八年级数学下册计算题专项训练课时作业本苏科版
苏科版2024-2025学年数学八年级下册专项训练——二次根式的运算100题(含解析)

苏科版2024-2025学年数学八年级下册专项训练——二次根式的运算100题(23-24八年级上·江西抚州·阶段练习)1.计算:(1);18328212-++(2)()025623-+---(23-24八年级下·福建莆田·阶段练习)2.计算:(1)162242÷+⨯(2)()()1883131-++⨯-(22-23八年级下·江苏盐城·期中)3.计算:(1).23(3)|32|3-+-(2).2(61)(35)(35)--+-(23-24八年级下·江西赣州·期中)4.计算:(1);18322-+(2).()2123232÷+-(23-24八年级下·贵州黔南·期中)5.计算题(1)()()522522+-(2)()0111222724⨯-⨯⨯-(23-24八年级下·福建莆田·阶段练习)6.计算:(1);127123-+(2).1486124⎛⎫+÷ ⎪⎝⎭(23-24八年级上·广东佛山·期中)7.计算:(1);18322+-(2);11233⎛⎫-⨯ ⎪ ⎪⎝⎭23-24八年级下·浙江金华·阶段练习)8.计算:(1);263⨯+(2).()()5656+-(23-24八年级下·山东德州·阶段练习)9.计算:(1);()()25322532+-(2);148312242÷-⨯+(3);()()201420153232-⋅+(4).()()721631318-++-(23-24八年级下·湖北武汉·阶段练习)10.计算:(1);12733⎛⎫+⨯ ⎪ ⎪⎝⎭(2).3212524⨯÷(23-24八年级下·重庆开州·阶段练习)11.计算:(1);143282⨯+-(2)()()()2535321+-+-(23-24八年级下·甘肃武威·期中)12.(1);()()-++-1883131(2).3231233⨯÷(23-24七年级下·重庆开州·阶段练习)13.计算:(1);2312516(3)-+-(2).223(2)(1)2712-⨯-+-+-(23-24八年级下·河南信阳·期中)14.计算(1)122453--(2)()()()23331222++--(23-24八年级下·贵州贵阳·阶段练习)15.计算:(1)()20525++(2)222+4111884⎛⎫-⨯-⨯-⎪⎭÷ ⎝(23-24八年级下·河南信阳·阶段练习)16.计算:(1)1114831224(25)22-⎛⎫÷-⨯+÷-- ⎪⎝⎭(2)2(123)(123)(31)-+--(23-24七年级下·河南信阳·阶段练习)17.计算:(1);2338125(2)--++-(2).()23318281279--+-+-(23-24八年级下·重庆云阳·阶段练习)18.计算:(1);()101822π-⎛⎫--+- ⎪⎝⎭(2).124318322÷-⨯+(23-24八年级下·河南·阶段练习)19.计算:(1);11818818⎛⎫⎛⎫+-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭(2).()()()2233223322332+-+-(23-24八年级下·重庆江津·阶段练习)20.计算:(1);278212-+-(2).()()()2151515-+++(2023下·重庆长寿·九年级重庆市长寿中学校校考期中)21.计算:(1)23(3)452-⨯--(2)22323(4)8ππ-+-+---(2023下·辽宁大连·八年级校考阶段练习)22.计算(1)()127123-⨯(2)()()21218+-+(2022下·浙江宁波·八年级校考期中)23.计算:(1);188-(2).21(3)2123-+⨯(2023下·重庆丰都·八年级校考期中)24.计算(1)148312242÷-⨯+(2)()()()2233232+-+-(2023下·北京海淀·八年级首都师范大学附属中学校考期中)25.计算:(1)112683-+(2)()()251552-++(2023下·安徽马鞍山·八年级期中)26.计算:(1);1287+(2).2(32)(32)(7)+-+(2023下·河北衡水·八年级校考阶段练习)27.计算:(1)14510811253++-(2)()()()22312316482332-+-÷-(2022下·湖北武汉·八年级校考阶段练习)28.计算:(1);18322-+(2).3521052⨯÷(2022上·河南郑州·八年级校考期中)29.计算:(1)0132(37)-+---(2)()112123242⨯+÷-+(2020上·河南郑州·八年级校考期中)30.计算.(1).1486753+-(2).126(62)(26)18⨯++-(2022上·四川达州·八年级校考期中)31.计算:(1)181232⨯÷(2)2(32)(32)(51)+---(2022下·浙江金华·八年级统考期中)32.计算:(1);()()221312--+(2).()()22322-+(2022上·广东广州·八年级广州市增城区华侨中学校考期末)33.计算:(1);11882-+(2).32623⎛⎫-⨯ ⎪ ⎪⎝⎭(2021上·河北邯郸·八年级校考期末)34.计算:(1);()()()20151511222π-⎛⎫+---+--- ⎪⎝⎭(2).()()132322724+--(2022上·广东深圳·八年级统考期末)35.计算:(1);1227(3)3π---(2).2233543⨯+-(2022上·重庆沙坪坝·八年级重庆市第七中学校校考阶段练习)36.计算:(1);338227+--(2).148312242÷-⨯+(2022上·广东深圳·八年级深圳市光明区公明中学校考期中)37.计算:(1);0()12320022π++--(2)().(73)(73)16+--(2022下·河南许昌·八年级统考期末)38.计算:(1);11163832-+⨯(2).()()()274374331+-+-(2022下·青海西宁·八年级校考期中)39.计算(1);()2483276-÷(2).1124628⎛⎫⎛⎫--+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭(2022下·江苏南通·七年级校考阶段练习)40.计算:(1)236416(5)-++-(2)32|32|--(2022上·贵州毕节·八年级校考期末)41.计算:(1)21(21)2--(2)20220145|25|(1)(3)3π+---+-(2022下·河北廊坊·八年级统考期末)42.计算:(1)|32||12|(235)---++-(2)2248(32)(32)3-÷++-(2022下·江西赣州·八年级统考期末)43.计算:(1);18322-+(2).1863⨯+(2022下·江苏南通·七年级统考期中)44.计算:(1);31414+--(2).327212-+-(2022下·湖北十堰·七年级统考期中)45.计算(1) ;2222-+(2)+-33(1)-2(2)-327-(2022下·湖南长沙·八年级期末)46.计算:(1);310084+-+-(2).239627----()(2022下·乌鲁木齐·八年级生产建设兵团第一中学校考期末)47.计算:(1);1273123+-(2);()011283516⨯+-+-(2022下·山东·八年级统考期末)48.计算:(1)27161223-⨯+(2)()()()232332336+---(2022下·重庆潼南·八年级校联考期中)49.计算:(1);282335÷⨯(2)()124632-÷-(2022下·浙江·八年级杭州市公益中学校考期中)50.计算:(1);24232-⨯(2).()311535-+答案:1.(1)7233+(2)0【分析】本题考查了二次根式的加减,绝对值的意义,零指数幂,熟练运用公式是解题的关键.(1)根据二次根式的性质化简,然后合并同类二次根式,即可求解.(2)根据二次根式的性质化简,绝对值的意义,零指数幂进行计算即可.