有效数字及其运算规则

合集下载

有效数字的计算法则

有效数字的计算法则

有效数字的计算法则
有效数字是指在最后一个数字后面的数字都是不确定的数字。

有效数字的计算法则是指在进行数学计算时,应当根据有效数字的规则进行计算以保证结果的准确性。

以下是一些有效数字的计算法则: 1. 加减法:在进行加减法运算时,结果的有效数字应当与被加数或被减数中有效数字最少的那个数相同。

2. 乘法:在进行乘法运算时,结果的有效数字应当与被乘数和乘数中有效数字的总和相同。

3. 除法:在进行除法运算时,结果的有效数字应当与被除数中有效数字的总数相同。

4. 幂运算:在进行幂运算时,结果的有效数字应当与底数中有效数字的总数相同。

5. 对数运算:在进行对数运算时,结果的有效数字应当与真数中有效数字的总数相同。

在进行数学计算时,应当注意有效数字的规则,以保证计算结果的准确性。

同时,应当注意四舍五入的规则,以便得到正确的有效数字。

- 1 -。

有效数字及运算法则

有效数字及运算法则
有效数字及运算法则有效数字的运算法则有效数字运算规则有效数字的运算规则有效数字的运算有效数字运算有效数字有效数字的定义什么是有效数字什么叫有效数字
有效数字及运算法则
一、有效数字的一般概念
定义:在测量结果的数字表示 中,由若干位可靠数字加一位 可疑数字,便组成了有效数字。
上述例子中的测量结果均为三 位有效数字
N

2 65
差(不确定度)决定有效数字,有:
N 0.96 0.03cm
运算规则:结果的有效数字与其底或被开
方数的有效数字位数相同。
如: 1002=100102
100=10.0
49 = 7.0 4.02=16 正确
49 = 7 4.02=16.0 错误
试确定N的有效数字。
解: (1)先计算N
N 3.21 6.5 0.957cm 21.8
(2)计算不确定度 N
N
A
2
B
2
C
2

0.01 2
0.2 2
0.004
2
2
N A B C 3.21 6.5 21.843 65
=
1.0102 100
= 1.0
10.02 lg100.0 35 27.3211 27.31 = 100 2.0000 35
0.01 = 2104 35 = 2104
试用有效数字计算结果: (1)123.98 - 40.456 + 7.8 = 171.0 (2) lg10.00 = 1.0000 (3)789.30 × 50 ÷ 0.100 = 3.9×103 (4)1.002 = 1.00

有效数字及其运算规则

有效数字及其运算规则

有效数字及其运算规则一、测量结果得有效数字1.有效数字得定义及其基本性质测量结果中所有可靠数字加上末位得可疑数字统称为测量结果得有效数字。

有效数字具有以下基本特性:(1)有效数字得位数与仪器精度(最小分度值)有关,也与被测量得大小有关。

对于同一被测量量,如果使用不同精度得仪器进行测量,则测得得有效数字得位数就是不同得。

例如用千分尺(最小分度值,)测量某物体得长度读数为。

其中前三位数字“”就是最小分度值得整数部分,就是可靠数字;末位“"就是在最小分度值内估读得数字,为可疑数字;它与千分尺得在同一数位上,所以该测量值有四位数字、如果改用最小分度值(游标精度)为得游标卡尺来测量,其读数为,测量值就只有三位有效数字。

游标卡尺没有估读数字,其末位数字“"为可疑数字,它与游标卡尺得也就是在同一数位上。

(2)有效数字得位数与小数点得位置无关,单位换算时有效数字得位数不应发生改变。

2、有效数字与不确定度得关系在我们规定不确定度得有效数字只取一位时,任何测量结果,其数值得最后一位应与不确定度所在得那一位对齐、如,测量值得末位“”刚好与不确定度得“"对齐。

