第五章钢的热处理

合集下载

第五章 钢的热处理1.2节1

第五章 钢的热处理1.2节1

2、临界温度与实际转变 、 温度 铁碳相图中PSK、GS、ES 铁碳相图中 线分别用A 表示. 线分别用 1、A3、Acm表示
第一节 钢在加热时的转变
加热是热处理的第一道工序。 加热是热处理的第一道工序。 一、奥氏体的形成过程 奥氏体化也是形核和长大 的过程,分为四步。 的过程,分为四步。现以 共析钢为例说明: 共析钢为例说明:
第五章 钢的热处理
改善钢的性能,主要有两条途径: 改善钢的性能,主要有两条途径: 一是合金化,这是下几章研究的内容; 一是合金化,这是下几章研究的内容; 二是热处理,这是本章要研究的内容。 二是热处理,这是本章要研究的内容。
概述
1、热处理:是指将钢在固态下加热、保温和冷却, 、热处理:是指将钢在固态下加热、保温和冷却, 以改变钢的组织结构,获得所需要性能的一种工艺 以改变钢的组织结构,获得所需要性能的一种工艺. 为简明表示热处理 的基本工艺过程, 的基本工艺过程, 通常用温度—时间 通常用温度 时间 坐标绘出热处理工 坐标绘出热处理工 艺曲线。 艺曲线。
第四步 奥氏体成分均匀 溶解后, 化:Fe3C溶解后,其所 溶解后 在部位碳含量仍很高, 在部位碳含量仍很高, 通过长时间保温使奥氏 体成分趋于均匀。 体成分趋于均匀。
温 度 , ℃
共析钢奥氏体化曲线( 共析钢奥氏体化曲线(875℃退火) 曲线 ℃退火)
共析钢奥氏体化过程
亚共析钢和过共析钢的奥 亚共析钢和过共析钢的奥 氏体化过程与共析钢基本 相同。但由于先共析α 相同。但由于先共析α 或 二次Fe 的存在 的存在, 二次 3C的存在,要获得 全部奥氏体组织, 全部奥氏体组织,必须相 应加热到Ac3或Accm以上 以上. 应加热到
冷却是热处理更重要的工序。 冷却是热处理更重要的工序。 处于临界点A1以下的奥氏体称过冷奥氏体。过冷奥 过冷奥氏体。 处于临界点 以下的奥氏体称过冷奥氏体 氏体是非稳定组织,迟早要发生转变。 氏体是非稳定组织,迟早要发生转变。转变产物取 决于它的转变温度

(完整版)碳钢的热处理

(完整版)碳钢的热处理
第五章 碳钢的热处理 Heat Treatment of Carbon Steel
前言
一、热处理的概念
通过对材料进行加热、保温、冷却的操作 方法使钢的组织结构发生变化,以获得所需性 能的一种工艺。
二、ห้องสมุดไป่ตู้处理的分类
普通热处理:退火、正火、淬火、回火
热处理
表面热处理
表面淬火:火焰加热、
感应加热、电接触加热、 激光加热、等离子体加热
对于亚共析钢(过共析钢),当缓慢 加热到A1以上时,除珠光体全部转化为奥 氏体外,还有少量先共析铁素体转变为奥 氏体 ( 过共析钢二次渗碳体溶解 ),随着 温度升高,先共析铁素体不断向奥氏体转 变,当温度高于A3时,组织为单相奥氏体。
二、奥氏体形成的热力学条件
钢加热时组织转变的动力是奥氏体与旧相之 间的体积自由能之差ΔFv,而相变进行的条件是 系统总的自由能降低。根据相变理论,奥氏体形 成晶核时,系统总自由能变化ΔF为:
铁碳合金缓慢加热时奥氏体的形成可以 从Fe-Fe3C相图中反映出来,珠光体向奥氏体 的转变属于扩散型相变。以共析钢为例,珠 光体组织在A1(727℃)以下,组织保持不变 (α相中碳的溶解度及Fe3C的形状稍有变化); 当加热到A1点以上时,珠光体全部转 变为奥 氏体。
奥氏体的形成过程可以分为四个步骤: ①奥氏体晶核的形成 ②奥氏体晶粒长大 ③残余渗碳体溶解 ④奥氏体成分均匀化
称为过冷奥氏体。
不同的过冷度,奥氏体发生转变的过程不同:
①转变开始与转变终了的时间不同 ②转变后产物的组织与性能不同
一、珠光体型转变——高温转变(A1~550℃)
1、转变过程及特点
过冷奥氏体在A1~550℃温度范围内,将 分解为珠光体类组织。
当奥氏体被过冷至A1以下温度时,在奥氏体晶界 处(含碳量高)优先产生渗碳体的核心,然后依靠奥 氏体不断供应碳原子(随着冷却,奥氏体溶解碳的能 力下降,碳从奥氏体内向晶界扩散),渗碳体沿一定 方向逐渐长大,而随着渗碳体的长大,又使其周围的 奥氏体碳浓度下降,这就促使贫碳的奥氏体局部区域 转变成铁素体(即渗碳体两侧出现铁素体晶核),在 渗碳体长大的同时,铁素体也不断长大,而随着铁素 体的长大,必然将多余的碳排挤出去,这就有利于形 成新的渗碳体晶核。最终形成了相互交替的层片状渗 碳体和铁素体——珠光体。