【详解】(1)18328212-++3234243=-++7233=+(2)()0 25623 -+---()05623=-+--561=-+-=2.(1)33(2)22+【分析】本题考查了二次根式的混合运算;(1)根据二次根式的运算法则进行计算即可求解;(2)根据二次根式性质,平方差公式进行计算即可求解.【详解】(1)解:1 62242÷+⨯312 =+323 =+33=(2)解:()()1883131-++⨯-322231=-+-22=+3.(1)1-(2)326-【分析】本题考查了二次根式的混合运算,平方差公式,分母有理化,准确熟练地进行计算是解题的关键;(1)先化简各式,然后再进行计算即可解答;(2)利用平方差公式,完全平方公式进行计算,即可解答.【详解】(1)解:23(3)|32|3-+-3323=-+-;1=-(2)解:2(61)(35)(35)--+-6261(95)=-+--62614=-+-.326=-4.(1)0(2)5653-【分析】本题主要考查了二次根式的混合运算,二次根式的性质,解题的关键是熟练掌握运算法则,准确计算.(1)先根据二次根式性质进行化简,然后再根据二次根式加减运算法则进行计算即可;(2)根据二次根式混合运算法则进行计算即可.【详解】(1)解:18322-+32422=-+.0=(2)解:()2123232÷+-112326232=⨯+-+232526322⨯=+-⨯65263=+-.5653=-5.(1)3-(2)61-【分析】本题考查二次根式的混合运算;(1)利用平方差公式计算即可;(2)先计算二次根式乘法,再计算减法即可.【详解】(1)原式;()()22522583=-=-=-(2)原式.1621612=-⨯⨯=-6.(1)433(2)228+【分析】本题主要考查了二次根式混合运算,二次根式的性质,解题的关键是熟练掌握运算法则,准确计算.(1)先利用二次根式性质进行化简,然后根据二次根式加减运算法则进行计算即可;(2)根据二次根式混合运算法则进行计算即可.【详解】(1)解:127123-+323333-=+.433=(2)解:1486124⎛⎫+÷ ⎪⎝⎭148126124=÷+÷11442=+⨯.228=+7.(1)1122(2)5【分析】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.(1)直接利用二次根式的性质化简,再利用二次根式的加减运算法则计算得出答案;(4)直接利用二次根式的乘法运算法则化简,再计算得出答案.【详解】(1)解:18322+-222422=+-;1122=(2)解:11233⎛⎫-⨯ ⎪ ⎪⎝⎭112333=⨯-⨯61=-5=8.(1)33(2)1-【分析】本题考查了二次根式的混合运算,熟练掌握运算法则是解题的关键.(1)先算乘法,再合并同类二次根式即可;(2)根据平方差公式计算即可.【详解】(1)原式;23333=+=(2)原式.22(5)(6)561=-=-=-9.(1)2(2)46+(3)32+(4)52-【分析】本题考查了二次根式的混合运算.(1)根据平方差公式计算即可.(2)先计算二次根式的乘除,再化简为最简二次根式,合并同类项即可.(3)逆用积的乘方,以及平方差公式进行计算即可.(4)根据二次根式的混合运算顺序计算即可.【详解】(1)解:()()25322532+-2018=-.2=(2)148312242÷-⨯+243323262=÷-⨯+.46=+(3)()()201420153232-⋅+()()()2014323232⎡⎤=-+⋅+⎣⎦()()20143432=-⋅+()()2014132=-⋅+.32=+(4)()()721631318-++-3231=-+-.52=-10.(1)10(2)3210【分析】本题考查二次根式的运算,解题的关键是掌握二次根式运算的相关法则.(1)先对括号内进行二次根式的化简和二次根式的加法运算,然后计算乘法;(2)根据二次根式乘除法的法则进行计算即可得出结果.【详解】(1)12733⎛⎫+⨯ ⎪ ⎪⎝⎭33333⎛⎫+⨯ ⎪ ⎪⎝⎭=10333=⨯;10=(2)3212524⨯÷343524=⨯÷352=÷.3210=11.(1)22(2)522-【分析】本题考查了二次根式的混合运算以及完全平方公式、平方差公式,正确掌握相关性质内容是解题的关键.(1)先运算乘法,再运算加减,即可作答.(2)分别通过完全平方公式、平方差公式进行展开,再合并同类项,即可作答.【详解】(1)解:143282⨯+-23222=+-;22=(2)解:()()()2535321+-+-()532221=-+-+.522=-12.(1);(2).22+82【分析】本题考查了二次根式的加减运算、二次根式的性质,根据二次根式的性质化简各二次根式成为解题的关键.(1)先根据二次根式的性质化简,然后在合并同类二次根式即可.(2)先根据二次根式的性质化简,然后在合并同类二次根式即可.【详解】(1)原式322231=-+-.22=+(2)原式4232333=⨯⨯.82=13.(1)4(2)2【分析】本题考查了实数的运算.(1)根据立方根,算术平方根的性质化简,再计算加减即可;(2)先根据立方根,算术平方根的性质化简,再计算乘法,最后计算加减即可.【详解】(1)解:2312516(3)-+-543=-+;4=(2)解:223(2)(1)2712-⨯-+-+-41321=⨯-+-4321=-+-.2=14.(1)223--(2)1243-【分析】本题考查了二次根式的混合运算,熟练掌握二次根式的除法法则、平方差公式和完全平方公式是解决问题的关键.(1)先根据二次根式的除法法则计算,化简后合并即可;(2)先根据完全平方公式和平方差公式计算,化简后合并即可.【详解】(1)解:原式1224533=--2225=--;223=--(2)解:原式()()221243132⎡⎤+-⎢⎥⎣-+⎦=()1124433++=--.1243=-15.(1)455+(2)4【分析】本题主要考查实数的混合运算和二次根式的混合运算:(1)先化简二次根式和二次根式的乘法运算,再进行加减运算即可;(2)原式先计算乘方和化简二次根式,再计算乘法和除法,最后进行加减运算即可;【详解】(1)解:()20525++25255=++;455=+(2)解:222+4111884⎛⎫-⨯-⨯-⎪⎭÷ ⎝1188442=-⨯-⨯+⨯8416=--+4=16.(1)3(2)1523-+【分析】本题考查了二次根式的混合运算、负整数指数幂及零次幂:(1)利用二次根式的混合运算、负整数指数幂及零次幂的运算法则即可求解;(2)先去括号,再合并即可求解;熟练掌握其运算法则是解题的关键.【详解】(1)解:原式462621=-+÷-366=-+.3=(2)原式112323(1)=---+1123231=--+-.1523=-+17.(1)9(2)0【分析】本题主要考查了实数混合运算,解题的关键是熟练掌握运算法则,准确计算.(1)根据立方根定义,二次根式性质进行计算即可;(2)根据立方根定义,二次根式性质进行计算即可.【详解】(1)解:2338125(2)--++-()252=--++252=++;9=(2)解:()23318281279--+-+-112239=--+112233=--+.0=18.(1)223-(2)623-【分析】本题考查了二次根式的乘除法,实数的运算.(1)根据负整数指数幂、零次幂以及算术平方根的性质计算即可求解;(2)先根据二次根式的乘除法计算,再合并同类二次根式即可求解.【详解】(1)解:()101822π-⎛⎫--+- ⎪⎝⎭2212=--;223=-(2)解:124318322÷-⨯+8942=-+22342=-+.623=-19.(1)11212-(2)36126+【分析】本题主要考查了二次根式混合运算,解题的关键是熟练掌握二次根式运算法则,准确计算.(1)根据二次根式性质进行化简,然后根据二次根式加减混合运算法则进行计算即可;(2)根据完全平方公式和平方差公式进行计算即可.