bb第一章和第二章答案

合集下载

基础化学习题答案1-8

基础化学习题答案1-8

基础化学习题答案1-8基础化学习题答案习题答案第一章绪论1、求0.010kgNaOH、0.100kg(1Ca2+)、0.10kg(1Na2CO3)的物质的量。

22解:(1)m(NaOH) = 0.010kg M(NaOH) = 40gmol-1n(NaOH) =21040= 0.25 (mol)2(2)m(1Ca2+) = 0.100kg M(1Ca2+) = 40gmol-1 n(1Ca2+) =2__= 5.0(mol)12(3)m(Na2CO3) = 0.10kg M(Na2CO3) = 53gmol-121n(Na2CO3) =__= 1.89 (mol)2、下列数值各有几位有效数字?(1)1.026 4位(2)0.0208 3位(3)0.003 1位(4)23.40 4位(5)3000 无数位(6)1.0×10-3 2位3、应用有效数字计算规则,计算下列各式:(1)21.10 - 0.263 + 2.3 = 23.1 (2)3.20×23.45×8.912 = 667(3)3.22 23.171.26 103= 5.93×10 (4)-35.4 4.32 102.325 2.1524.6×10-24、(1) 以H2SO4为基本单元,M(H2SO4)=98g/mol;(2) 以HSO4-为基本单元,M(HSO4-)=97g/mol;(3) 以3H2SO4为基本单元,M(3H2SO4)=294g/mol。

5、答:甲的报告更为合理,百分比小数点后保留两位有效数字。

基础化学习题答案第二章溶液与胶体1、在25oC时,质量分数为0.0947的稀硫酸溶液的密度为1.06gL-1,在该温度下纯水的密度为0.997 gL-1。

计算H2SO4的物质的量分数、物质的量浓度和质量摩尔浓度。

解:设取稀硫酸溶液1L,则n(H2SO4) = n(H2O) =1.06 1000 0.0__1.06 1000 (1 0.0947)18= 1.02 (mol) = 53.31(mol)c(H2SO4) =n(H2SO4)V= 1.02 (moll-1)1.021.02 53.31x(H2SO4) =b(H2SO4) =n(H2SO4)n(H2SO4) n(H2O)== 0.0188n(H2SO4)m(H2O)=1.021000 1.06 (1 0.0947)= 0.106(molkg-1)2、醚的正常沸点为34.5℃,在40℃时往100g乙醚中至少加入多少摩尔不挥发溶质才能防止乙醚沸腾?解:Tb Kb bB )2.02 (40-34.5n0.1n = 0.22mol3、苯的凝固点为5.50℃,Kf = 5.12 Kkgmol-1。

(完整版)原子核物理及辐射探测学1-4章答案

(完整版)原子核物理及辐射探测学1-4章答案

第一章 习题答案1-1 当电子的速度为18105.2-⨯ms 时,它的动能和总能量各为多少?答:总能量 ()MeV ....c v c m mc E e 924003521511012222=⎪⎭⎫ ⎝⎛-=-==;动能 ()MeV c v c m T e 413.011122=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--= 1-2.将α粒子的速度加速至光速的0.95时,α粒子的质量为多少?答:α粒子的静止质量()()()u M m M m e 0026.44940.9314,244,224,20=∆+=≈-= α粒子的质量 g u m m 2322010128.28186.1295.010026.41-⨯==-=-=βα1-4 kg 1的水从C 00升高到C 0100,质量增加了多少?答:kg 1的水从C 00升高到C 0100需做功为J t cm E 510184.41001184.4⨯=⨯⨯=∆=∆。

()kg c E m 1228521065.4100.310184.4-⨯=⨯⨯=∆=∆ 1-5 已知:()();054325239;050786238239238u .U M u .U M ==()()u .U M ;u .U M 045582236043944235236235==试计算U-239,U-236最后一个中子的结合能。

答:最后一个中子的结合能()()()[]MeV .uc .c ,M m ,M ,B n n 774845126023992238922399222==⋅-+=()()()[]MeV .uc .c ,M m ,M ,B n n 54556007027023692235922369222==⋅-+= 也可用书中的质量剩余()A ,Z ∆:()()()()MeV ....,n ,,B n 806457250071830747239922389223992=-+=∆-∆+∆= ()()()()MeV ....,n ,,B n 545644242071891640236922359223692=-+=∆-∆+∆=其差别是由于数据的新旧和给出的精度不同而引起的。

