快速傅里叶变换 (FFT) 实现
从傅里叶变换到快速傅里叶变换的基本实现方法

从傅里叶变换到快速傅里叶变换的基本实现方法(原创实用版4篇)目录(篇1)I.傅里叶变换的概念和意义1.傅里叶变换是一种将时域信号转换为频域信号的数学变换方法2.在信号处理、图像处理、通信等领域有着广泛的应用II.快速傅里叶变换(FFT)的基本原理1.傅里叶变换的乘法运算导致计算效率低下2.快速傅里叶变换利用了周期函数的周期性性质,将乘法运算转化为加法运算3.FFT的基本算法思想:基于递归的方式,将大的傅里叶变换问题分解为更小的子问题III.FFT的具体实现方法1.迭代实现方法:主要用于离散傅里叶变换(DFT)的实现2.迭代实现方法的优化:使用蝶形图表示FFT的运算过程,便于理解和计算3.直接实现方法:对于特定的离散序列,可以直接计算其FFT结果,不需要进行迭代正文(篇1)一、傅里叶变换的概念和意义傅里叶变换是一种将时域信号转换为频域信号的数学变换方法。
它可以将一个时域信号表示为不同频率的正弦和余弦函数的线性组合,使得信号的频域分析变得更加方便。
傅里叶变换在信号处理、图像处理、通信等领域有着广泛的应用。
二、快速傅里叶变换(FFT)的基本原理傅里叶变换的乘法运算导致计算效率低下,快速傅里叶变换(FFT)利用了周期函数的周期性性质,将乘法运算转化为加法运算。
FFT的基本算法思想是:基于递归的方式,将大的傅里叶变换问题分解为更小的子问题。
FFT算法可以分为迭代实现方法和直接实现方法,其中迭代实现方法主要用于离散傅里叶变换(DFT)的实现。
三、FFT的具体实现方法1.迭代实现方法:迭代实现方法的主要思想是将大的傅里叶变换问题分解为更小的子问题,通过递归的方式逐步求解。
迭代实现方法可以使用蝶形图表示FFT的运算过程,便于理解和计算。
2.迭代实现方法的优化:迭代实现方法的优化主要是为了减少计算量,例如使用树形结构来存储中间结果,减少重复计算。
3.直接实现方法:对于特定的离散序列,可以直接计算其FFT结果,不需要进行迭代。
时间抽取的基2快速傅里叶变换FFT分析与算法实现

离散时间信号的基2快速傅里叶变换FFT (时间抽取)蝶形算法实现一、一维连续信号的傅里叶变换连续函数f(x)满足Dirichlet (狄利克雷)条件下,存在积分变换:正变换:2()()()()j ux F u f x e dx R u jI u π+∞--∞==+⎰ 反变换:2()()j ux f x F u e du π+∞-∞=⎰其中()()cos(2)R u f t ut dt π+∞-∞=⎰,()()sin(2)I u f t ut dt π+∞-∞=-⎰定义幅值、相位和能量如下:幅度:1222()()()F u R u I u ⎡⎤⎡⎤=+⎣⎦⎣⎦ 相位:()arctan(()/())u I u R u ϕ= 能量:22()()(E u R u I u =+)二、一维离散信号的傅里叶变换将连续信号对自变量进行抽样得到离散信号(理想冲击抽样脉冲),利用连续信号的傅里叶变换公式得到离散时间傅里叶变换DTFT ;再利用周期性进行频域抽样,得离散傅里叶变换DFT (详情参考任何一本《数字信号处理》教材)。
DFT 变换如下:正变换:12/0()(),0,1,2,1N j ux Nx F u f x eu N π--===-∑。
反变换:12/01()(),0,1,2,1N j ux Nu f x F u ex N Nπ-===-∑。
DFT 是信号分析与处理中的一种重要变换,因为计算机等数字设备只能存储和处理离散数据(时域、频域)。
因直接计算DFT 的计算量大(与变换区间长度N 的平方成正比,当N 较大时,计算量太大),所以在快速傅里叶变换(简称FFT)出现以前,直接用DFT 算法进行谱分析和信号的实时处理是不切实际的。
直到1965年发现了DFT 的一种快速算法(快速傅里叶变换,即FFT )以后,情况才发生了根本的变化。
FFT 有时间抽取和频率抽取两种,下面介绍时间抽取FFT 。
三、时间抽取的基2快速傅里叶变换FFT令2j NN W eπ-=,则2jkm km NNWeπ-=称为旋转因子,把DFT 正变换改写为:1[][],0,1,1N km N k F m f k W m N -===-∑将函数记作x ,变换后为X ,则为:10[][],0,1,1N kmN k X m x k W m N -===-∑时间抽取的FFT 算法利用了旋转因子的三个性质:周期性、对称性和可约性。