【详解】(1)解:11818818⎛⎫⎛⎫+-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭22223246⎛⎫⎛⎫=+-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭9219246=-2723821212=-;11212=-(2)解:()()()2233223322332+-+-()12126181218=++--12126186=+++.36126=+20.(1)32-(2)225+【分析】本题考查了二次根式的混合运算;(1)先化简二次根式,然后再合并同类二次根式即可;(2)先分别利用平方差公式以及完全平方公式进行展开,然后再合并同类二次根式即可.【详解】(1)解:原式;332222332=-+-=-(2)解:原式.151255225=-+++=+21.(1)223--(2)1-【分析】(1)根据实数的混合运算法则计算即可;(2)根据二次根式的性质、实数的混合运算法则计算即可.【详解】(1)23(3)452-⨯--3235=--;223=--(2)22323(4)8ππ-+-+---4342ππ=-+-+-+4342ππ=-+-+-+.1=-本题主要考查了实数的混合运算,二次根式的性质等知识,掌握实数的混合运算法则,是解答本题的关键.22.(1)1(2)122+【分析】(1)先化简二次根式后,再计算乘法可得答案.(2)先计算平方差和化简二次根式,再合并可得答案;【详解】(1)1(2712)3-⨯3=(3323)3-⨯3=33⨯1=(2)()()21218+-+2122=-+122=+此题考查了二次根式的混合运算,熟练掌握运算法则是解答此题的关键.23.(1)2(2)7【分析】(1)先化简,再根据二次根式的加减运算法则计算即可;(2)先根据二次根式的乘法运算化简,再计算即可.【详解】(1)解:188-3222=-;2=(2)解:21(3)2123-+⨯324=+⨯322=+⨯.7=本题考查二次根式的加减运算和混合运算,熟练掌握运算法则是解题的关键.24.(1)46-(2)1062-【分析】(1)先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可;(2)利用完全平方公式和平方差公式计算,再合并即可.【详解】(1)解:148312242÷-⨯+243323262=÷-⨯+4626=-+;46=-(2)()()()2233232+-+-349622=-+-+.1062=-本题考查了二次根式的混合运算,先把各个二次根式化为最简二次根式,然后根据运算法则进行运算,熟练掌握运算法则是解题的关键.25.(1)22(2)11【分析】(1)先化简二次根式,然后计算加减法.(2)先去括号,然后计算加减法.【详解】(1)112683-+232322=-+22=(2)()()251552-++5251525=-+++11=本题主要考查了二次根式的混合运算,熟练掌握二次根式的运算顺序是解此题的关键.26.(1)1577(2)8【分析】(1)先化简每一个二次根式,然后再合并即可;(2)先利用平方差公式进行计算,然后再进行加减运算即可【详解】(1)解:1287++2=777;=1577(2)解:()()()232327+-+327=-+.8=本题考查了二次根式的混合运算,正确的计算是解题的关键.27.(1);203253-(2).19-【分析】(1)化简二次根式,然后按照二次根式的加减运算法则进行计算即可;(2)先运用平方差公式、二次根式的除法法则、积的乘方进行去括号、化简,然后进行计算即可.【详解】(1)解:14510811253++-235633553=++-;203253=-(2)()()()22312316482332-+-÷-()2223131618=---1213418=--⨯-.19=-本题考查了平方差公式,二次根式的化简和计算;正确化简二次根式是解题的关键.28.(1)0;(2)6.【分析】(1)先化简二次根式,再合并同类二次根式即可;(2)先将除变为乘,然后根据二次根式的乘法法则进行计算即可.【详解】(1)解:18322-+2223242=⨯-⨯+32422=-+0=(2)3521052⨯÷13521052=⨯⨯65052=6255=655⨯=6=本题考查了二次根式的混合运算;熟练掌握二次根式的混合运算是解题的关键.29.(1)3-(2)362-【分析】(1)根据绝对值的性质,非零数的零次幂的计算方法,有理数的加减运算法则即可求解;(2)根据二次根式的性质化简,二次根式的混合运算法则,即可求解.【详解】(1)解:0132(37)-+---1(32)1=----.3=-(2)解:()112123242⨯+÷-+112122623⎛⎫=⨯+-+ ⎪ ⎪⎝⎭6226=-+.362=-本题主要考查实数的混合运算,掌握绝对值的性质,非零数的零次幂,二次根式的性质,二次根式的混合法则是解题的关键.30.(1)3(2)0【分析】(1)先根据二次根式的性质化简,再进行加减运算;(2)根据二次根式的混合运算进行化简计算即可.【详解】(1)解:1486753+-5436333+⨯-=243335+=-;3=(2)解:126(62)(26)18⨯++-62(46)32=+-22=-.0=本题考查二次根式的混合运算,正确计算是解题的关键.31.(1)82(2)255-【分析】(1)根据二次根式的乘除法运算法则,先化简二次根式,再计算;(2)根据平方差公式,完全平方公式先展开,再根据实数的运算法则即可求解.【详解】(1)解:181232⨯÷222233=⨯⨯.82=(2)解:2(32)(32)(51)+---22(3)(2)(5251)=---+1625=-+.255=-本题主要考查二次根式的混合运算,掌握二次根式的化简,乘法公式,二次根式的混合运算是解题的关键.32.(1)232-(2)23+【分析】(1)先化简二次根式,再合并同类二次根式即可;(2)先用乘法分配律去括号化简,再合并同类二次根式即可.【详解】(1)原式,1323=-+232=-(2)原式,642324=+--22=+本题考查二次根式的计算,解题的关键是掌握二次根式的运算法则.33.(1)322(2)1【分析】(1)先化简二次根式,再根据二次根式的加减法即可求解;(2)根据乘法分配律,再根据二次根式的乘法,最后根据二次根式的加减法即可求解.【详解】(1)解:11882-+232222=-+222=+22222=+.322=(2)解:32623⎛⎫-⨯ ⎪ ⎪⎝⎭326623=⨯-⨯326623=⨯-⨯94=-32=-.1=本题主要考查二次根式的加减乘除的混合运算,熟练掌握二次根式的化简,加减,乘除法运算法则是解题的关键.34.(1)22-(2)11324-【分析】(1)根据二次根式的混合运算法则计算即可;(2)根据二次根式的混合运算法则计算即可.【详解】(1)解:原式()22514211=--+--51422=--+-;22=-(2)解:原式2332932244=+-+211344=-+.11324-=本题考查二次根式的混合运算,平方差公式,零指数幂,负整数指数幂,正确计算是解题的关键.35.(1)2-(2)6-【分析】(1)直接利用二次根式的性质化简、零指数幂的性质化简,进而计算得出答案;(2)直接利用二次根式的性质、二次根式的乘法运算法则化简,进而得出答案.【详解】(1)原式233313-=-313-=-11=--;2=-(2)原式663363=+⨯-6636=+-.6=-此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.36.(1)2(2)46+【分析】(1)根据二次根式的化简,加减法即可求解;(2)化简二次根式,根据二次根式的乘除法,加减法即可求解.【详解】(1)解:338227+--3322233=+--3333(222)=-+-.2=(2)解:148312242÷-⨯+148312262=÷-⨯+16626=-+4(266)=+-.46=+本题主要考查二次根式的化简,加减乘除混合运算,掌握二次根式的化简,二次根式的混合运算法则是解题的关键.37.