工程数学线性代数(同济大学第六版)课后习题答案(全)

工程数学线性代数(同济大学第六版)课后习题答案(全)

第一章行列式1.利用对角线法则计算下列三阶行列式:(1)381141102---; 解381141102--- =2⨯(-4)⨯3+0⨯(-1)⨯(-1)+1⨯1⨯8-0⨯1⨯3-2⨯(-1)⨯8-1⨯(-4)⨯(-1)=-24+8+16-4=-4.(2)ba c a cbc b a ; 解ba c a cbc b a =acb +bac +cba -bbb -aaa -ccc=3abc -a 3-b 3-c 3.(3)222111c b a c b a ; 解222111c b a c b a =bc 2+ca 2+ab 2-ac 2-ba 2-cb 2=(a -b )(b -c )(c -a ).(4)yx y x x y x y y x y x +++. 解 yx y x x y x y y x y x +++ =x (x +y )y +yx (x +y )+(x +y )yx -y 3-(x +y )3-x 3=3xy (x +y )-y 3-3x 2y -x 3-y 3-x 3=-2(x 3+y 3).2.按自然数从小到大为标准次序,求下列各排列的逆序数:(1)1 2 3 4;解逆序数为0(2)4 1 3 2;解逆序数为4:41, 43, 42, 32. (3)3 4 2 1;解逆序数为5: 3 2, 3 1, 4 2, 4 1, 2 1.(4)2 4 1 3;解逆序数为3: 2 1, 4 1, 4 3.(5)1 3 ⋅⋅⋅ (2n-1) 2 4 ⋅⋅⋅ (2n);解逆序数为2)1(-nn:3 2 (1个)5 2, 5 4(2个)7 2, 7 4, 7 6(3个)⋅⋅⋅⋅⋅⋅(2n-1)2, (2n-1)4, (2n-1)6,⋅⋅⋅, (2n-1)(2n-2)(n-1个) (6)1 3 ⋅⋅⋅(2n-1) (2n) (2n-2) ⋅⋅⋅ 2.解逆序数为n(n-1) :3 2(1个)5 2, 5 4 (2个)⋅⋅⋅⋅⋅⋅(2n-1)2, (2n-1)4, (2n-1)6,⋅⋅⋅, (2n-1)(2n-2)(n-1个) 4 2(1个)6 2, 6 4(2个)⋅⋅⋅⋅⋅⋅(2n )2, (2n )4, (2n )6,⋅⋅⋅, (2n )(2n -2)(n -1个)3.写出四阶行列式中含有因子a 11a 23的项.解 含因子a 11a 23的项的一般形式为(-1)t a 11a 23a 3r a 4s ,其中rs 是2和4构成的排列, 这种排列共有两个, 即24和42. 所以含因子a 11a 23的项分别是(-1)t a 11a 23a 32a 44=(-1)1a 11a 23a 32a 44=-a 11a 23a 32a 44,(-1)t a 11a 23a 34a 42=(-1)2a 11a 23a 34a 42=a 11a 23a 34a 42.4.计算下列各行列式: (1)71100251020214214; 解71100251020214214010014231020211021473234-----======c c c c 34)1(143102211014+-⨯---= 143102211014--=01417172001099323211=-++======c c c c . (2)2605232112131412-;解 2605232112131412-260503212213041224--=====c c 041203212213041224--=====r r 0000003212213041214=--=====r r . (3)efcf bf de cd bd ae ac ab ---; 解 ef cf bf de cd bd ae ac ab ---ec b e c b e c b adf ---= abcdef adfbce 4111111111=---=. (4)dc b a 100110011001---. 解d c b a 100110011001---dc b a ab ar r 10011001101021---++===== dc a ab 101101)1)(1(12--+--=+01011123-+-++=====cd c ad a ab dc c cdad ab +-+--=+111)1)(1(23=abcd +ab +cd +ad +1. 5.证明:(1)1112222b b a a b ab a +=(a -b )3;证明1112222b b a a b ab a +00122222221213a b a b a a b a ab a c c c c ------===== a b a b a b a ab 22)1(22213-----=+21))((a b a a b a b +--==(a -b )3. (2)yx z x z y z y x b a bz ay by ax bx az by ax bx az bz ay bx az bz ay by ax )(33+=+++++++++; 证明bzay by ax bx az by ax bx az bz ay bx az bz ay by ax +++++++++ bzay by ax x by ax bx az z bx az bz ay y b bz ay by ax z by ax bx az y bx az bz ay x a +++++++++++++= bzay y x by ax x z bx az z y b y by ax z x bx az y z bz ay x a +++++++=22 zy x y x z x z y b y x z x z y z y x a 33+= yx z x z y z y x b y x z x z y z y x a 33+= yx z x z y z y x b a )(33+=.