由于有效数字得最后一位就是不确定度所在位,因此有效数字或有效位数在一定程度上反映了测量值得不确定度(或误差限值)。

测量值得有效数字位数越多,测量得相对不确定度越小;有效位数越少,相对不确定度就越大。

3.数值得科学表示法二、有效数字得运算规则1.数值得舍入修约原则测量值得数字得舍入,首先要确定需要保留得有效数字与位数,保留数字得位数确定以后,后面多余得数字就应予以舍入修约,其规则如下:(1)拟舍弃数字得最左一位数字小于5时,则舍去,即保留得各位数字不变。

(2)拟舍弃数字得最左一位数字大于5,或者就是5而其后跟有并非0得数字时,则进1,即保留得末位数字加1。

(3)拟舍弃数字得最左一位数字为5,而5得右边无数字或皆为0时,若所保留得末位数字为奇数则进1,为偶数或0则舍去,即“单进双不进”。

有效数字及其运算规则

有效数字及其运算规则

第六节有效数字及其运算规则一、有效数字的含义及位数为了得到准确的分析结果,不仅要准确地测量,而且还要正确地记录和运算,即记录的数字不仅表示数量的大小,而且要正确的反映测量的精确程度。

如某物重0.5180g 、其中0.518 是准确的,“0 ”位可疑,即其有上下一个单位的误差,也就是说此物重的绝对误差为二.有效数字的运算规则:1 .和或差的有效数字:几个数相加减时,和或差的有效数字的保留,应以小数点后位数最少的数据为根据,即决定于绝对误差最大的那个数据。

例如:0.0121+25.64+1.05782 =26.70992应依25.64 为依据,即:原式=26.71小数点后位数的多少反映了测量绝对误差的大小,如小数后有1 位,它的绝对误差为±0.1 ,而小数点有 2 位时,绝对误差为±0.01 。

可见,小数点具有相同位数的数字,其绝对误差的大小也相同。

而且,绝对误差的大小仅与小数部分有关,而与有效数字位数无关。

所以,在加减运算中,原始数据的绝对误差,决定了计算结果的绝对误差大小,计算结果的绝对误差必然受到绝对误差最大的那个原始数据的制约而与之处在同一水平上。

2 .乘除法几个数相乘、除时,其积或商的有效数字应与参加运算的数字中,有效数字位数最少的那个数字相同。

即:所得结果的位数取决于相对误差最大的那个数字。

商应与0.0325 在同一水平上,即取3 位。

又如:3.001×2.1= 6.3有效数字的位数的多少反映了测量相对误差的大小。

如 2 位有效数字1.0 和9.9 它们的都是±0.1 ,相对误差分别为±10% 和±1%, 即:两位有效数字的相对误差总在±1% ~10%叁位有效数字的相对误差总在±0.1 ~1%肆位有效数字的相对误差总在±0.01 ~±0.1% 之间。

可见,相同有效数字位数的数字,其相对误差E r,处在同一水平上:而且E r的大小,仅与有效数字位数有关,而与小数点位数无关。

有效数字及运算规则

有效数字及运算规则

有效数字及运算规则1.4.1 有效数字的基本概念任何测量结果都存在不确定度,测量值的位数不能任意的取舍,要由不确定度来决定,即测量值的末位数要与不确定度的末位数对齐。

如体积的测量值3cm 961.5=V ,其不确定度3cm 04.0=V U ,由不确定度的定义及V U 的数值可知,测量值在小数点后的百分位上已经出现误差,因此961.5=V 中的“6”已是有误差的欠准确数,其后面一位“1”已无保留的意义,所以测量结果应写为3cm 04.096.5±=V 。