(1)33+(2)0【分析】(1)根据零指数幂、二次根式的加减运算计算即可;(2)运用平方差公式、二次根式的混合运算计算即可.【详解】(1)原式=;1232333++-=+(2)原式=.7340--=本题考查实数的混合运算,二次根式的混合运算,零指数幂,正确计算是解题的关键.38.(1)432-+(2)523-【分析】(1)先算二次根式的乘法,再算加减,即可解答;(2)利用完全平方公式,平方差公式,进行计算即可解答;【详解】(1)解:原式==31432232-⨯+⨯432-+(2)解:()()()274374331+-+-()()22227433231=-+-+49483231=-+-+523=-本题考查了二次根式的混合运算,完全平方公式,平方差公式,准确熟练地进行计算是解题的关键.39.(1)22-(2)3264-【分析】(1)先化简二次根式,再计算二次根式的减法,然后计算二次根式的除法即可得;(2)先分母有理化,再化简二次根式,然后再计算二次根式的加减法即可得.【详解】(1)解:原式=()2433336⨯-⨯÷=()83936-÷=36-÷=12-=;22-(2)解:原式=2224624⎛⎫⎛⎫--+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭=2226624---=222644--=.3264-本题考查了二次根式的混合运算,熟练掌握二次根式的运算法则是解题关键.40.(1)5(2)423-【分析】直接利用二次根式以及立方根的性质分别化简得出答案直接去绝对值进而计算得出答案【详解】(1)236416(5)-++-()445=-++5=(2)32|32|--3232=-+423=-本题考查了二次根式的性质与化简,立方根的性质,混合运算,以及去绝对值的应用,熟练运用二次根式的混合运算是解题的关键.41.(1)5232-(2)252-【分析】(1)利用完全平方公式进行二次根式的运算即可.(2)先化简,然后去括号,在合并同类二次根式和同类项即可.【详解】(1)()222212=--+原式 2222125232=-+-=-(2)3552113=+--+原式 55211252=+--+=-本题考查了二次根式的混合运算、零指数幂.42.(1)2-(2)26231-+【分析】(1)先算绝对值,去括号,再算加减即可.(2)先进行化简,二次根式的除法运算,二次根式的乘法运算,最后算加减即可.【详解】(1)原式()2321235=---++-2321235=--+++-2.=-(2)原式32622322=-⨯+-2623 1.=-+本题主要考查了二次根式混合运算,熟练掌握相应的运算法则是解此题的关键.43.(1)0(2)1333【分析】(1)首先化简二次根式,然后再计算加减即可;(2)先算乘法,然后再计算加减即可.【详解】(1)18322-+=32-42+2=0(2)1863⨯+=343+3=1333此题主要考查了二次根式的混合运算,关键是掌握运算顺序先乘方再乘除,最后加减,有括号的先算括号里面的.44.(1);12(2)2【分析】(1)先求出算术平方根、立方根,再进行加减运算即可;(2)先求出立方根,绝对值,再根据二次根式的加减进行运算即可.【详解】(1)31414+--1212=--112=-;12=(2)327212-+-3221=-+-.2=本题主要考查了实数的混合运算,二次根式的混合运算,熟练掌握运算法则是解答本题的关键.45.(1)22+(2)83-【分析】(1)首先计算绝对值,然后从左向右依次计算,求出算式的值即可;(2)首先计算开平方和开立方,然后计算乘法,最后从左向右依次计算,求出算式的值即可.【详解】(1)解:原式 = 2222-+ = .22+(2)解:原式 =3323-+--()=3323-++= .83-此题主要考查了实数的运算,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.46.(1)12(2)0【分析】(1)先根据算术平方根,立方根,绝对值的意义化简各式,然后再进行计算即可解答;(2)根据算术平方根,立方根的意义化简各式,进行计算即可解答.【详解】(1)310084+-+-=10-2+4=12(2)239627----()=3-6+3=0本题考查了实数的运算,算术平方根,立方根的意义,熟练掌握二次根式的性质,绝对值的性质是解题的关键.47.(1)23(2)42-【分析】(1)根据二次根式的加减运算法则即可求出答案;(2)原式利用二次根式的除法,绝对值的意义,以及0指数幂的法则计算即可的到结果.【详解】(1)1273123+-=33+3-23=;23(2)()011283516⨯+-+-()23221=+-+=22231-++=;42-本题考查二次根式的混合运算,以及0指数幂,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.48.(1)33+(2)66【分析】(1)先进行二次根式的乘除法的运算,化简运算,再进行加减运算即可;(2)利用平方差公式及完全平方公式进行运算,再算加减运算即可.【详解】(1)解:27161223-⨯+3323=-+;33=+(2)()()2323323(36)-+--()()1839666--=-+615966-+-=.66=本题主要考查二次根式的混合运算及乘法公式,解答的关键是对相应的运算法则的掌握.49.(1)1010(2)22【分析】(1)先将被开方数中的分母拿到根号外,再将除法变成乘法,最后进行约分化简;(2)先算括号内,再算除法,最后算减法;【详解】(1)282335÷⨯282335=÷⨯2323225=⨯⨯2 25 =1010 =(2)()1 24632-÷-()126632=-÷-1632=÷-222=-22=本题考查了二次根式,熟练掌握二次根式的运算法则和化简方法是解题的关键.50.(1)0(2)3【分析】(1)根据二次根式的混合运算顺序进行计算即可;(2)根据二次根式的混合运算顺序进行计算即可;【详解】(1)解:24232-⨯=2626-=0;(2)解:() 311535 -+=33535-+=3此题考查了二次根式的混合运算,熟练掌握二次根式的运算法则是解题的关键.。
苏科版2019八年级数学下册第十章分式课后作业题(附答案)

苏科版2019八年级数学下册第十章分式课后作业题(附答案)1.计算: -22x y xy -+62x y xy +=( ) A .2x B .4x C .-2x D .-4x2.下列各式中,变形不正确的是 ( )A .B .C .D .3.使代数式有意义的的取值范围为 ( ) A .>2 B . C .<2 D .4.若分式方程无解,则m 的值为( )A .-1B .-3C .0D .-25.下列运算中,正确的是( )A .42=B .326-=-C .()22ab ab = D .2325a a a += 6.计算 2ab 3ax 2cd 4cd-÷ 的结果为( ) A .22b 3x B .23b x 2C .22b 3x -D .22223a b x 8c d - 7.如图,根据流程图中的程序,当输出数值y =5时,输入数值x 是( )A .17B .-13C .17或-13D .17或-178.下列各式是分式的有( )个3x y -, 21a x -, 1x π+, 3a b -, 12x y +, 12x y +, 2123x x =-+; A .5个 B .4个 C .3个 D .2个9.如果把分式2y x y+中的x 和y 都扩大3倍,那么分式的值 ( ) A .扩大6倍; B .扩大3倍; C .缩小3倍; D .不变.10.下列各式的变形中,不正确的是( )A .a b a b c c ---=-B .b a a b c c --=-C .()a b a b c c -++=-D .a b a b c c--+=- 11.计算212293a a+--的结果是________. 12.已知,ab =﹣1,a +b =2,则式子=_____. 13.(2﹣1.414)0+(13)﹣1﹣27+2cos30°=_____. 14.函数21y x =+ 中,自变量x 的取值范围是 . 15.已知23a b =,那么256a b a -=________. 16.分式312x, ()216x x y -的最简公分母是_______. 17.方程的根是x=__. 18.________19.某种细菌的直径约为0.00 000 002米,用科学记数法表示该细菌的直径约为____米.20.(1)解方程:21133x x-=--;(2)解不等式组,并将解集在数轴上表示出来: ()2233{134x x x x +≤++>21.解下列方程:(1);(2)22.化简或计算:(1)(﹣2016)0+|﹣2|+()﹣2+3(2)23.m为何值时,关于x的方程会产生增根?24.2112x y xyx y x y x y x y ⎛⎫⎛⎫-÷+⎪ ⎪---⎝⎭⎝⎭25.先化简,再求值:2844 xx x ++÷222242x xx x---+,选择你喜欢的x值代入求值。
