第五章钢热处理

合集下载

钢的热处理ppt课件

钢的热处理ppt课件
的频率,与材料的淬透性无关。
其它表面淬火方法
1.火焰加热表面淬火
淬硬深度:2~6mm。 特点:方便,成本低,但效果

2.激光加热表面淬火
特点: 淬硬深度:0.3~0.5mm。 特点:不需要冷却液,可对深
孔,盲空,沟槽进行淬火。
3.太阳能加热表面淬火
同激光,但受自然条件限制
钢的化学热处理
为什么亚共析钢要进行完全淬火
完全淬火—— 得到完全马 氏体。
不完全淬 火——马氏体 组织中有铁 素体出现。
为什么过共析钢只能进行不完全
淬火
完全淬火:马氏体 含碳量过高,易开 裂和形成大量残余 奥氏体;
不完全淬火:有细 小弥散渗碳体残余, 奥氏体含碳量低, 因而淬火时不易开 裂,且残余渗碳体 量少。
适用材料:低碳钢。 常用工艺:
气体渗碳 固体渗碳 特点:温度高,周期长, 渗碳后必须进行淬火。
渗碳件的淬火
直接淬火
优点:工艺简单, 降低成本
缺点:工件晶粒 粗大,易开裂。
一次淬火
优点:晶粒细化, 不易开裂
缺点:增加成本。
钢的气体氮化
原理:以氨气分解产生活性氮原子,渗入钢
表面后形成高硬度的弥散分布的氮化物。 优点:由于渗氮温度只有550~570℃,且渗后
目的:满足工件不 同部位的性能要求。
冷处理
目的:消除残余 奥氏体。
工艺:先进行普 通淬火,然后将 工件淬入低温溶 液中
常用冷处理液
冰水; 干冰+酒精; 液氮。
钢的淬透性
基本概念
淬透性:钢获得马 氏体的能力。
淬硬性:钢的硬化 能力
淬透层深度:从淬 火件表面至半马氏 体区的距离
时间/s 图2-68 T10钢过冷A等温转变曲线

金相知识-钢的热处理基础

金相知识-钢的热处理基础
射传热为主,炉温越高,工件升温速度越快,所需的 加热时间越短。
钢的热传递基本方式
热传递 方式
定义
传导传热
热量由零件(包括于其接 触的零件)的一处传到另 一处,物体的质点没有移动。 Nhomakorabea对流传热
流体中不同部分的质点发 生了相对位移、或混合, 或流体质点与固体表面
辐射传热
由物体表面直接向外界 发射可见的和不可见的 射线,在空间传递热量
高温回火 ( 》500℃) 称调质,获得回火索氏体组织,强 韧性恰当配合,广泛用于各种结构零件。
Fe Fe3C
零件淬火后产生的应力分类 热应力 零件在加热和冷却中不同部位温度有差异,
热胀冷缩不一致导致的应力;通常表面为压应力; 心部为拉应力。只占总应力的5-10%。 组织应力 零件冷却时不同部位组织转变不一样, 引起的内应力。一般表面为拉应力,心部为压应力。
第五节 钢的热处理基础
5.1 钢的热传递 1. 基本方式 传导 对流 辐射 2. 传热一般规则 a. 先决条件存在温差. b. 通常三种传热方式同时存在 工件通过辐射和对流从加热炉中获得热量,又
以传导方式传给心部。
c. 工件的传热方式取决于加热温度和加热设备 >600 ºc时,辐射传热过程最强烈,试验以辐
铁碳相图中,共有五种不同形态的渗碳体,请根据
形成温度的高低依次写出。
在Fe-Fe3C相图,五种形态渗碳体以温度从高到低
为:
Fe3C I
(A+Fe3C)共晶
Fe3C II
(F +Fe3C)共
5.2 钢在加热时的转变 奥氏体形核+长大过程;取决于加热温度、原始
组织和化学成分。 用晶粒度评定加热质量。
5.3 钢在冷却时的转变
过冷奥氏体的等温转变曲线 称为C-曲线,或 TTT图。