钢的热处理作业题答案

钢的热处理作业题答案

解: 下料
正火
机加工 (粗)
调质
机加工 (精)
第五章 作业题答案-11
⑶:用20CrMnTi钢制作某汽车传动齿轮,要求表面
高硬度高耐磨性,表面HRC58~63 ,硬化层深
0.8mm。
解 下料
锻造
正火
机加工 (粗)
铣齿
渗碳
淬火+低温回火
去碳机械加工
磨齿 或
淬火+低温回火
第五章 作业题答案-11

下料 或选用锻4造0Cr:热正处火理工艺方机法加如工下 (粗)
机加工 (精)
高频表面淬火+低温回火
磨齿
拉花键孔

第五章 作业题答案-11
⑷ :用38CrMoTiAl钢制作某高精度镗床镗杆,要 求表面高硬度大于800HV。
下料
锻造
退火
机加工(粗) 调质
机加工(半精)
低温退火
精车
低温退火
磨削
磁力探伤
氮化
磁力 探伤
半精 磨
油煮定性(140~ 160℃、18 ~20h)
第五章 作业题答案-5
解:
热处理 名称
含义
淬火
将钢加热到Ac3 (亚共析钢)或A c1 (过共析钢) 以上一定温度,保温后快速冷却,以获得马氏
体或下贝氏体的一种热处理工艺方法。
如共析钢过冷奥氏体连续转变曲线-3 图:曲线1
回火
将淬火钢加热A c1 以下一定温度,保温后以适 当方式冷却的一种热处理工艺方法。
第五章 作业题答案-4
解: ⑶:板条状马氏体M板与片状马氏体M片。
组织
板条状马氏体马氏体呈板条状,板条内 存在高密度位错,片状马氏体马氏体呈片状, 片内存大量孪晶。

第五章 钢的热处理

第五章 钢的热处理

等温退火
加热温度:Ac1以上10-20度,或Ac3以上30-50度 组织:P 目的: ①与完全退火、球化退火相同 ②更均匀的组织和硬度 ③显著缩短生产周期 应用范围:高碳钢,合金工具钢,高合金钢。
球化退火(不完全退火)