2022年苏科版八年级数学下册课时同步练习(全册)

2022年苏科版八年级数学下册课时同步练习(全册)第七单元第1课时普查与抽样调查一、选择题1.下列调查中,最适合采用普查方式的是( )A.对重庆市辖区内长江流域水质情况的调查B.对乘坐飞机的旅客是否携带违禁物品的调查C.对一个社区每天丢弃塑料袋数量的调查D.对重庆电视台“天天630”栏目收视率的调查2.下列调查中,适合用普查方式的是( )A.了解一批炮弹的杀伤半径B.了解湘潭市每天的流动人口数C.了解一本100页书稿的错别字个数D.了解石家庄市居民的日平均用水量3.以下问题,不适合用普查的是( )A.旅客上飞机前的安检B.学校招聘教师,对应聘人员的面试C.了解某班学生的课外活动时间D.了解一批灯泡的使用寿命4.下列调查适合用抽样调查的是( )A.审查书稿有哪些科学性错误B.了解一个打字训练班学员的训练成绩是否都达到了预定训练目标C.要考察一个班级的学生对建立班级生物角的看法D.要考察人们对保护海洋的意识5.下列情况,适合用抽样调查的是( )A.了解某校飞行学员视力的达标率B.了解某校考生的中考录取率C.了解某班40名同学的身高情况D.了解一批种子的成活率6.对于范围较大的调查对象可以采用抽样调查的方法,下列适合用抽样调查的是( ) A.调查本班学生的近视率B.调查某校学生的男女比例C.了解全国七年级学生的平均身高D.人口普查7.下列调查中,适合用抽样调查方式的是( )A.了解全班学生某次考试的情况B.调查某一品牌5万袋包装鲜奶是否符合卫生标准C.调查我国所有城市中哪些是第一批沿海开放城市D.了解全班学生100 m短跑的成绩8.要了解自来水厂的水中所含矿物质情况,所采用调查方法是( )A.普查B.抽样调查C.普查或抽样调查D.以上答案都不对9.下列采用的调查方式中,不合适的是( )A.为了了解全国中学生的身高状况,采用抽样调查的方式B.对载人航天器“神舟”六号零部件的检查,采用普查的方式C.医生要了解某病人体内含有病毒的情况,需抽血进行化验,采用普查的方式D.为了了解人们保护水资源的意识,采用抽样调查的方式二、填空题10.为了检测某型号导线的抗拉强度,现随机抽取几段进行检测,在这次检测中,采用的调查方式是________.11.为了了解一批白炽灯的使用寿命,只能采用抽样调查方式进行,这是由于______________________.12.为了获得较为准确的调查结果,抽样调查时要注意所选取的样本要具有__________________.13.在下列问题中为了得到数据是采用普查还是抽样调查?(1)为了买校服,了解每个学生衣服的尺寸;(2)某养鱼专业户欲了解鱼塘中鱼的平均质量;(3)商检人员在某超市检查出售的饮料的合格率;(4)某班拟组织一次春游活动,为了确定春游的地点,向全班同学进行调查.第七单元第2课时统计图、统计表的选用一、选择题1.扇形统计图中,所有扇形表示的百分比之和为 ( )A.大于1B.小于1C.等于1D.不确定2.如图是某班学生最喜欢的球类活动情况的统计图,则下列说法不正确的是( )A.该班喜欢乒乓球的学生最多B.该班喜欢排球和篮球的学生一样多C.该班喜欢足球的人数是喜欢排球人数的1.25倍D.该班喜欢其他球类活动的人数为53.某校学生来自甲、乙、丙三个社区,其人数比例为3∶4∶5,如图所示的扇形统计图表示上述分布情况,那么表示乙社区的扇形的圆心角度数为 ( )A.100°B.110°C.120°D.135°4.某校图书管理员整理阅览室的书籍时,将其中甲、乙、丙三类书籍的数量信息制成如图所示的不完整的统计图,已知甲类书有45本,则丙类书有______本.5.某校学生参加体育兴趣小组情况的统计图如图所示.若参加人数最少的小组有25人,则参加人数最多的小组有 ( )A.25人B.35人C.40人D.100人6.7.从如图所示的两个统计图中,可看出女生人数较多的是()A.七年级(1)班B.七年级(2)班C.两班一样多D.不能确定二、解答题1.近年来,随着创建“生态文明城市”活动的开展,某市的社会知名度越来越高,吸引了很多外地游客.某旅行社对5月份本社接待外地游客来该市各景点旅游的人数做了一次抽样调查,并将调查结果绘制成如图所示的不完整的统计表和统计图.(1)此次共调查_____人,并补全条形统计图;(2)根据上表提供的数据制作扇形统计图.2.七年级(1)班的两名学生对本班的一次数学成绩(分数取整数,满分为100分)进行了初步统计,看到80分以上(含80分)的有17人,但没有满分,也没有低于30分的学生.为更清楚地了解本班的数学成绩,他们分别用频数直方图和扇形统计图进行了统计分析,如图1和图2所示.请根据图中提供的信息解答下列问题.(1)该班共有多少学生参加了这次数学考试?(2)补全频数直方图中空缺的两处,并将扇形统计图中一处未填的百分比填上.(3)数学成绩在85~90分的学生有多少人?第七单元第3课时频数和频率一、选择题1.在画频数直方图时,一组数据的最小值为149,最大值为172.若确定组距为3,则分成的组数是 ( )A.8B.7C.6D.52.如图是九(1)班45名同学每周课外阅读时间的频数直方图(每组含前一个边界值,不含后一个边界值).由图可知,人数最多的一组是 ( )A.2~4 hB.4~6 hC.6~8 hD.8~10 h3.某班有64名学生,在一次外语测试中,分数只取整数,统计其成绩,并绘制出如图所示的频数直方图,从左到右小长方形的高度之比是1∶3∶6∶4∶2,则分数在70.5到80.5之间的学生有_____名.4.社会主义核心价值观知识竞赛成绩结果统计如下表:成绩在91~100分的为优胜者,则优胜者的频率是()分段数(分)61~70 71~80 81~90 91~100人数(人) 1 19 22 18A.35% B.30% C.20% D.10%5.在频数分布直方图中,有11个小长方形,若中间一个小长方形的面积等于其它10个小长方形面积的和的,且数据有160个,则中间一组的频数为()A.32 B.0.2 C.40 D.0.25二、填空题6.已知某组数据的频数为25,样本容量为100,则这组数据的频率是.7.某市对400名年满15岁的男生的身高进行了测量,结果身高(单位:m)在1.68~1.70这一小组的频率为0.25,则该组的人数为.8.一组数据共分5组,第一、二、三组共有250个频数,第三、四、五组共有230个频数,若第三组的频率为0.25,则这组数据的总频数为个.9.一次跳远比赛中,成绩在4.05米以上的人有8人,频率为0.4,则参加比赛的运动员共有人.10.将一批数据分成5组,列出频率分布表,其中第一组与第五组的频率之和是0.27,第二与第四组的频率之和是0.54,那么第三组的频率是.11.一个样本最大值为143,最小值为50,取组距为10,则可以分成组.三、解答题12.中学生带手机上学的现象越来越受到社会的关注,为此某记者随机调查了某市城区若干名中学生家长对这种现象的态度(态度分为:A.无所谓;B.基本赞成;C.赞成;D.反对).并将调查结果绘制成频数折线统计图1和扇形统计图2(不完整).