(完整版)碳钢的热处理

(完整版)碳钢的热处理
第五章 碳钢的热处理 Heat Treatment of Carbon Steel
前言
一、热处理的概念
通过对材料进行加热、保温、冷却的操作 方法使钢的组织结构发生变化,以获得所需性 能的一种工艺。
二、ห้องสมุดไป่ตู้处理的分类
普通热处理:退火、正火、淬火、回火
热处理
表面热处理
表面淬火:火焰加热、
感应加热、电接触加热、 激光加热、等离子体加热
对于亚共析钢(过共析钢),当缓慢 加热到A1以上时,除珠光体全部转化为奥 氏体外,还有少量先共析铁素体转变为奥 氏体 ( 过共析钢二次渗碳体溶解 ),随着 温度升高,先共析铁素体不断向奥氏体转 变,当温度高于A3时,组织为单相奥氏体。
二、奥氏体形成的热力学条件
钢加热时组织转变的动力是奥氏体与旧相之 间的体积自由能之差ΔFv,而相变进行的条件是 系统总的自由能降低。根据相变理论,奥氏体形 成晶核时,系统总自由能变化ΔF为:
铁碳合金缓慢加热时奥氏体的形成可以 从Fe-Fe3C相图中反映出来,珠光体向奥氏体 的转变属于扩散型相变。以共析钢为例,珠 光体组织在A1(727℃)以下,组织保持不变 (α相中碳的溶解度及Fe3C的形状稍有变化); 当加热到A1点以上时,珠光体全部转 变为奥 氏体。
奥氏体的形成过程可以分为四个步骤: ①奥氏体晶核的形成 ②奥氏体晶粒长大 ③残余渗碳体溶解 ④奥氏体成分均匀化
称为过冷奥氏体。
不同的过冷度,奥氏体发生转变的过程不同:
①转变开始与转变终了的时间不同 ②转变后产物的组织与性能不同
一、珠光体型转变——高温转变(A1~550℃)
1、转变过程及特点
过冷奥氏体在A1~550℃温度范围内,将 分解为珠光体类组织。
当奥氏体被过冷至A1以下温度时,在奥氏体晶界 处(含碳量高)优先产生渗碳体的核心,然后依靠奥 氏体不断供应碳原子(随着冷却,奥氏体溶解碳的能 力下降,碳从奥氏体内向晶界扩散),渗碳体沿一定 方向逐渐长大,而随着渗碳体的长大,又使其周围的 奥氏体碳浓度下降,这就促使贫碳的奥氏体局部区域 转变成铁素体(即渗碳体两侧出现铁素体晶核),在 渗碳体长大的同时,铁素体也不断长大,而随着铁素 体的长大,必然将多余的碳排挤出去,这就有利于形 成新的渗碳体晶核。最终形成了相互交替的层片状渗 碳体和铁素体——珠光体。

钢的热处理

钢的热处理

t2 t1
等温时间t M转变量与等温时间的关系
M转变是在Ms~Mf温度范围内迚行,与停留时间无关。
3
转变不完全
多数钢的Mf点在室温以下,因此冷却到室温时 仍会有A存在,称为残余A,用Ar表示。A的含碳 量越高,Ms、Mf就越低,所以Ar就越多。
100 80 60 40 20
4
瞬间形核,高速长大
Ms Mf 20 温度(℃) M转变量与温度的关系
E G A3
900
γ
Accm Arcm Acm
860
820
780
α+γ Ar3 P
Ac3
S
γ+Fe3C
K
740
临界点,它是制定热处理工
艺时选择加热和冷却温度的 依据。
700
α+Fe3C
660 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
w(C)%
3 钢在加热时的组织转变
3.1 A的形成
A A→F3C A→P A→B Ms
21 32
38
40 43 50 55
HRC
温度/℃
Mf
1 10 102 103 104 105
时间/s
影响C曲线的因素
⑴ 成分的影响
① 含碳量的影响:共析钢的C曲线最靠右,其余向左移动。
Ms 与Mf 点随含碳量增加而下降。
② 合金元素的影响
除Co 外, 凡溶入奥氏体的合金元素都使C 曲线右移。
4
原始组织的影响 ——原始组织越细,相界面越多,越有利于A形核。
4 钢在冷却时的组织转变
连续冷却转变 热处理时常用的冷却方式
等温转变
由于冷却过程大多不是极其缓慢的,得到的组织是不平衡组织,因