加热温度:Ac1以上20-40度 应用范围:过共析钢,共析钢 组织:球状P(F+球状FeC3) 目的: ①使FeC3球化→HRC↓,韧性↑→切削性↑ ②为淬火作准备
钢加热到930℃±10℃、保温8小时、冷却后测得的晶 粒度 表示钢在加热时奥氏体晶粒长大的倾向 本质细晶粒钢
本质粗晶粒钢
本质细晶粒钢M和本质粗晶粒钢K晶粒长大示意图
图5-5
第二节 钢的冷却转变
一、过冷奥氏体 二、在冷却转变时,相变温度对转变速度的 影响 三、过冷奥氏体等温转变曲线 四、过冷奥氏体等温转变的产物的组织和性 能 五、过冷奥氏体连续冷却转变曲线
三、过冷奥氏体等温转变曲线
温 度 ℃ 700 600 550 500 400 300 200 100
2 3 4 5 6
Ar
Ms
1
10 10 10
10
10 10
时间(s)
图5-8
共析碳钢过冷A等温曲线的建立
图5-9
四、过冷奥氏体等温转变的产物的组织和性能
珠光体转变 贝氏体转变
马氏体的组织与形态
一、奥氏体化前的组织
我们只考虑比较简单的情况即奥氏体化前的 组织为平衡组织的情况。 对于亚共析钢 → F+P 共析钢 → P 过共析钢 → Fe3CⅡ+P
二、奥氏体的形成温度与Fe- Fe3C状态图的关系
对于加热:非平衡条件下的相变温度高于平衡条 件下的相变温度; 对于冷却:非平衡条件下的相变温度低于平衡条件 下的相变温度。 这个温差叫滞后度。加热转变 → 过热度, 冷却转变 → 过冷度,且加热与冷却速度越大,温 度提高与下降的幅度就越大,导致热度与过冷度越 大。此外,过热度与过冷度的增大会导致相变驱动 力的增大,从而使相变容易发生。

第五章 钢的热处理7.8节

第五章 钢的热处理7.8节
氮化扩散层
二、钢的渗碳 是指向钢的表面渗入碳原子的过程。 是指向钢的表面渗入碳原子的过程。 1、渗碳目的 、 提高工件表面硬度、 提高工件表面硬度、 耐磨性及疲劳强度, 耐磨性及疲劳强度, 同时保持心部良好 的韧性。 的韧性。 2、渗碳用钢 、 为含0.1-0.25%C的低碳钢。碳高则心部韧性降低。 的低碳钢。碳高则心部韧性降低。 为含 的低碳钢
与表面淬火相比, 与表面淬火相比,化学热处理不仅改变钢的表层组 织,还改变其化学成分。 还改变其化学成分。 化学热处理也是获得表硬里韧性能的方法之一。 化学热处理也是获得表硬里韧性能的方法之一。 根据渗入的元素不同,化学热处理可分为渗碳、氮 根据渗入的元素不同,化学热处理可分为渗碳、 渗碳 化、多元共渗、渗其他元素等。 多元共渗、渗其他元素等
火 感 应 器 传 动 轴 连 续 淬
感应加热表面淬火齿轮的截面图
② 中频感应加热 频 率 为 25008000Hz, 淬硬层 , 深度2-10mm。 。 深度
各种感应器 中频感应加热表面淬火的机车凸轮轴
③ 工频感应加热 频率为50Hz,淬硬 淬硬 频率为 层深度10-15 mm 层深度
感应穿透加热
气体渗碳 法示意图
⑵ 固体渗碳法
将工件埋入渗剂中, 将工件埋入渗剂中,装箱密封后在高温下加热渗碳 渗剂为木炭。 渗剂为木炭。 优点:操作简单; 优点:操作简单; 缺点:渗速慢,劳动条件差。 缺点:渗速慢,劳动条件差。
⑶ 真空渗碳法
将工件放入真空渗碳炉中, 将工件放入真空渗碳炉中,抽真空后 通入渗碳气体加热渗碳。 通入渗碳气体加热渗碳。 优点: 表面质量好, 渗碳速度快。 优点 表面质量好 渗碳速度快。
轴 的 感 应 加 热 表 面 淬 火
机床导轨

钢的热处理(含答案)

钢的热处理(含答案)