请根据图中提供的信息,解答下列问题:(第17题图)(1)此次抽样调查中,共调查了名中学生家长;(2)先求出C类型的人数,然后将图1中的折线图补充完整;(3)根据抽样调查结果,请你估计该市区6000名中学生家长中有多少名家长持反对态度?13.某校学生会为了解该校学生喜欢球类活动的情况,采取抽样调查的办法,从足球、乒乓球、篮球、排球等四个方面调查了若干名学生的兴趣爱好,并将调查的结果绘制成右边的两幅不完整的统计图(如图1,图2,要求每位同学只能选择一种自己喜欢的球类;图中用乒乓球、足球、排球、篮球代表喜欢这四种球类中的某一种球类的学生人数),请你根据图中提供的信息,解答下列问题:(1)在这次研究中,一共调查了多少名学生?(2)喜欢排球的人数在扇形统计图中所占的圆心角是多少度?(3)补全频数分布折线统计图.第七单元第4课时频数分布表与频数分布直方图一.选择题1.一个容量为40的样本最大值为35,最小值为12,取组距为4,则可以分为()A.4组B.5组C.6组D.7组2.为了解在校学生参加课外兴趣小组活动情况,随机调查了40名学生,将结果绘制成了如图所示的频数分布直方图,则参加书法兴趣小组的频率是()A.0.1 B.0.15 C.0.2 D.0.33.通常在频率分布直方图中,用每小组对应的小矩形的面积表示该小组的组频率.因此,频率分布直方图的纵轴表示()A.B.C.D.4.某校为了了解九年级学生的体能情况,随机抽查了其中的30名学生,测试了1分钟仰卧起坐的次数,并绘制成如图所示的频数分布直方图,请根据图示计算,仰卧起坐次数在30~35次之间的频率是()A.0.2 B.0.17 C.0.33 D.0.145.某校随机抽查了八年级的30名女生,测试了1分钟仰卧起坐的次数,并绘制成如图的频数分布直方图(每组含前一个边界,不含后一个边界),则次数不低于42个的有()A.6人B.8个C.14个D.23个6.在对60个数进行整理的频数分布表中,这组的频数之和与频率之和分别为()A.60,1 B.60,60 C.1,60 D.1,17.某班有48位同学,在一次数学检测中,分数只取整数,统计其成绩,绘制出频数分布直方图(横半轴表示分数,把50.5分到100.5分之间的分数分成5组,组距是10分,纵半轴表示频数)如图所示,从左到右的小矩形的高度比是1:3:6:4:2,则由图可知,其中分数在70.5~80.5之间的人数是()A.9 B.18 C.12 D.6二.填空题8.学校为了解七年级学生参加课外兴趣小组活动情况,随机调查了40名学生,将结果绘制成了如图所示的频数分布直方图,则参加绘画兴趣小组的频率是.9.某区从近期卖出的不同面积的商品房中随机抽取1000套进行统计,并根据结果绘出如图所示的统计图.从中可知卖出的110m2~130 m2的商品房套.10.在1000个数据中,用适当的方法抽取50个作为样本进行统计.在频数分布表中,54.5~57.5这一组的频率为0.12,那么这1000个数据中落在54.5~57.5之间的数据约有个.三.解答题11.如图所示,某校七年级有学生400人,现抽取部分学生做引体向上的测试,成绩进行整理后分成五组,并画出频数分布直方图,已知从左到右前四个小组的频率分别是0.05,0.15,0.25,0.30,第五小组的频数是25,根据已知条件回答下列问题:(1)第五小组频率是多少?(2)参加本次测试的学生总数是多少?(3)如果做20次以上为及格(含20次),估计全校七年级有多少名学生合格?12.为了了解某校九年级学生的跳高水平,随机抽取该年级50名学生进行跳高测试,并把测试成绩绘制成如图所示的频数表和未完成的频数直方图(每组含前一个边界值,不含后一个边界值).某校九年级50名学生跳高测试成绩的频数表组别(m)频数1.09~1.19 81.19~1.29 121.29~1.39 a1.39~1.49 10(1)求a的值,并把频数直方图补充完整;(2)该年级共有500名学生,估计该年级学生跳高成绩在1.29m(含1.29m)以上的人数.第八单元第1课时确定事件与随机事件一、选择题1. 下列说法正确的是( ).A.一颗质地均匀的骰子已连续抛掷了2000次.其中,抛掷出5点的次数最多,则第2001次一定抛掷出5点.B.某种彩票中奖的概率是1%,因此买100张该种彩票一定会中奖C.天气预报说:明天下雨的概率是50%,所以明天将有一半时间在下雨D.抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等2. 一只不透明的袋子中装有4个黑球、2个白球,每个球除颜色外都相同,从中任意摸出3个球,下列事件为必然事件的是()A.至少有1个球是黑球B.至少有1个球是白球C.至少有2个球是黑球D.至少有2个球是白球3.下列说法正确的是( )A.可能性很小的事件在一次试验中一定不会发生B.可能性很小的事件在一次试验中一定发生C.可能性很小的事件在一次试验中有可能发生D.不可能事件在一次试验中也可能发生4. 在不透明的袋中装有除颜色外,其余均相同的红球和黑球各一个,从中摸出一个球恰为红球的概率与一枚均匀硬币抛起后落地时正面朝上的概率的大小关系是( )A.摸出红球的概率大于硬币正面朝上的概率B.摸出红球的概率小于硬币正面朝上的概率C.相等D.不能确定5.下列说法正确的是( )A.抛掷一枚硬币5次,5次都出现正面,所以投掷一枚硬币出现正面的概率为1B.“从我们班上查找一名未完成作业的学生的概率为0”表示我们班上所有的学生都完成了作业C.一个口袋里装有99个白球和一个红球,从中任取一个球,得到红球的概率为1%,所以从袋中取至少100次后必定可以取到红球(每次取后放回,并搅匀)D.抛一枚硬币,出现正面向上的概率为50%,所以投掷硬币两次,那么一次出现正面,一次出现反面.6. 下图的转盘被划分成六个相同大小的扇形,并分别标上1,2,3,4,5,6这六个数字,指针停在每个扇形的可能性相等.四位同学各自发表了下述见解:甲:如果指针前三次都停在了3号扇形,下次就一定不会停在3号扇形;乙:只要指针连续转六次,一定会有一次停在 6号扇形;丙:指针停在奇数号扇形的概率与停在偶数号扇形的概率相等;丁:运气好的时候,只要在转动前默默想好让指针停在 6号扇形,指针停在6号扇形的可能性就会加大.其中,你认为正确的见解有( )A.1个 B.2个 C.3个 D.4个7. 掷一枚均匀的骰子,2点向上的概率是_______,7点向上的概率是_______.8. 下面4个说法中,正确的个数为_______.(1)“从袋中取出一只红球的概率是99%”,这句话的意思是肯定会取出一只红球,因为概率已经很大.(2)袋中有红、黄、白三种颜色的小球,这些小球除颜色外没有其他差别,因为小张对取出一只红没有把握,所以小张说:“从袋中取出一只红球的概率是50%”.(3)小李说“这次考试我得90分以上的概率是200%”.(4)“从盒中取出一只红球的概率是0”,这句话是说取出一只红球的可能性很小.9. 如图是小明和小颖共同设计的自由转动的十等分转盘,上面写有10个有理数.(1)求转得正数的概率.(2)求转得偶数的概率.(3)求转得绝对值小于6的数的概率.10. 一个不透明的布袋里装有3个球,其中2个红球,1个白球,它们除颜色外其余都相同.(1)求摸出1个球是白球的概率;(2)现在再将n个白球放入布袋,搅匀后,使摸出1个球是白球的概率为,求n的值.第八单元第2课时可能性大小一、单选题1.气象台预报“本市明天降水概率是30%”,对此消息下列说法正确的是( )A. 本市明天将有30%的地区水B. 本市明天将有30%的时间降水C. 本市明天有可能降水D. 本市明天肯定不降水2.掷一枚普通的正六面体骰子,出现的点数中,以下结果机会最大的是()A. 点数为3的倍数B. 点数为奇数C. 点数不小于4D. 点数不大于43.一个布袋里装有3个红球,4个黑球,5个白球,它们除颜色外都相同,从中任意摸出一个球,则下列事件中,发生可能性最大的是( )A. 摸出的是红球B. 摸出的是黑球C. 摸出的是绿球D. 摸出的是白球4.一个不透明的盒子中装有2个红球、3个白球和2个黄球,它们除颜色外都相同.