钢的热处理

钢的热处理
一、热处理的定义
热处理是指金属在固态下经加热、保温和冷却,以改变金属的内部组织和结
构,从而获得所需性能的一种工艺过程。
保温 温度 临界温度 冷 加 热 却 时间
热处理工艺曲线示意图
钢的热处理-热处理的基本概念
二、热处理的基本要素和作用
热处理的三大要素
①加热( Heating) 目的是获得均匀细小的奥氏体组织。
种类: 扩散退火、再结晶退火、去应力退火。
第二类退火:
目的和作用: 以改变组织和性能为目的,获得以珠光体为主的组织,并使钢中的珠光体、 铁素体和碳化物等组织形态及分布达到要求。 种类: 完全退火、不完全退火、等温退火、球化退火。
钢的热处理-钢的退火与正火
完全退火(Complete Annealing)
热处理的作用
改善钢(工件)的力学性能或工艺性能,充分发挥钢的性能潜力, 提高工件
质量,延长工件寿命。
重要结论:
材料是否能够通过热处理而改善其性能,关键条件是材料在加热和冷却过程 中是否发生组织和结构的变化。
钢的热处理-热处理的基本概念
三、热处理的类型
1.按加热、冷却方式及钢的组织、性能不同分类
时间 / s
马氏体转变时产生的组织应力。
温度 / C
Ms
理想淬火介质的冷却曲线
钢的热处理-钢的淬火与回火
常用淬火介质:
①水 特点:经济,冷却能力较强,但在Ms点附近冷速过快。 适用范围:碳钢。 盐水:盐或碱的水溶液,高温冷却能力比水强,适用于碳钢。 ②油
特点:低温区(Ms点附近)冷速缓慢,可有效降低变形和开裂倾向,
两个方面的问题:
冷却速度大,容易获得马氏体。 冷却速度大,内应力大,工件变形和开裂的倾向大。

钢的热处理

钢的热处理
实际加热或冷却时存在着过冷或过热 现象,因此将钢加热时的实际转变温 度分别用Ac1、Ac3、Accm表示;冷却时 的实际转变温度分别用Ar1、Ar3、Arcm 表示。
由于加热冷却速度直接影响转变温度 ,因此一般手册中的数据是以3050℃/h 的速度加热或冷却时测得的.
第二节 钢在加热时的转变
加热是热处理的第一道工序。加热分两种:一种是在A1以下加热,不发生相变; 另一种是在临界点以上加热,目的是获得均匀的奥氏体组织,称奥氏体化。
20CrMnTi钢不同热处理工艺的显微组织
根据加热、冷却方式及钢组织性能变化特点不同,将热处理工 艺分类如下:
、火焰加热、
热处理
表面热处理
电接触加热等 化学热处理—渗碳、氮化、碳氮
共渗、渗其他元素等
控制气氛热处理
其他热处理
真空热处理 形变热处理
激光热处理
上贝氏体转变过程
上贝氏体转变过程观察
当转变温度较低(350- 230℃) 时,铁素体在晶界或晶内某些晶面上长成 针状,由于碳原子扩散能力低,其迁移不能逾越铁素体片的范围,碳在铁 素体的一定晶面上以断续碳化物小片的形式析出。
贝氏体转变属半扩散型转变,即只有碳原子扩散而铁原子不扩散,晶格类 型改变是通过切变实现的。
使切变部分的形状和体积发生变化,引起相 邻奥氏体随之变形,在预先抛光的表面上产 生浮凸现象。
马氏体转变 切变示意图
马氏体转变产生的表面浮凸
⑶ 降温形成 马氏体转变开始的温度称上马氏
体点,用Ms 表示.
马氏体转变终了温度称下马氏体 点,用Mf 表示.
只要温度达到Ms以下即发生马氏 体转变。
在Ms以下,随温度下降,转变量 增加,冷却中断,转变停止。
核率越高, 晶粒越细. ⑶合金元素:

电子课件-《机械加工基础》-A02-25849 第五章 工程材料及金属热处理

电子课件-《机械加工基础》-A02-25849 第五章 工程材料及金属热处理

第五章 工程材料及金属热处理
2. 铸铁 铸铁的含碳量一般在 2.5% ~ 4.0% 之间。 (1) 铸铁的分类 1) 白口铸铁。 2) 灰铸铁。 3) 可锻铸铁。 4) 球墨铸铁。 5) 合金铸铁。
第五章 工程材料及金属热处理
(2) 灰铸铁 1) 灰铸铁的优点。 ①优良的铸造性。 ②良好的切削加工性。 ③优良的减摩性。 ④良好的消振性。 ⑤较低的缺口敏感性。 2) 灰铸铁的牌号。 灰铸铁的牌号由 “ HT” + 数字表示。
(2) 合金钢的分类 1) 按用途不同,合金钢可分为合金结构钢、 合金工具钢和特殊性能 钢。 2) 按合金元素总含量不同,合金钢可分为低合金钢、 中合金钢和高 合金钢。 (3) 合金钢的牌号 1) 合金结构钢。 其采用两位数字 ( 含碳量) + 元素 ( 或汉字) + 数字表 示。 2) 合金工具钢。 其采用一位数字 + 元素符号 + 数字表示。 3) 特殊性能钢。 其特殊性能钢的牌号与合金工具钢的表示方法相同。
第五章 工程材料及金属热处理
3. 碳素钢的牌号及用途 (1) 碳素结构钢的表示方法 碳素结构钢的牌号由字母 “ Q” 、 屈服强度数值、 质量等级符号、 脱氧方法符号四部分组成。 (2) 优质碳素结构钢 优质碳素结构钢的牌号用该钢平均含碳量的万分数来表示,如果钢中 的含锰量较高(wMn = 0.7% ~ 1.2% ) ,要在牌号后面标出元素符号 “ Mn” 。 (3) 碳素工具钢 碳素工具钢的牌号以汉字 “ 碳” 的汉语拼音字母 “ T” 及后面含碳 量的千分数表示。
第五章 工程材料及金属热处理
3. 常用硬质合金 (1) 钨钴类硬质合金 主要成分为碳化钨及钴。 其代号用 “ YG” + 钴含量的百分数表示。 (2) 钨钴钛类硬质合金 它的主要成分为碳化钨、 碳化钛及钴。 其代号用 “ YT” + 碳化钛的 百分数表示。 (3) 通用硬质合金 以碳化钽或碳化铌取代 YT 类硬质合金中的一部分碳化钛制成。 万能硬质合金代号用 “YW” + 顺序号表示。

第5章 模具钢料的热处理-模具表面处理技术

第5章 模具钢料的热处理-模具表面处理技术

第二节模具表面处理工艺概述模具是现代工业之母。

随着社会经济的发展,特别是汽车、家电工业、航空航天、食品医疗等产业的迅猛发展,对模具工业提出了更高的要求。

如何提高模具的质量、使用寿命和降低生产成本,成为各模具厂及注塑厂当前迫切需要解决的问题。

模具在工作中除了要求基体具有足够高的强度和韧性的合理配合外,其表面性能对模具的工作性能和使用寿命至关重要。

这些表面性能指:耐磨损性能、耐腐蚀性能、摩擦系数、疲劳性能等。

这些性能的改善,单纯依赖基体材料的改进和提高是非常有限的,也是不经济的,而通过表面处理技术,往往可以收到事半功倍的效果;模具的表面处理技术,是通过表面涂覆、表面改性或复合处理技术,改变模具表面的形态、化学成分、组织结构和应力状态,以获得所需表面性能的系统工程。

从表面处理的方式上,又可分为:化学方法、物理方法、物理化学方法和机械方法。

在模具制造中应用较多的主要是渗氮、渗碳和硬化膜沉积。

◆提高模具的表面的硬度、耐磨性、摩擦性、脱模性、隔热性、耐腐蚀性;◆提高表面的高温抗氧化性;◆提高型腔表面抗擦伤能力、脱模能力、抗咬合等特殊性能;减少冷却液的使用;◆提高模具质量,数倍、几十倍地提高模具使用寿命。

减少停机时间;◆大幅度降低生产成本与采购成本,提高生产效率和充分发挥模具材料的潜能。

◆减少润滑剂的使用;◆涂层磨损后,还退掉涂层后,再抛光模具表面,可重新涂层。

在模具上使用的表面技术方法多达几十种,从表面处理的方式上,主要可以归纳为物理表面处理法、化学表面处理法和表面覆层处理法。

模具表面强化处理工艺主要有气体氮化法、离子氮化法、点火花表面强化法、渗硼、TD法、CVD化学气相淀积、PVD物理气相沉积、PACVD离子加强化学气相沉积、CVA铝化化学气相沉积、激光表面强化法、离子注入法、等离子喷涂法等等。