(完整word版)基于DSP的快速傅立叶变换(FFT)的实现(汇编语言)

快速傅立叶变换(FFT )的实现一、实验目的1.了解FFT 的原理及算法;2.了解DSP 中FFT 的设计及编程方法;3.熟悉FFT 的调试方法;二、实验原理FFT 是一种高效实现离散付立叶变换的算法,把信号从时域变换到频域,在频域分析处理信息。
对于长度为N 的有限长序列x (n ),它的离散傅里叶变换为:(2/)j N nk N W e π-=,称为旋转因子,或蝶形因子。
在x (n )为复数序列的情况下,计算X (k ):对某个k 值,需要N 次复数乘法、(N -1)次复数加法;对所有N 个k 值,需要2N 次复数乘法和N (N -1)次复数加法。
对于N 相当大时(如1024)来说,直接计算它的DFT 所作的计算量是很大的,FFT 的基本思想在于: 利用2()j nk N N W e π-=的周期性即:k N k N N W W +=对称性:/2k k N N N W W +=-将原有的N 点序列分成两个较短的序列,这些序列的DFT 可以很简单的组合起来得到原序列的DFT 。
按时间抽取的FFT ——DIT FFT 信号流图如图5.1所示:图5.1 时间抽取的FFT —DIT FFT 信号流图FFT 算法主要分为以下四步。
第一步 输入数据的组合和位倒序∑=-=10)()(N n nk N W n x k X把输入序列作位倒序是为了在整个运算最后的输出中得到的序列是自然顺序。
第二步 实现N 点复数FFT第一级蝶形运算;第二级蝶形运算;第三级至log2N 级蝶形运算;FFT 运算中的旋转因子N W 是一个复数,可表示:为了实现旋转因子N W 的运算,在存储空间分别建立正弦表和余弦表,每个表对应从0度到180度,采用循环寻址来对正弦表和余弦表进行寻址。
第三步 功率谱的计算X (k )是由实部()R X k 和虚部()I X k 组成的复数:()()()R I X k X k jX k =+;计算功率谱时只需将FFT 变换好的数据,按照实部()R X k 和虚部()I X k 求它们的平方和,然后对平方和进行开平方运算。
快速傅里叶变换实现卷积

快速傅里叶变换实现卷积
快速傅里叶变换(FFT)是一种高效计算离散傅里叶变换(DFT)及其逆变换的方法,可以用于实现卷积的计算。
在实现卷积时,可以使用FFT将输入信号和系统函数都转换到频域,然后对应相乘得到输出信号的频谱,最后再通过逆FFT转换回时域得到输出信号。
这种通过FFT实现卷积的方法具有运算速度快、精度高等优点。
具体实现过程如下:
1. 将输入信号x(t)和系统函数h(t)分别转换成离散时间序列x[n]和h[n]。
2. 对x[n]和h[n]分别进行FFT变换,得到X(f)和H(f)。
3. 将X(f)和H(f)对应相乘得到Y(f)。
4. 对Y(f)进行逆FFT变换,得到输出信号y(t)。
需要注意的是,使用FFT实现卷积时,需要对输入信号和系统函数进行采样,并且采样频率应该满足采样定理的要求,否则会产生失真。
此外,还需要注意FFT的点数应该与输入信号和系统函数的长度相同,否则会产生误差。
java jtransforms 快速傅里叶变换 计算功率谱 实现代码

以下是使用Java的JTransforms库实现快速傅里叶变换(FFT)和计算功率谱的示例代码:```javaimport org.jtransforms.fft.DoubleFFT_1D;public class FFTExample {public static void main(String[] args) {// 创建一个长度为N的数组,并填充数据int N = 1024;double[] x = new double[N];for (int n = 0; n < N; n++) {x[n] = Math.sin(2 * Math.PI * n / N);}// 创建FFT对象,对数组进行快速傅里叶变换DoubleFFT_1D fft = new DoubleFFT_1D(N);double[] X = new double[N];fft.realForward(X); // 对实数数组进行正向FFT变换// 计算功率谱double[] Pxx = new double[N];for (int n = 0; n < N; n++) {Pxx[n] = X[n] * X[n]; // 计算每个频率分量的功率谱}// 输出结果System.out.println("频谱(幅度):");for (int n = 0; n < N; n++) {System.out.println(n + " " + X[n]);}System.out.println("功率谱:");for (int n = 0; n < N; n++) {System.out.println(n + " " + Pxx[n]);}}}```在上面的代码中,我们首先创建了一个长度为N的数组,并填充了一些数据。