若从中任意摸出一个球,摸到哪种颜色的球的可能性最大()A. 红色B. 白色C. 黄色D. 红色和黄色5.袋子中有黑球3个,白球若干个,它们只有颜色上的区别,从袋中随机地取出一个球,如果取到白球的可能性较大,那么袋中白球的个数可能是()A. 2个B. 不足3个C. 3个D. 4个或4个以上6.一个质地均匀的小正方体的六个面上分别标有数字1,2,3,4,5,6.如果任意抛掷小正方体两次,那么下列说法正确的是( ).A. 得到的数字和必然是4B. 得到的数字和可能是3C. 得到的数字和不可能是2D. 得到的数字和有可能是17.下列说法中,完全正确的是()A. 打开电视机,正在转播足球比赛B. 抛掷一枚均匀的硬币,正面一定朝上C. 三条任意长的线段都可以组成一个三角形D. 从1,2,3,4,5这五个数字中任取一个数,取到奇数的可能性较大8.投掷一枚普通的正方体骰子,有下列事件:①掷得的点数是6;②掷得的点数是奇数;③掷得的点数不大于4;④掷得的点数不小于2,这些事件发生的可能性由大到小排列正确的是( ).A. ①②③④B. ④③②①C. ③④②①D.②③①④9.下列有四种说法:①了解某一天出入扬州市的人口流量用普查方式最容易;②“在同一年出生的367名学生中,至少有两人的生日是同一天”是必然事件;③“打开电视机,正在播放少儿节目”是随机事件;④如果一件事发生的概率只有十万分之一,那么它仍是可能发生的事件。
八年级数学苏科版下册课时练第12单元 《12.2 二次根式的乘除》(含答案解析)

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!课时练12.2二次根式的乘除一、选择题1.下列化简中正确的是()A.a a224-=- B.101.0)10(1.0102=´-=-C.xy xyx 33= D.mn nm n m m55=2.计算31948-的结果是()A.3- B.3C.3311-D.33113.给出下列四道算式:其中正确的算式是()(1)44)4(2-=-ab ab ;(2)41135432222=-+;(3)x xx 4728=;(4)).()(2b a b a ba ab >-=--A.(1)和(3) B.(2)和(4)C.(1)和(4)D.(2)和(3)4.下列计算中正确的是()A.7217.04091-=¸+- B.yy x y xy 223255=¸3= D.49167)6(712-=¸-xy xy 5.设ab a 1,322=-=,则a、b 大小关系是()A.a=bB.a>bC.a<bD.a>-b6.将4324-根号外的因式移进根号内,结果等于()A.11-B.11C.44-D.447.若,则xy 的值是A.B.C.m+nD.m-n8.若,则()A.a、b 互为相反数B.a、b 互为倒数C.ab=5D.a=b二、填空题9.计算:____313=10.计算:31101232731´¸=________.11.若三角形的面积为2355cm ,一条边长为cm 152,则这边上的高是________cm.m ==_________13.计算:=-+20272027)322()322(________14.已知x 为奇数,且xx xx --=--9696,则221x x ++的算术平方根为______.三、解答题15.计算:2222434041+-16.计算:53123452¸17.计算:32212332a a a ´¸18.计算:222272)3121(y x x yx x y ×-.19.甲、乙两人对题目“化简并求值:21122-++a a a ,其中51=a ”有不同的解答,甲的解答是:549211)1(1211222=-=-+=-+=-++a a a a a a a a a a a,乙的解答是:5111)1(1211222==-+=-+=-++a a a a a a a a a a ,谁的解答是错误的?为什么?20.先化简,再求值:(a+b)2+(a-b)(2a+b)-3a 2,其中a=-2-3,b=3-2.参考答案1.D2.B3.B4.A5.B6.C7.D8.D9.310.57.11.321512.0.1m 13.-114.2215.原式=9516.原式=9117.原式=3a .18.原式=y x x xy 222332-.19.解:乙的错;因为a=15所以a a >1,所以a a a a a a -=-=-111.20.解:原式=a 2+2ab+b 2+2a 2+ab-2ab-b 2-3a 2=ab.原式=ab=(-2)2-(3)2=4-3=1.。
苏科版八年级下册数学课课练参考答案

苏科版八年级下册数学课课练参考答案只要不放弃努力做苏科版八年级数学课课练的习题,最终我们的学习一定会取得进步。
店铺为大家整理了苏科版八年级下册数学课课练的参考答案,欢迎大家阅读!苏科版八年级下册数学课课练参考答案(一)确定事件和随机事件实践与探究例1 (1)随机事件;(2)不可能事件;(3)必然事件;(4)随机事件.例2 略.训练与提高1、C2、C3、A4、确定5、随机6、确定7、(1)错误,属于随机事件(2)错误,属于不可能事件(3)错误,属于必然事件8、(1)随机事件;(2)必然事件;(3)不可能事件;(4)随机事件;(5)不可能事件.延伸与拓展9、略10、略苏科版八年级下册数学课课练参考答案(二)可能性的大小实践与探究例1(1)必然;(2)可能;(3)必然;(4)不太可能;(5)必然;(6)不太可能;(7)可能;(8)不太可能.例2 略.训练与提高1、C2、D3、A4、(1)可能;(2)很可能;(3)不可能.5、白,红.6、a=b=c.7、(1)必然事件;(2)随机事件;(3)不可能事件;(4)随机事件.(3)(2)(4)(1)拓展与延伸8、掷骰子.(1)点数之和为7的可能性大;(2)9;(3)点数之和为7的可能性最大,点数之和为2和12的可能性最小.苏科版八年级下册数学课课练参考答案(三)图形的旋转实践与探究例1(1)点A; (2) 60°;(3)AC的中点处;(4)略.例2 根据∠BAC+∠BDC=180°,得出A、B、D、C四点共圆,根据四点共圆的性质,得出∠BAD=∠BCD=60°.推出点A、C、E共线;由于∠ADE=60°,根据旋转得出AB= CE=3,求出AE即可.∠BAD=60°,AD=5.训练与提高1、D2、旋转中心点A,旋转了45°.3、(1)点A; (2)等腰直角三角形; (3)略.4、(1) 110°; (2) 180°.5、(1)等腰三角形; (2)20°; (3) 80°.实践与探究6、B。
课时作业本八年级下册数学苏科版

课时作业本八年级下册数学苏科版英文版Classwork Exercise Book for Eighth Grade Math (Lower Volume) - Jiangsu Science EditionMathematics, a subject that challenges and excites students of all ages, takes a pivotal place in the educational journey of eighth-grade students. The "Classwork Exercise Book for Eighth Grade Math (Lower Volume) - Jiangsu Science Edition" is an indispensable tool that helps students consolidate their understanding of mathematical concepts, develop their problem-solving skills, and prepare them for further academic challenges.This workbook is designed to align with the curriculum standards set by the Jiangsu Education Department, ensuring