另外,数据计算都有一定的近似性,计算时既不必超过原有测量准确度而取位过多,也不能降低原测量准确度,即计算的准确性和测量的准确性要相适应。

所以在数据记录、计算以及书写测量结果时,必须按有效数字及其运算法则来处理。

熟练地掌握这些知识,是普通物理实验的基本要求之一,也为将来科学处理数据打下基础。

测量值一般只保留一位欠准确数,其余均为准确数。

所谓有效数字是由所有准确数字和一位欠准确数字构成的,这些数字的总位数称为有效位数。

一个物理量的数值与数学上的数有着不同的含义。

例如,在数学意义上600.460.4=,但在物理测量中(如长度测量),cm 600.4cm 60.4≠,因为cm 60.4中的前两位“4”和“6”是准确数,最后一位“0”是欠准确数,共有三位有效数字。

而cm 600.4则有四位有效数字。

实际上这两种写法表示了两种不同精度的测量结果,所以在记录实验测量数据时,有效数字的位数不能随意增减。

1.4.2 直接测量的读数原则直接测量读数应反映出有效数字,一般应估读到测量器具最小分度值的10/1。

但由于某些仪表的分度较窄、指针较粗或测量基准较不可靠等,可估读5/1或2/1分度。

对于数字式仪表,所显示的数字均为有效数字,无需估读,误差一般出现在最末一位。

例如:用毫米刻度的米尺测量长度,如图1-4-1(a )所示,cm 67.1=L 。

“6.1”是从米尺上读出的“准确”数,“7”是从米尺上估读的“欠准确”数,但是有效的,所以读出的是三位有效数字。

有效数字及其运算规则

有效数字及其运算规则

§1、4有效数字及其运算规则一、有效数字得一般概念1、有效数字任何一个物理量,其测量结果必然存在误差。

因此,表示一个物理量测量结果得数字取值就是有限得。

我们把测量结果中可靠得几位数字,加上可疑得一位数字,统称为测量结果得有效数字。

例如,2、78得有效数字就是三位,2、7就是可靠数字,尾位“8”就是可疑数字。

这一位数字虽然就是可疑得,但它在一定程度上反映了客观实际,因此它也就是有效得。

2、确定测量结果有效数字得基本方法(1)仪器得正确测读仪器正确测读得原则就是:读出有效数字中可靠数部分就是由被测量得大小与所用仪器得最小分度来决定。

可疑数字由介于两个最小分度之间得数值进行估读,估读取数一位(这一位就是有误差得)。

例如,用分度值为1mm得米尺测量一物体得长度,物体得一端正好与米尺零刻度线对齐,另一端如图1-1。

此时物体长度得测量值应记为L=83.87cm。

其中,83、8就是可靠数,尾数“7”就是可疑数,有效数字为四位。

(2)对于标明误差得仪器,应根据仪器得误差来确定测量值中可疑数所以用该电压表测量时,其电压值只需读到小数点后第一位。

如某测量值为12、3V,若读出:12、32V,则尾数“2”无意义,因为它前面一位“3”本身就就是可疑数字。

(3)测量结果得有效数字由误差确定。

不论就是直接测量还就是间接测量,其结果得误差一般只取一位。

测量结果有效数字得最后一位与误差所在得一位对齐。

如L=(83、87±0、02)cm就是正确得,而L=(83、868±0、02)cm与L=(83、9±0、02)cm都就是错误得。

3、关于“0”得问题有效数字得位数与十进制得单位变换无关。

末位“0”与数字中间得“0”均属于有效数字。

如23、 20cm;10、2V等,其中出现得“0”都就是有效数字。

小数点前面出现得“0”与它之后紧接着得“0”都不就是有效数字。

如0.25cm或0.045kg中得“0”都不就是有效数字,这两个数值都只有两位有效数字。