下面综述模具表面处理中常用的表面处理技术:一、物理表面处理法:表面淬火是表面热处理中最常用方法,是强化材料表面的重要手段,分高频加热表面淬火、火焰加热表面淬火、激光表面淬火。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章钢的热处理本章重点:热处理工艺主要介绍钢的普通常见的热处理方法,1.退火2.正火3.淬火4.回火。

难点:各种热处理方法的区别和应用§5.3 钢的退火和正火退火和正火是应用最为广泛的热处理工艺。

在机械零件和工、模具的制造加工过程中,退火和正火往往是不可缺少的先行工序,具有承前启后的作用。

机械零件及工、模具的毛坯退火或正火后,可以消除或减轻铸件、锻件及焊接件的内应力与成分、组织的不均匀性,从而改善钢件的机械性能和工艺性能,为切削加工及最终热处理(淬火)作好组织、性能准备。

一些对性能要求不高的机械零件或工程构件,退火和正火亦可作为最终热处理。

一. 退火目的及工艺退火是钢加热到适当的温度,经过一定时间保温后缓慢冷却,以达到改善组织、提高加工性能的一种热处理工艺。

其主要目的是减轻钢的化学成分及组织的不均匀性,细化晶粒,降低硬度,消除内应力,以及为淬火作好组织准备。

退火工艺种类很多,常用的有完全退火、等温退火、球化退火、扩散退火、去应力退火及再结晶退火等。

不同退火工艺的加热温度范围如图5.25所示,它们有的加热到临界点以上,有的加热到临界点以下。

对于加热温度在临界点以上的退火工艺,其质量主要取决于加热温度、保温时间、冷却速度及等温温度等。

对于加热温度在临界点以下的退火工艺,其质量主要取决于加热温度的均匀性。

1. 完全退火完全退火是将亚共析钢加热到A C3以上20~30℃,保温一定时间后随炉缓慢冷却至500℃左右出炉空冷,以获得接近平衡组织的一种热处理工艺。

它主要用于亚共析钢,其主要目的是细化晶粒、均匀组织、消除内应力、降低硬度和改善钢的切削加工性能。

低碳钢和过共析钢不宜采用完全退火。

低碳钢完全退火后硬度偏低,不利于切削加工。

过共析钢完全退火,加热温度在A cm以上,会有网状二次渗碳体沿奥氏体晶界析出,造成钢的脆化。

2. 等温退火完全退火所需时间很长,特别是对于某些奥氏体比较稳定的合金钢,往往需要几十小时,为了缩短退火时间,可采用等温退火。

等温退火的加热温度与完全退火时基本相同,钢件在加热温度保温一定时间后,快冷至A r1以下某一温度等温,使奥氏体转变成珠光体,然后出炉空冷。

图5.26为高速钢的完全退火与等温退火的比较,可见等温退火所需时间比完全退火缩短很多。

A r1以下的等温温度,根据要求的组织和性能而定;等温温度越高,则珠光体组织越粗大,钢的硬度越低。

3. 球化退火球化退火是使钢中渗碳体球化,获得球状(或粒状)珠光体的一种热处理工艺。

主要用于共析和过共析钢,其主要目的在于降低硬度,改善切削加工性能;同时为后续淬火作好组织准备。

球化退火是将钢件加热到A c1以上20~30℃,充分保温使未溶二次渗碳体球化,然后随炉缓慢冷却,或在A r1以下20℃左右进行较长时间保温,使珠光体中的渗碳体球化,随后出炉空冷。

上述两种工艺如图5.27所示。

(1分钟)对于有网状二次渗碳体的过共析钢,在球化退火之前应进行一次正火,以消除粗大的网状渗碳体。

近年来,球化退火工艺应用于亚共析钢也取得较好的效果,只要工艺控制恰当,同样可使渗碳体球化,从而有利于冷成形加工。

4. 扩散退火扩散退火是将钢锭或铸钢件加热到略低于固相线的温度,长时间保温,然后缓慢冷却,以消除化学成分不均匀现象的一种热处理工艺,扩散退火加热温度通常为A c1以上150~300℃,具体加热温度视钢种及偏析程度而定,保温时间工般为10~15h。