that students are exposed to a range of topics and exercises that are both challenging and relevant. It covers a diverse arrayof topics, including algebra, geometry, probability, and statistics, among others.The exercises in this workbook are carefully crafted to gradually introduce students to more complex mathematical concepts. They start with basic problems that help students巩固their foundation knowledge and gradually progress to more challenging problems that require critical thinking and problem-solving abilities. This gradual progression ensures that students build a solid foundation in mathematics and are able to apply their knowledge effectively in real-life situations.One of the standout features of this workbook is its emphasis on hands-on practice. It encourages students to apply their mathematical knowledge by solving real-world problems. This approach not only enhances students' understanding of mathematical concepts but also helps them develop a practical approach towards learning.Moreover, the workbook provides ample opportunities for students to revise and self-evaluate their progress. It includes avariety of revision exercises and tests that help students identify their strengths and areas of improvement. This self-reflection is crucial for students to identify their learning gaps and work towards filling them.In conclusion, the "Classwork Exercise Book for Eighth Grade Math (Lower Volume) - Jiangsu Science Edition" is an essential resource for eighth-grade students aiming to excel in mathematics. It not only helps them consolidate their knowledge but also equips them with the skills and strategies necessary to solve mathematical problems efficiently and accurately. With this workbook, students can embark on a journey of mathematical discovery and mastery.英文版八年级下册数学课时作业本(苏科版)数学,这门充满挑战与激情的学科,在八年级学生的学习旅程中扮演着至关重要的角色。
苏科版八下数学课时作业

苏科版八下数学课时作业## 第一课时作业1. 用正弦定理计算下列三角形的各边长:- ∠A=36°,∠B=72°,BC=14cm- ∠A=65°,∠C=30°,AC=12cm- ∠C=48°,∠B=62°,AB=10cm2. 用余弦定理计算下列三角形的各边长:- ∠A=110°,BC=6cm,AB=8cm- ∠B=30°,AC=7cm,BC=5cm- ∠C=60°,AB=12cm,BC=8cm## 第二课时作业1. 计算下列函数的值:- f(x) = |x-5|,当x<5时- f(x) = 3x-2,当x>=5时计算f(-4)、f(5)、f(8)的值。
2. 用平均数计算下列数列的平均数:- 5, 10, 20, 13, 8, 7- 2, 4, 6, 8, 10, 12, 14, 163. 用乘法原理解下列问题:某商场有黑色、白色、红色3种颜色的衣服,还有S、M、L三种尺码,如果要选一件黑色的衣服和一件L码的衣服,有多少种组合方式?## 第三课时作业1. 求下列二次函数的零点:- f(x) = x^2-6x+8- g(x) = -3x^2+4x-1- h(x) = 2x^2+4x+22. 解下列一元一次方程:- 2x-6=10- 5x/4+2=3x/2-1- (2x-4)/3-(x+1)/2=13. 求下列数列的第n项:- 1, 2, 4, 8, 16, ...- 3, 5, 7, 9, 11, ...## 第四课时作业1. 计算下列向量的模长:- AB = (2, 5)- CD = (-3, 4)- EF = (4, -3)2. 求下列向量的和、差及数量积:- u = (3, -2),v = (1, 4)- a = (7, -1),b = (-2, 5)3. 已知平行四边形ABCD的顶点坐标为A(1, 2),B(4, 2),C(3, 5),D(0, 5),求:- 平行四边形的面积- 对角线AC的中点坐标## 第五课时作业1. 用分配率展开下列式子:- (x+3)(x+2)- (2x-5)(3x+1)- (3x^2-2)(x-4)2. 根据题意列出方程并求解:- 某人去超市买牛奶和鸡蛋,一共花费32元,已知牛奶每瓶8元,鸡蛋每只1元,他买了几瓶牛奶和几只鸡蛋?- 计算矩形面积,已知矩形的周长为18cm,长和宽的差为2cm 3. 求过点(-1, 2)且平行于向量(2, 3)的直线方程。
苏科版八年级数学下册课时作业11.1反比例函数(含答案)

第十一章
反比例函数第1课时反比例函数
1.一个圆柱的侧面展开图是一个面积为
4平方单位的矩形,那么这个圆柱的母线长L 和底面半径r 之间的函数关系是
( ) A .反比例函数
B .正比例函数
C .一次函数
D .其他函数关系2.若y =(a +1)22a x
是反比例函数,则a 的取值为( ) A .1 B .-1
C .±1
D .任意实数3.下列函数:①y =2x -1;②y =-
5x ;③y =x 2+8x -2;④y =33x ;⑤12y x ;⑥a y x 中,y 是x 的反比例函数的有
_______(填序号).4.已知三角形的面积是定值
S ,则三角形的高h 与底a 的函数关系式是h =_______,这时h 是a 的_______.
5.判断下列关系式中y 和x 是反比例函数关系吗?若是,请指出比例系数.
(1)1
2y x (2)
4
1
y x (3)0x
y k k (4) 1
y k kx 6.已知函数y =(5m -3)x 2-n +(n +m ).
(1)当m 、n 为何值时,为一次函数?
(2)当m 、n 为何值时,为正比例函数?
(3)当m 、n 为何值时,为反比例函数?。