有效数字及其运算规则

有效数字及其运算规则
有效数字及其运算规则
一、有效数字 二、有效数字的修约规则 三、有效数字的运算法则
一、有效数字:实际可以测得的数字
1. 有效数字位数包括所有准确数字和一位欠准数字 例:滴定读数20.30mL,最多可以读准三位 第四位欠准(估计读数)±1% 2. 在0~9中,只有0既是有效数字,又是无效数字 例: 0.06050 四位有效数字 定位 有效位数 例:3600 → 3.6×103 两位 → 3.60×103 三位 3.单位变换不影响有效数字位数 例:10.00[mL]→0.0010H,pM,pK,lgC,lgK等对数值,其有效数字的 位数取决于小数部分(尾数)数字的位数,整数部 分只代表该数的方次 例:pH = 11.20 → [H+]= 6.3×10-12[mol/L] 两位 5.结果首位为8和9时,有效数字可以多计一位 例:90.0% ,可示为四位有效数字 例:99.87% →99.9% 进位
二、有效数字的修约规则
1.四舍六入五留双 例:0.37456 , 0.3745 均修约至三位有效数 字 0.37 0.37 4 5 2.只能对数字进行一次性修约 例:6.549, 2.451 6.5 一次修约至两位有效数字 2.5
3.当对标准偏差修约时,修约后会使标准偏差结果 变差,从而提高可信度
例:s = 0.134 → 修约至0.14,可信度↑
三、有效数字的运算法则
1.加减法:以小数点后位数最少的数为准(即以 绝对误差最大的数为准) 例: 50.1 + 1.45 + 0.5812 =52. ? 1 δ ±0.1 ±0.01 ±0.0001 保留三位有效数字 2.乘除法:以有效数字位数最少的数为准(即以 相对误差最大的数为准) 0.32 例:0.0121 × 25.64 × 1.05782 = ? 8 δ ±0.0001 ±0.01 ±0.00001 保留三位有效数字 RE ±0.8% ±0.4% ±0.009%

有效数字运算规则是什么

有效数字运算规则是什么

有效数字运算规则是什么
有效数字是在整个计算过程中⼤致维持重要性的近似规则。

下⾯是由店铺编辑为⼤家整理的“有效数字运算规则是什么”,仅供参考,欢迎⼤家阅读本⽂。

有效数字
具体地说,是指在分析⼯作中实际能够测量到的数字。

能够测量到的是包括最后⼀位估计的,不确定的数字。

我们把通过直读获得的准确数字叫做可靠数字;把通过估读得到的那部分数字叫做存疑数字。

把测量结果中能够反映被测量⼤⼩的带有⼀位存疑数字的全部数字叫有效数字。

数据记录时,我们记录的数据和实验结果真值⼀致的数据位便是有效数字。

规定有效数字是为了体现测量值和计算结果实际达到的准确度。

有效数字运算规则
1.加减法:先按⼩数点后位数最少的数据,保留其它各数的位数,再进⾏加减计算,计算结果也使⼩数点后保留相同的位数。

2.乘除法:先按有效数字最少的数据保留其它各数,再进⾏乘除运算,计算结果仍保留相同有效数字。

有效数字的舍⼊规则
1、当保留n位有效数字,若后⾯的数字⼩于第n位单位数字的0.5就舍掉。

2、当保留n位有效数字,若后⾯的数字⼤于第n位单位数字的0.5 ,则第位数字进1。

3、当保留n位有效数字,若后⾯的数字恰为第n位单位数字的0.5 ,则第n位数字若为偶数时就舍掉后⾯的数字,若第n位数字为奇数加1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、目的:建立有效数字及其运算规程,规范药品生产时记录数据的运算规范、准确。