然后,我们使用JTransforms库中的DoubleFFT_1D类对数组进行快速傅里叶变换。
数字信号处理实验 matlab版 快速傅里叶变换(FFT)

实验14 快速傅里叶变换(FFT)(完美格式版,本人自己完成,所有语句正确,不排除极个别错误,特别适用于山大,勿用冰点等工具下载,否则下载之后的word 格式会让很多部分格式错误,谢谢)XXXX 学号姓名处XXXX一、实验目的1、加深对双线性变换法设计IIR 数字滤波器基本方法的了解。
2、掌握用双线性变换法设计数字低通、高通、带通、带阻滤波器的方法。
3、了解MA TLAB 有关双线性变换法的子函数。
二、实验内容1、双线性变换法的基本知识2、用双线性变换法设计IIR 数字低通滤波器3、用双线性变换法设计IIR 数字高通滤波器4、用双线性变换法设计IIR 数字带通滤波器三、实验环境MA TLAB7.0四、实验原理1、实验涉及的MATLAB 子函数(1)fft功能:一维快速傅里叶变换(FFT)。
调用格式:)(x fft y =;利用FFT 算法计算矢量x 的离散傅里叶变换,当x 为矩阵时,y 为矩阵x每一列的FFT 。
当x 的长度为2的幂次方时,则fft 函数采用基2的FFT 算法,否则采用稍慢的混合基算法。
),(n x fft y =;采用n 点FFT 。
当x 的长度小于n 时,fft 函数在x 的尾部补零,以构成n点数据;当x 的长度大于n 时,fft 函数会截断序列x 。
当x 为矩阵时,fft 函数按类似的方式处理列长度。
(2)ifft功能:一维快速傅里叶逆变换(IFFT)。
调用格式:)(x ifft y =;用于计算矢量x 的IFFT 。
当x 为矩阵时,计算所得的y 为矩阵x 中每一列的IFFT 。
),(n x ifft y =;采用n 点IFFT 。
当length(x)<n 时,在x 中补零;当length(x)>n 时,将x 截断,使length(x)=n 。
(3)fftshift功能:对fft 的输出进行重新排列,将零频分量移到频谱的中心。
调用格式:)(x fftshift y =;对fft 的输出进行重新排列,将零频分量移到频谱的中心。
快速傅里叶变换 (FFT) 实现

§2.4 快速傅里叶变换 (FFT) 实现一、实验目的 1. 掌握FFT 算法的基本原理;2. 掌握用C 语言编写DSP 程序的方法。
二、实验设备 1. 一台装有CCS3.3软件的计算机; 2. DSP 实验箱的TMS320F2812主控板;3. DSP 硬件仿真器。
三、实验原理傅里叶变换是一种将信号从时域变换到频域的变换形式,是信号处理的重要分析工具。
离散傅里叶变换(DFT )是傅里叶变换在离散系统中的表示形式。
但是DFT 的计算量非常大, FFT 就是DFT 的一种快速算法, FFT 将DFT 的N 2 步运算减少至 ( N/2 )log 2N 步。
离散信号x(n)的傅里叶变换可以表示为∑=-=10][)(N N nk N W n x k X , Nj N e W /2π-=式中的W N 称为蝶形因子,利用它的对称性和周期性可以减少运算量。
一般而言,FFT 算法分为时间抽取(DIT )和频率抽取(DIF )两大类。
两者的区别是蝶形因子出现的位置不同,前者中蝶形因子出现在输入端,后者中出现在输出端。
本实验以时间抽取方法为例。
时间抽取FFT 是将N 点输入序列x(n) 按照偶数项和奇数项分解为偶序列和奇序列。
偶序列为:x(0), x(2), x(4),…, x(N-2);奇序列为:x(1), x(3), x(5),…, x(N-1)。