第五章钢的热处理〔含答案〕一、填空题〔在空白处填上正确的内容〕1、将钢加热到,保温肯定时间,随后在中冷却下来的热处理工艺叫正火。

答案:Ac 或Ac 以上50℃、空气3 cm2、钢的热处理是通过钢在固态下、和的操作来转变其内部,从而获得所需性能的一种工艺。

答案:加热、保温、冷却、组织3、钢淬火时获得淬硬层深度的力量叫,钢淬火时获得淬硬层硬度的力量叫。

答案:淬透性、淬硬性4、将后的钢加热到以下某一温度,保温肯定时间,然后冷却到室温,这种热处理方法叫回火。

答案:淬火、Ac15、钢在肯定条件下淬火时形成的力量称为钢的淬透性。

淬透层深度通常以工件到的距离来表示。

淬透层越深,表示钢的越好。

答案:马氏体〔M〕、外表、半马氏体区、淬透性6、热处理之所以能使钢的性能发生变化,其根本缘由是由于铁具有转变,从而使钢在加热和冷却过程中,其内部发生变化的结果。

答案:同素异构、组织7、将钢加热到,保温肯定时间,随后在中冷却下来的热处理工艺叫正火。

答案:Ac 或Ac 以上30℃~50℃、空气3 cm8、钢的渗碳是将零件置于介质中加热和保温,使活性渗入钢的外表,以提高钢的外表的化学热处理工艺。

答案:渗碳、碳原子、碳含量9、共析钢加热到Ac 以上时,珠光体开头向转变,通常产生于铁素体和1渗碳体的。

答案:奥氏体〔A〕、奥氏体晶核、相界面处10、将工件放在肯定的活性介质中,使某些元素渗入工件外表,以转变化学成分和,从而改善外表性能的热处理工艺叫化学热处理。

答案:加热和保温、组织11、退火是将组织偏离平衡状态的钢加热到适当温度,保温肯定时间,然后冷却,以获得接近组织的热处理工艺。

答案:缓慢〔随炉〕、平衡状态12、将钢加热到温度,保温肯定时间,然后冷却到室温,这一热处理工艺叫退火。

答案:适当、缓慢〔随炉〕13、V 是获得的最小冷却速度,影响临界冷却速度的主要因素是。

临答案:全部马氏体〔全部M〕、钢的化学成分14、钢的热处理是将钢在肯定介质中、和,使它的整体或外表发生变化,从而获得所需性能的一种工艺。

金属材料热处理原理 第五章 马氏体转变

金属材料热处理原理 第五章 马氏体转变

二、马氏体转变的主要特点 1. 切变共格和表面浮凸现象
钢因马氏体转变而产生的表面浮凸
马氏体形成时引起的表面倾动
马氏体是以切变方式形成的,马氏体与奥氏体 之间界面上的原子既属于马氏体,又属于奥氏体, 是共有的;并且整个相界面是互相牵制的,这种界 面称之为“切变共格”界面。
马氏体和奥氏体切变共格交界面示意图
4. 马氏体转变是在一个温度范围内完成的
马氏体转变量与温度的关系
Ms—马氏体转变开始温度;Mf—马氏体转变终了点; A、B—残留奥氏体。
5. 马氏体转变的可逆性
在某些铁合金中,奥氏体冷却转 变为马氏体,重新加热时,已形成的 马氏体又可以逆马氏体转变为奥氏体, 这就是马氏体转变的可逆性。一般将 马氏体直接向奥氏体转变称为逆转变。 逆转变开始点用As表示,逆转变终了 点用Af表示。通常As温度比Ms温度高。
2. 马氏体转变的无扩散性
马氏体转变的无扩散性有以下实验证据:
(1) 碳钢中马氏体转变前后碳的浓度没有 变化,奥氏体和马氏体的成分一致,仅发生晶 格改组:
γ-Fe(C) → α-Fe(C)
面心立方 体心正方
(2) 马氏体转变可以在相当低的温度范围 内进行,并且转变速度极快。
3. 具有一定的位向关系和惯习面
西山关系示意图
③ G-T关系
{111}γ∥{110}α′ 差1°;<110>γ∥<111>α′ 差2°。
(2) 惯习面
马氏体转变时,新相总是在母相的某个晶面族上 形成,这种晶面称为惯习面。在相变过程中从宏观上 看,惯习面是不发生转动和不畸变的平面,用它在母 相中的晶面指数来表示。
钢中马氏体的惯习面随碳含量及形成温度不同而 异,常见的有三种:(1) 含碳量小于0.6%时,为{111}γ; (2) 含碳量在0.6%~1.4%之间时,为{225}γ;(3) 含碳 量高于1.4%时,为{259}γ。随马氏体形成温度下降, 惯习面有向高指数变化的趋势。

第五章 钢的热处理-3.4.5.6节

第五章 钢的热处理-3.4.5.6节

淬硬性是指钢淬火
后所能达到的最高
硬度,即硬化能力.
M量和硬度随 深度的变化
四、淬透性的测定及其表示方法

1、淬透性的测定常用末端淬火法
不同冷却条件下的转变产物
细A 温 度
均匀A
A1
退火 正火 (空冷)
等温退火 (炉冷)
? 淬火 (油冷)淬火? 分级淬火等温淬火
MS
P Mf
(水冷)
P P