二、范围:适用于所有相关数据的计算。

三、责任者:生产部、质量管理部。

四、内容
1.有效数字
1.1定义
有效数字就是实际能测到的数字。

有效数字的位数和分析过程所用的分析方法、测量方法、测量仪器的准确度有关。

我们可以把有效数字这样表示。

有效数字=所有的可靠的数字+ 一位可疑数字
1.2有效数字位数
从一个数的左边第一个非0数字起,到末位数字止,所有的数字都是这个数的有效数字。

例:A.0.0109,前面两个0不是有效数字,后面的109均为有效数字(注意,中间的0也算)。

B.3.109*10^5(3.109乘以10的5次方)中,3 1 0 9均为有效数字,后面的10的5次方不是有效数字。

C.5200000000,全部都是有效数字。

D.0.0230,前面的两个0不是有效数字,后面的230均为有效数字(后面的0也算)。

E.1.20 有3个有效数字。

F.1100.120 有7位有效数字。

G.2.998*104(2.998乘以10的4次方)中,保留3个有效数字为3.00*104。

H.对数的有效数字为小数点后的全部数字,如lg x=1.23有效数字为2.3,lg a=2.045有效数字为0、4.5,pH=2.35有效数字为3.5。

1.3“0”的双重意义
1.3.1作为定位的标志。

例:滴定管读数为20.30毫升。

两个0都是测量出的值,算做普通数字,都是有效数字,这个数据有效数字位数是四位。

1.3.2作为普通数字使用
例:改用“升”为单位,数据表示为0.02030升,前两个0是起定位作用的,不是有效数字,此数据是四位有效数字。

2.有效数字的运算规则
2.1数字修约规则
测量值的数字的舍入,首先要确定需要保留的有效数字和位数,保留数字的位数确定以后,后面多余的数字就应予以舍入修约,其规则为“四舍六入五成双”,具体规则如下:
2.1.1当保留n位有效数字,若第n+1位数字小于5时,则舍去,即保留的各位数字不变。

2.1.2当保留n位有效数字,若第n+1位数字大于5时,则第n位数字进1。

2.1.3当保留n位有效数字,若第n+1位数字等于5且后面还有不为0的任何数字时,则无论第n位数字是奇或是偶都加1。

2.1.4当保留n位有效数字,若第n+1位数字等于5,而5的右边无数字或皆为0时,若第n位数字为奇数时加则进1,若为偶数或0则舍去。

例:将下列数字修约为4位有效数字。

修约前修约后
0.526647--------0.5266
0.36266112------0.3627
10.23500--------10.24
250.65000-------250.6
18.085002--------18.09
3517.46--------3517
注意:修约数字时只允许一次修约,不能分次修约。

如:13.4748-13.47
2.2计算规则
2.2.1通则
2.2.1.1可靠数字之间运算的结果为可靠数字。

2.2.1.2可靠数字与存疑数字,存疑数字与存疑数字之间运算的结果为存疑数字。

测量数据一般只保留一位存疑数字。

2.2.1.3运算结果的有效数字位数不由数学或物理常数来确定,数学与物理常数的有效数字位数可任意选取,一般选取的位数应比测量数据中位数最少者多取一位.例如:π可取=
3.14或3.142或3.1416……;在公式中计算结果不能由于"2"的存在而只取一位存疑数字,而要根据其他数据来决定。

2.2.2加减法
以小数点后位数最少的数据为基准,其他数据修约至与其相同,再进行加减计算,最终计算结果保留最少的位数。

例:计算12.43+5.765+132.812=?
修约为:12.43+5.76+132.81=151.00
2.3乘除法
以小数点后位数最少的数据为基准,其他数据修约至与其相同,再进行乘除计算,最终计算结果保留最少的位数。

例:A.计算0.0121×25.64×1.05728=
修约为:0.0121×25.6×1.06=
计算后结果为:0.3283456,结果仍保留为三位有效数字。

B.计算2.5046×2.005×1.52=?
修约为:2.50×2.00×1.52=?
计算器计算结果显示为7.6,只有两位有效数字,但我们抄写时应在数字后加一个0,保留三位有效数字。

2.50×2.00×1.52=7.60
3.记录保留位数
3.1测量填写检验记录时,小数点后保留位数比标准要求多保留一位,即水分、总灰分、酸不溶性灰分、浸出物、相对密度计算结果,精确至小数点后两位;装量称量精确至小数点后三位。

3.2进行物料、产品重量称量时,精确至小数点后一位;不合格品称量时,精确至小数点后量位。

相关文档
最新文档