这样x(n) 的N 点DFT 可写成:()()∑++∑=-=+-=12/0)12(12/02122)(N n kn NN n nkNW n x Wn x k X考虑到W N 的性质,即2/)2//(22/)2(2][N N j N j N W e e W ===--ππ因此有:()()∑++∑=-=-=12/02/12/02/122)(N n nkN kNN n nkN W n x W Wn x k X或者写成:()()k Z W k Y k X kN +=)(由于Y(k) 与Z(k) 的周期为N/2,并且利用W N 的对称性和周期性,即:k NN k N W W -=+2/可得:()()k Z W k Y N k X kN -=+)2/(对Y(k) 与Z(k) 继续以同样的方式分解下去,就可以使一个N 点的DFT 最终用一组2点的DFT 来计算。
快速傅里叶变换(FFT)算法C++实现代码

快速傅里叶变换(FFT)算法C++实现代码#include <math.h>#define DOUBLE_PI 6.283185307179586476925286766559// 快速傅里叶变换// data 长度为 (2 * 2^n), data 的偶位为实数部分, data 的奇位为虚数部分// isInverse表示是否为逆变换void FFT(double * data, int n, bool isInverse = false){int mmax, m, j, step, i;double temp;double theta, sin_htheta, sin_theta, pwr, wr, wi, tempr, tempi;n = 2 * (1 << n);int nn = n >> 1;// 长度为1的傅里叶变换, 位置交换过程j = 1;for(i = 1; i < n; i += 2){if(j > i){temp = data[j - 1];data[j - 1] = data[i - 1];data[i - 1] = temp;data[j] = temp;data[j] = data[i];data[i] = temp;}// 相反的二进制加法m = nn;while(m >= 2 && j > m){j -= m;m >>= 1;}j += m;}// Danielson - Lanczos 引理应用mmax = 2;while(n > mmax){step = mmax << 1;theta = DOUBLE_PI / mmax;if(isInverse){theta = -theta;}sin_htheta = sin(0.5 * theta);sin_theta = sin(theta);pwr = -2.0 * sin_htheta * sin_htheta;wr = 1.0;wi = 0.0;for(m = 1; m < mmax; m += 2){for(i = m; i <= n; i += step){j = i + mmax;tempr = wr * data[j - 1] - wi * data[j];tempi = wr * data[j] + wi * data[j - 1];data[j - 1] = data[i - 1] - tempr;data[j] = data[i] - tempi;data[i - 1] += tempr;data[i] += tempi;}sin_htheta = wr;wr = sin_htheta * pwr - wi * sin_theta + wr;wi = wi * pwr + sin_htheta * sin_theta + wi;}mmax = step;}}输入数据为data,data是一组复数,偶数位存储的是复数的实数部分,奇数位存储的是复数的虚数部分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§2.4 快速傅里叶变换 (FFT) 实现
一、实验目的 1. 掌握FFT 算法的基本原理;
2. 掌握用C 语言编写DSP 程序的方法。
二、实验设备 1. 一台装有CCS3.3软件的计算机; 2. DSP 实验箱的TMS320F2812主控板;
3. DSP 硬件仿真器。
三、实验原理
傅里叶变换是一种将信号从时域变换到频域的变换形式,是信号处理的重要分析工具。
离散傅里叶变换(DFT )是傅里叶变换在离散系统中的表示形式。