⑴调整硬度,便于切削加工。适合加工的硬度为
170-250HB。

⑵ 消除内应力,防止加工中变形。
⑶ 为最终热处理作组织准备。

2、退火工艺
退火的种类很多,常用的有完全退火、等温退火、 球化退火、扩散退火、去应力退火、再结晶退火。 ⑴ 完全退火 将工件加热到 Ac3+30~50℃保 温后缓冷的退 火工艺,主要 用于亚共析钢 .
却到略低于 Ar1 的温
度下保温,使珠光体
中的渗碳体球化后出
炉空冷。主要用于共
析、过共析钢。

球化退火的组织为铁素体基 体上分布着颗粒状渗碳体的 组织,称球状珠光体, 用P球 表示。
球状珠光体

对于有网状二次渗碳体的
过共析钢,球化退火前应
先进行正火,以消除网状.

二、正火
正火是将亚共析钢加热到Ac3+30~ 50℃,共析钢加热 到Ac1+30~50℃,过共析钢 加热到Accm+30~ 50℃保温 后空冷的工艺。 正火比退火冷却速度大。 1、正火后的组织: ● <0.6%C时,组织为F+S; ● 0.6%C时,组织为S 。
生马氏体转变的方法。
如水淬油冷,油淬空冷.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
碳的质量分数小于0.5%的结构钢选用正火为宜;碳质量 分数大于0.5%的结构钢选用完全退火为宜;而高碳工具 钢则应选用球化退火作为预备热处理。
2、从零件的结构形状考虑
对于形状复杂的零件或尺寸较大的大型钢件,以采用退火
为宜。
3、从经济性考虑
因正火比退火的生产周期短,成本低,操作简单,故在可
能条件下应尽量采用正火,以降低生产成本。
2、影响C曲线的因素
(1)含碳量(奥氏体的含碳量)


含碳量增加,奥氏体的稳定性增大,C曲线右移
除Co外,绝大多数合金元素溶入奥氏体后,都 使C曲线右 移,形状也可能会发生改变。
(2)合金元素 (3)加热温度和保温时间 随温度的提高和保温时间的延长,碳化物溶
解充分,奥氏体成分均匀,晶粒粗大(总形核部 位减少),这些都增加过冷奥氏体的稳定性,使 C曲线右移。
第四节 钢的淬火