扩散退火后钢的晶粒非常粗大,需要再进行完全退火或正火。

由于高温扩散退火生产周期长、消耗能量大、生产成本高,所以一般不轻易采用。

5. 去应力退火为了消除冷加工以及铸造、焊接过程中引起的残余内应力而进行的退火,称为去应力退火。

去应力退火还能降低硬度,提高尺寸稳定性,防止工件的变形和开裂。

钢的去应力退火加热温度范围较宽,但不能超过A c1点,一般在500-650℃之间;去应力退火后的冷却应尽量缓慢,以免产生新的应力。

二. 正火目的及工艺正火是将钢加热到A c3或A ccm以上30~50℃,保温一定时间,然后在空气中冷却以获得珠光体类组织的一种热处理工艺。

正火与退火主要区别在于冷却速度不同,正火冷却速度较快,获得的珠光体组织较细,强度和硬度也较高。

正火与退火的目的相似,但正火态钢的机械性能较高,而且正火生产效率高,成本低,因此在工业生产中应尽量用正火代替退火。

正火的主要应用是:1. 作为普通结构零件的最终热处理。

2. 作为低、中碳结构钢的预先热处理,可获得合适的硬度,便于切削加工。

3. 用于过共析钢消除网状二次渗碳体,为球化退火作妤组织准备。

综上所述,为改善钢的切削性能,低碳钢宜用正火;共析钢和过共析钢宜用球化退火,且过共析钢宜在球化退火前采用正火消除网状二次渗碳体;中碳钢最好采用退火,但也可采用正火。

