定的电子元器件型号和生产厂家。对于关键的元器件,必要时还应对生产方进行有关质量调研或质量认证。 ⑷元器件的选择还应考虑降额要求,注意不得用加大元器件的降额使用来弥补采用低于规定质量等级的元器件。 ⑸应严格控制新研元器件的使用,未经技术鉴定合格的元器件,不能在航天产品中正式使用。这是因为,从制造工艺角度上看,新研产品往往不够成熟,技术状态未最终固定,应用问题尚未被彻底地暴露出来。若为了完成型号研制任务而必须使用时,则一定要制定针对其特殊质量控制的方法,加强对它的监控和考核。 ⑹在类似的元器件中要最大限度地压缩品种和生产厂家。一方面便十采购,另一方面也便于质量监控。 ⑺在同等条件下应优先选用国产元器件。这从保证订货、进度以及进一步提高国产元器件水平、提高战时的后勤保障等方面来说均有好处。

电子元器件行业分析总结

2010年我们更关注元器件上市公司在业绩恢复方面出现的分化. 第一个投资逻辑是寻找在2010年业绩仍能出现快速恢复的公司。在经济持续向好的预期下,新投资项目将是决定元器件公司业绩增长的主要因素。 我们的第二个投资逻辑是结合上市公司的投资项目情况以及潜在投资能力来寻找业绩可能出现快速增长的公司。我们看到,产业的技术创新依旧活跃,产品升级是产业增长的主要动力,新的细分市场伴随着新产品出现,相关的元器件公司将受益于这些细分市场的高成长。 我们的第三个投资逻辑是结合终端应用的发展趋势寻找能够分享细分市场高增长的公司。

将电子元器件行业重点公司按产品分类如下(重点关注的公司用粗体字标 电子类上市公司都是小市值公司,由于产品庞杂,重复产品的公司不多,细分市场特别多。 从以上分类方式来探讨电子元器件行业的2009 年投资机会: 1)对周期型公司,我们观察和等待行业反转;

2)对技术进步型公司,我们首先观察企业能不能抗得过寒冬,其次观察是否有资金在持续投入和研发; 3)对客户决定型公司,首先观察客户的状况,客户状况与公司状况是荣损相连,不可能存在例外; 4)对服务型的公司,情况可能稍好一些,但是仍然观察下游需求状况。 行业特点 1行业增速趋缓,结构升级明显,产量增速放缓但收入增速加快,这主要是显示器产品结构升级(液晶) 08年1-10 月我国片式元件产量31.7%的增速远超07年同期;尽管电子元件制造业主营业务收入增速不如07年同期,但22.3%的工业增加值增幅远高于07年同期(8.7%) 2 大进大出,而且进口大于出口,两头受压,定价能力弱 处于中间配套零件地位的电子产品,一方面不能控制上游大宗原料价格波动,一方面自身产品价格往往被下游整机企业控制,所以大部分电子企业实际上缺乏自主定价能力。大量进口高端产品、大量出口低端产品,是很长时间以来中国电子元件市场的最大特征 3 外资占主导地位资企业的出口比重很高 2008 年前三季度,中国大陆电子信息制造业出口总额为3751 亿美元,其中外资占据86%的份额。在第一阶段低端产品向中国企业转移之后,新的面向中国企业产业转移阶段还未到来。 行业面临发展瓶颈:低端产能过剩,价格竞争严重,盈利水平越来越低,高端领域受技术瓶颈限制,难以进入 近几年,国电子产业依靠承接国际产能转移,取得了快速发展。2003-2007年半导体分立器件、集成电路、电子元件的年平均复合增长率分别为:33.5%、28.1%、19%,都远高于同期全球增速。 然而,我们所承接的主要是底端产能。虽然电子类公司都有一定科技含量,但总体落后于国际,而且真正具备自主核心技术和持续研发的公司极少,相关企业大多实际上加工制造业(工厂),基本不涉及品牌、渠道、服务和服务,属于是制造产业的一环,加工性质就尤为突出,企业的持续盈利能力弱。2007年国主要电子元器件子行业的人均销售收入大都只有20-30万元/人的水平,与国外同类企业差距在十倍到几十倍之间。 所以说,过去几年,我国电子产业的发展主要依赖低要素成本,竞争发生主要是价格战。这种低成本驱动的发展模式带来了一个严重后果,即对技术创新能力的忽视,而技术创新能力对电子企业来说是最为重要的。目前,行业整体面临技术创新瓶颈。 行业面临很多问题:产业链不完整、核心技术缺乏和行业标准制定权缺失。 首先,产业链不完整主要在于上游的装备制造设备、材料类的缺乏和下游品牌企业和产品的缺乏。 第二,就是核心技术的缺乏。 第三,行业标准制定权的缺失,导致公司在发展过程中受国际其他企业的排挤 需求因素 需求成为影响行业发展的最核心要素 从本轮景气调整的深层背景上看,行业周期与全球经济波动的叠加使得需求在判断行业景气变动中的重要性空前上升,产业难以像以往那样仅通过供给的自我调节实现产业供需的平衡,需求的恢复成为景气恢复的先决条件。 经济衰退致使需求的三驾马车同时减速

相关文档
最新文档