将钢加热到相变温度以上,保温一定时间,然 后快速冷却以获得M组织的热处理工艺称为淬火。
淬火是钢的最重要的强化方法。
一、钢的淬火工艺
1、淬火加热温度 在一般情况下,亚共析钢的淬火温度为Ac3以上30~50℃;
共析钢和过共析钢的淬火加热温度为Ac1以上30~50℃。
淬火加热温度的选择示意图
继续
三、马氏体转变
1、马氏体的形态与特点
板条马氏体形貌
片状马氏体形貌
马氏体形态与碳质量分数的关系
2、马氏体转变的特点
(1)非扩散型转 变; (2)马氏体的形 成速度很快,瞬间 形核并长大; (3)马氏体转变 是不彻底的,总会 有残留A残存在。 (3)马氏体转变 是不彻底的。 片状马氏体形成过程示意图
显微镜下的马氏体转变
返回
第三节 钢的退火与正火
一、退火
将组织偏离平衡状态的钢加热到适当温度,保温一 定时间,然后缓慢冷却(随炉冷),以获得接近平衡状 态组织的热处理工艺叫作退火。
二、正火
钢材或钢件加热到Ac3(亚共析钢)和Accm(过共析 钢)以上30~50℃,保温适当时间后,在自由流动的空气 中均匀冷却的热处理工艺称为正火。
第五章 钢的热处理
概 述 第一节 钢在加热时的组织转变 第二节 钢在冷却时的组织转变 第三节 钢的退火与正火 第四节 钢的淬火 第五节 钢的回火 第六节 钢的表面淬火 第七节 钢的化学热处理 第八节 表面气相沉积
概 述
热处理是将固态金属或合金在一定介质中加热、
保温和冷却,以改变材料整体或表面组织,从而 获得所需性能的一种热加工工艺。
二、感应加热表面淬火用钢及其应用
表面淬火一般用于中碳钢和中碳低合金钢,如45、40Cr、 40MnB钢等。用于齿轮、轴类零件的表面硬化,提高耐磨 性。
三、感应加热淬火的特点
1)加热速度极快,保温时间极短,过热度大,奥氏体晶粒 细小,又不易长大,因此淬火后表层可获得细小的隐晶马 氏体,硬度比普通淬火高2~3HRC,且脆性较低; 2)由于马氏体转变产生体积膨胀,使工件表面存在残余压 应力,因而具有较高的疲劳强度; 3)由于加热速度快,基本无保温时间,因此,工件一般不 产生氧化脱碳,表面质量好。同时由于内部未被加热,淬 火变形小; 4)生产效率高,易实现机械化与自动化,淬硬层深度也易 于控制。 其缺点是设备较昂贵,维修调整技术要求高,形状复 杂的感应器制造比较困难。
2、淬火冷却介质
几种淬火介质的冷却能力
理想淬火冷却
二、淬火方法
各种淬火方法示意图
三、钢的淬透性与淬硬性 1、钢的淬透性的概念
淬透性:钢在淬火时能够获得M体的能力,它是钢材本身
固有的属性,取决于M体的临界冷却速度 通常用淬透层深度来表示(在相同的加热条件下) 淬透层深度:从工件表面到半M体层的深度
(3)加热温度和保温时间
随加热温度的提高和保温时间的延长,碳化物溶解充分,奥氏体成分均 匀,晶粒粗大(总形核部位减少),这些都增加过冷奥氏体的稳定性, 使C曲线右移,提高了钢的淬透性
(4)钢中未溶第二相
未溶第二相越多,作为结晶核心使A体不稳定,C曲线左移,淬透性下降
4、钢的淬硬性 淬硬性:钢在淬火后能够达到的最高硬度, 它取决于M体的含碳量。 淬透性好的钢其淬硬性不一定高。 如低碳合金钢淬透性很好,但其淬硬性却 不高;而碳素工具钢的淬透性很差,但其 淬硬性却很高。
45钢(Φ20~Φ40)调质和正火后力学性能的比较
四、回火脆性 淬火钢出现冲击韧性显著下降
的现象称为回火脆性。 回火脆性有低温(250~350℃) 和高温(500~650℃)回火脆 性两种。
•低温回火脆性,属不可逆
回火脆性; 高温回火脆性为可逆回 火脆性。
第六节 钢的表面淬火
一、感应加热的基本原理 感应线圈中通以交流电时,即在其内部和周围产生一与
上贝氏体: 下贝氏体:
550 ~ 350℃,呈羽毛状 350 ℃~Ms 点,呈针状
金相组织
返回
片状珠光体的显微组织
返回
上贝氏体形貌
下贝氏体形貌
返回
二、过冷奥氏体的连续冷却转变
1、连续冷却转变曲线(CCT曲线)
共析钢的C曲线和CCT曲线比较及组织
亚共析钢过冷奥氏体的连续冷却转变
过共析钢过冷奥氏体的连续冷却转变
继续
珠光体的形成示意图
高温转变:A1~550℃ 一是铁、碳原子扩散
二是晶格重组
扩散型转变
转 变 产 物
珠光体:A1~650℃