§5.4 钢的淬火淬火是将钢加热到A c3或A c1以上的一定温度,保温后快速冷却,以获得马氏体(或下贝氏体)组织的一种热处理工艺。

马氏体强化是钢最有效的强化手段,因此,淬火也是钢的最重要的热处理工艺。

一. 淬火加热温度淬火加热温度是淬火工艺的主要参数。

它的选择应以得到均匀细小的奥氏体晶粒为原则,以使淬火后获得细小的马氏体组织。

为防止奥氏体晶粒粗化,淬火加热温度一般限制在临界点以上30~50℃范围。

碳钢淬火加热温度范围如图50.28所示。

亚共析钢淬火加热温度为A c3+(30~50℃)。

这样可获得均匀细小的马氏体组织,若淬火加热温度过高,不仅会出现粗大马氏体组织,还会导致淬火钢的严重变形。

若淬火加热温度过低,则会在淬火组织中出现铁素体,造成淬火钢硬度不足,甚至出现“软点”现象。

共析钢和过共析钢的淬火加热温度为A c1+(30~50℃)。

淬火后,共析钢组织为均匀细小的马氏体和少量残余奥氏体;过共析钢则可获得均匀细小的马氏体加粒状二次渗碳体和少量残余奥氏体的混合组织。

过共析钢的这种正常淬火组织,有利于获得最佳硬度和耐磨性。

若过共析钢的淬火加热温度过高,则会得到较粗大的马氏体和较多的残余奥氏体。

这不仅降低了淬火钢的硬度和耐磨度性,而且会增大淬火变形和开裂倾向。

对于合金钢,由于大多数合金元素有阻碍奥氏体晶粒长大的作用,所以淬火加热温度可以稍微提高一些,以利于合金元素的溶解和均匀化,从而获得较好的淬火效果。

二. 淬火冷却介质冷却也是影响淬火质量的一个重要因素。

因此选择合适的淬火冷却介质,对于达到淬火目的和保证淬火质量具有十分重要的煮义。

为了保证淬火能得到马氏体组织,淬火冷却速度就必须大于临界冷却速度(Vc)而快冷总是不可避免地要造成较大的内应力,以致往往要引起钢件的变形或开裂。

要解决这一矛盾,理想的淬火冷却曲线应如图50.29所示。

由图可知,淬火并不需要整个冷却过程都是快冷,只要求在C曲线鼻尖附近快冷;而在M S点以下则应尽量慢冷,以减小马氏体转变时的内应力。

但是到目前为止,还没有找到一种淬火冷却介质能符合这一理想淬火冷却曲线的要求,也就是说,至今还没有一种十分理想的淬火冷却介质。

淬火最常用的冷却介质是水、盐水和油。

水是既经济又有很强冷却能力的淬火冷却介质。

其不足之处是在650~550℃的范围内冷却能力不够强,而在300~200℃范围内冷却能力又偏强,不符合理想淬火冷却介质的要求。

盐水的淬火冷却能力比清水更强,尤其在650~550℃范围内具有很强的冷却能力,这对尺寸较大的碳钢件的淬火是非常有利的。

采用盐水淬火时,由于盐晶体在工件表面的析出和爆裂,可不断有效地打破包围在工件表面的蒸汽膜和促使附着在工件表面上的氧化铁皮的剥落。

因此用盐水淬火的工件容易获得高硬度和光洁的表面,且不会产生淬不硬的软点,这是清水淬火所不及的。

但是盐水在300~200℃以下温度范围内,冷却能力仍像清水那样相当强,能使工件变形加重,甚至发生开裂。

此外,盐水对工件有锈蚀作用,淬过火的工件必须进行清洗。

总之,水和盐水主要适用于形状简单、硬度要求高而均匀、变形要求不严格的碳钢零件的淬火。

油是一类冷却能力较弱的淬火冷却介质。

淬火用油主要为各种矿物油。

油在高温区冷却速度不够,不利于碳钢的淬硬,但有利于减少工件的变形。

因此,在实际生产中,油主要用作过冷奥氏体稳定性好的合金钢和尺寸小的碳钢零件的淬火冷却介质。

熔融状态的碱浴和硝盐浴也常用作淬火冷却介质。

碱浴在高温区的冷却能力比油强而比水弱,而硝盐在高温区的冷却能力比油略弱。

在低温区域,碱浴和硝盐浴的冷却能力都比油弱。

因此碱浴和硝盐浴广泛作截面不大、形状复杂、变形要求严格的工具钢的分级淬火或等温淬火的冷却介质。

表5.1和表5.2分别为常用淬火冷却介质水、盐水、碱水和油的冷却能力与碱浴、硝盐浴的成分、熔点使用温度。

三. 淬火冷却方法由于淬火介质不能完全满足淬火质量的要求,所以要选择适当的淬火方法,以保证获得所需要的淬火组织和性能的前提下,尽量减小淬火应力、工件变形和开裂倾向。

;最常用的几种淬火方法如下:1. 单液淬火单液淬火是将奥氏体化后的钢件淬入一种介质中连续冷却获得马氏体组织的一种淬火方法(如图5.30曲线-1所示)这种方法操作简单,易实现机械化与自动化热处理;但它只适用于形状简单的碳钢和合金钢零件的淬火。

(1分钟)2. 双液淬火双液淬火是先将奥氏体化后的钢件淬入冷却能力较强的介质中冷至接近M S点温度时快速转人冷却能力较弱的介质中冷却,直至完成马氏体转变(如图5.30曲线2所示)。

这种淬火法利用了两种介质的优点,获得了较为理想的冷却条件;在保证工件获得马氏体组织的同时,减小了淬火应力,能有效防止工件的变形或开裂。

在工业生产常以水和油分别作为两种冷却介质,故又称之为水淬油冷法。

双液淬火法要求操作人员必须具有丰富的实践经验,否则难以保证淬火质量。

(1分钟)3. 分级淬火分级淬火是将奥氏体化后的钢件淬入稍高于M S点温度的盐浴中,保持到工件内外温度接近后取出,使其在缓慢冷却条件下发生马氏体转变(如图5.30曲线3所示)。

这种淬火方法显著降低了淬火应力,因而更为有效地减小或防止了淬火工件的变形和开裂。

因受熔盐冷却能力的限制,它只适用于处理尺寸较小的工件。

4. 等温淬火等温淬火是将奥氏体化后的钢件淬入高于M S点温度的盐浴中,等温保持,以获得下贝氏体组织的一种淬火工艺(如图5.30曲线4所示)。

这种淬火方法处理的工件强度高、韧性好;同时因淬火应力很小,故工件淬火变形极小。

它多用于处理形状复杂、尺寸较小的零件。

§5.5 钢的回火回火是将淬火钢加热到临界点A cl以下的某一温度,保温后以适当方式冷却到室温的一种热处理工艺。

回火的主要目的是:降低脆性:消除或减少内应力。

淬火钢存在很大的内应力,如不及时回火,往往会导致工件的变形和开裂。

稳定组织和工件尺寸:回火过程中,不稳定的淬火马氏体和残余奥氏体会转变为较稳定的铁素体和渗碳体或碳化物的两相混合物,从而保证了工件在使用过程中形状和尺寸的稳定性。

相关文档
最新文档