但是DFT 的计算量非常大, FFT 就是DFT 的一种快速算法, FFT 将DFT 的N 2 步运算减少至 ( N/2 )log 2N 步。
离散信号x(n)的傅里叶变换可以表示为
∑=-=1
0][)(N N nk N W n x k X , N
j N e W /2π-=
式中的W N 称为蝶形因子,利用它的对称性和周期性可以减少运算量。
一般而言,FFT 算法分为时间抽取(DIT )和频率抽取(DIF )两大类。
两者的区别是蝶形因子出现的位置不同,前者中蝶形因子出现在输入端,后者中出现在输出端。
本实验以时间抽取方法为例。
时间抽取FFT 是将N 点输入序列x(n) 按照偶数项和奇数项分解为偶序列和奇序列。
偶序列为:x(0), x(2), x(4),…, x(N-2);奇序列为:x(1), x(3), x(5),…, x(N-1)。
这样x(n) 的N 点DFT 可写成:
()()∑++∑=-=+-=1
2/0
)12(1
2/0
2122)(N n k
n N
N n nk
N
W n x W
n x k X
考虑到W N 的性质,即
2/)2//(22/)2(2][N N j N j N W e e W ===--ππ
因此有:
()()∑++∑=-=-=1
2/0
2/1
2/0
2
/122)(N n nk
N k
N
N n nk
N W n x W W
n x k X
或者写成:
()()k Z W k Y k X k
N +=)(
由于Y(k) 与Z(k) 的周期为N/2,并且利用W N 的对称性和周期性,即:
k N
N k N W W -=+2/
可得:
()()k Z W k Y N k X k
N -=+)2/(
对Y(k) 与Z(k) 继续以同样的方式分解下去,就可以使一个N 点的DFT 最终用一组2点的DFT 来计算。
在基数为2的FFT 中,总共有log 2(N) 级运算,每级中有N/2 个2点FFT 蝶形运算。
单个蝶形运算示意图如下:
以N =8为例,时间抽取FFT 的信号流图如下:
x(0)
x(4)
x(2)
x(6)x(1)
x(5)
x(3)
x(7)
X(7)
X(6)X(5)X(4)X(3)X(2)X(1)X(0)
从上图可以看出,输出序列是按自然顺序排列的,而输入序列的顺序则是“比特反转”
方式排列的。
也就是说,将序号用二进制表示,然后将二进制数以相反方向排列,再以这个数作为序号。
如011变成110,那么第3个输入值和第六个输入值就要交换位置了。
本实验中采用了一种比较常用有效的方法完成这一步工作__雷德算法。
四、实验步骤
1. 以64点FFT 的信号流图为例,理解FFT 算法的过程;
2. 在CCS
3.3环境中打开本实验的工程(Example_fft.pjt ),编译并重建 .out 输出文件,然后通过仿真器把执行代码下载到DSP 芯片中;
3. 运行程序;
4. 选择view->graph->time/frequency … 。
设置对话框中的参数: 其中“Start Address ”设为“x_re ”,“Acquisition buffer size ”和“Display Data size ”都设为“64”,并且把“DSP Data Type ”设为“32-bit floating point ”(如图),
设置好后观察输入信号序列的波形(单边指数函数,如图);
同样方法观察经DFT变换后的输出序列“y_re”的波形,“Start Address”改为“y_re”,其余参数不变(如图);
5.在Watch窗口中添加i, j, k, m, n, a, b ,c 等变量,在Debug菜单中先“Restart”然后“Go main”,单步运行程序,跟踪FFT算法的过程;(可以跳过程序开始部分对各个数组的赋值代码,方法是在雷德算法的第一行代码前设置断点,然后先单击运行,待程序停在该断点后再单步执行后面的代码,见下图。
)
6.修改N的值(应为2的整数次幂,如8,16,32等,最大不超过64),或者修改输入信号x的函数,如直流、正弦、三角等,观察程序运行结果。
注意观察图形时,数据块大小要相应更改为当前N值。
五、思考题
1.分析本实验程序中完成位倒序排列的“雷德算法”的原理;
2.思考如何实现实数序列的FFT,它在复数序列的算法基础上还能作哪些优化,
从而进一步降低运算量和所需的存储空间。
六、相关截图
T1.0 傅里叶变换波形图(单边指数函数)T1.1设置相关参数。