索氏体: 650~600℃ 托氏体: 600~550℃
金相组织 返回
下贝氏体形成过程示意图
中温转变:550 ℃~Ms点 转变特点:半扩散型,铁
原子不扩散,碳原子有一 定的扩散能力 转变产物:贝氏体,即 Fe3C分布在含过饱和碳的 铁素体上的两相混合物
电流相同频率的交变磁场。若把工件置于磁场中,则在工 件内部产生感应电流,并由于电阻的作用而被加热。由于 交流电的集肤效应,靠近工件表面的电流密度大,而中心 几乎为零。工件表面温度快速升高到相变点以上,而心部 温度仍在相变点以下。感应加热后,采用水、乳化液或聚 乙烯醇水溶液喷射淬火,淬火后进行180~200℃低温回 火,以降低淬火应力,并保持高硬度和高耐磨性。透入深 度:δ= f:高、中、低频。
第五节 钢的回火
淬火后得到的是亚稳组织马氏体与残余奥氏体。将淬火零
件重新加热到低于临界点某一温度保温,亚稳组织将发生 转变,这一处理称为回火。回火时的转变称为回火转变。
一、回火目的
1 、淬火后得到的 M组织性能很脆,并存在有内应力,容易产生变形和开 裂; 2、淬火M和A残都是不稳定组织,在工作中会分解,导致零件尺寸的变化, 这对精密零件是不允许的; 3、为了获得要求的强度、硬度、塑性和韧性,以满足零件的使用要求。
a)回火马氏体
回火后的显微组织 b)回火屈氏体
c)回火索氏体Βιβλιοθήκη 共析碳钢淬火回火后的组织与性能
回火组织 组织本质 碳在α -Fe中的 过饱和固溶体 与弥散的ε 碳 化物组成的复 相组织 主要性能特点 保持M的高硬度和耐磨性,但脆性 有所降低
回火马氏体
回火屈氏体
保持马氏体形 态的铁素体与 细粒状渗碳体 的复相组织
二、淬火钢在回火时的组织转变
(1) 马氏体转变,发生于100℃350℃; (2) 残余奥氏体转变,发生于200℃300℃,属于低温回火,得到回火马 氏体(M回)
(3) 碳化物转变,ε(η)→θ, 发生于400℃,属于中温回火,得到回火屈 氏体(T回); (4) α 相回复再结晶,碳化物聚集长大,发生于400℃550℃,属于高 温回火,得到回火索氏体(S回)。 这四个过程的温度不能截然分开
*退火和正火的目的 降低或提高硬度,便于进行切削加工 消除残余应力 细化晶粒,改善组织以提高钢的力学性能 为最终热处理作好组织准备
各种退火和正火的工艺规范示意图
T10钢球化退火后的组织
碳钢退火和正火后的硬度范围
三、退火和正火的选择 1、从切削加工性考虑
钢的硬度在170~260HBW范围内时,切削加工性能较好,
钢中晶粒度标准图谱
加热温度与奥氏体晶粒大小关系示意图
2、影响奥氏体晶粒度的因素
(1)加热温度和保温时间: T加热 ↑→奥氏体晶粒↑;τ保温↑→奥氏体晶粒↑ (2)钢的成分 奥氏体中的碳含量↑→晶粒长大的倾向↑。若碳以 未溶碳化物的形式存在,则它有阻碍晶粒长大的 作用。 钢中加入能形成稳定碳化物的元素(如:钛、钒、 铌、锆等)和能生成氧化物和氮化物的元素(如: 适量铝等),有利于得到本质细晶粒钢。磷和锰 是促进晶粒长大的元素。
二、奥氏体晶粒长大及其控制 1、奥氏体的晶粒度 可用晶粒直径、单位面积中的晶粒数等方法来表
示晶粒大小。 (1)起始晶粒度 加热转变终了时所得A晶粒度 (2)实际晶粒度 冷却开始时A晶粒度 (3)本质晶粒度 采用标准试验方法,930±10℃ 保温足够时间(3-8小时)所测得钢的晶粒大 小——近年已用较少 (本质粗晶粒、本质细晶粒)
第二节 钢在冷却时的组织转变
冷却的方式
一、过冷奥氏体的等温转变
1、等温转变曲线(C曲线)
共析钢的过冷奥氏体等温转变曲线
共析钢的过冷奥氏体等温转变过程示意图
亚过共析钢的过冷奥氏体等温转变动力学图 对亚共析钢和过共析钢的A等温转变,在C曲线的右上方会有先共析相析 出线。其中A→F为先共析F析出线;A→C为先共析碳化物析出线。
第七节 钢的化学热处理
化学热处理是将工件置于一定温度的活性介质中保温,使一种或几种
元素渗入其表层,以改变化学成分、组织和性能的热处理工艺。 分类:按照表面渗入的元素不同.化学热处理可分为渗碳、氮化、碳 氮共渗、渗硼、渗铝等。 目前,生产上应用最广的化学热处理工艺是渗碳、氮化和碳氦共渗 过程:
第一节 钢在加热时的组织转变
相关文档
最新文档