(3)0)3()2()1()3()2()1()3()2()1()3()2()1(2222222222222222=++++++++++++d d d d c c c cb b b b a a a a ; 证明2222222222222222)3()2()1()3()2()1()3()2()1()3()2()1(++++++++++++d d d d c c c c b b b b a a a a (c 4-c 3,c 3-c 2,c 2-c 1得) 5232125232125232125232122222++++++++++++=d d d d c c c c b b b b a a a a (c 4-c 3,c 3-c 2得) 022122212*********222=++++=d d c c b b a a . (4)444422221111d c b a d c b a d c b a =(a -b )(a -c )(a -d )(b -c )(b -d )(c -d )(a +b +c +d ); 证明444422221111d c b a d c b a d c b a )()()(0)()()(001111222222222a d d a c c a b b a d d a c c a b b a d a c a b ---------=)()()(111))()((222a d d a c c a b b d c b a d a c a b +++---= ))(())((00111))()((a b d b d d a b c b c c b d b c a d a c a b ++-++------= )()(11))()()()((a b d d a b c c b d b c a d a c a b ++++-----==(a -b )(a -c )(a -d )(b -c )(b -d )(c -d )(a +b +c +d ).(5)1221 1 000 00 1000 01a x a a a a x x x n n n+⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅--- =x n +a 1x n -1+⋅⋅⋅+a n -1x +a n . 证明 用数学归纳法证明.当n =2时,2121221a x a x a x a x D ++=+-=,命题成立. 假设对于(n -1)阶行列式命题成立,即D n -1=x n -1+a 1x n -2+⋅⋅⋅+a n -2x +a n -1,则D n 按第一列展开, 有111 00 100 01)1(11-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅--+=+-x x a xD D n n n n =xD n -1+a n =x n +a 1x n -1+⋅⋅⋅+a n -1x +a n .因此,对于n 阶行列式命题成立.6.设n 阶行列式D =det(a ij ), 把D 上下翻转、或逆时针旋转90︒、或依副对角线翻转,依次得n nn n a a a a D 11111 ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=,11112 n nn n a a a a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=,11113 a a a a D n n nn ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=, 证明D D D n n 2)1(21)1(--==,D 3=D .证明 因为D =det(a ij ),所以n nn n n n n nn n a a a a a a a a a a D 2211111111111 )1( ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=- ⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅--=-- )1()1(331122111121nnn n n n n n a a a a a a a a D D n n n n 2)1()1()2( 21)1()1(--+-+⋅⋅⋅++-=-=.同理可证nnn n n n a a a a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-=- )1(11112)1(2D D n n T n n 2)1(2)1()1()1(---=-=. D D D D D n n n n n n n n =-=--=-=----)1(2)1(2)1(22)1(3)1()1()1()1(.7.计算下列各行列式(D k 为k 阶行列式): (1)a aD n 1 1⋅⋅⋅=, 其中对角线上元素都是a ,未写出的元素都是0;解aa a a a D n 0 0010 000 00 0000 0010 00⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=(按第n 行展开) )1()1(10 000 00 0000 0010 000)1(-⨯-+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-=n n n a a a )1()1(2 )1(-⨯-⋅⋅⋅⋅-+n n n a a a n n n n n a a a +⋅⋅⋅-⋅-=--+)2)(2(1 )1()1(=a n -a n -2=a n -2(a 2-1). (2)xa a a x a a a xD n ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅= ; 解 将第一行乘(-1)分别加到其余各行,得 a x x a a x x a a x x a a a a x D n --⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅--⋅⋅⋅--⋅⋅⋅=000 0 00 0 , 再将各列都加到第一列上,得a x a x a x a a a a n x D n -⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-+=0000 0 000 00 )1(=[x +(n -1)a ](x -a )n -1.(3)111 1 )( )1()( )1(1111⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅⋅⋅⋅-⋅⋅⋅--⋅⋅⋅-=---+n a a a n a a a n a a a D n n n nn n n ; 解 根据第6题结果, 有nnn n n n n n n n a a a n a a a n a a aD )( )1()( )1( 11 11)1(1112)1(1-⋅⋅⋅--⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-=---++此行列式为范德蒙德行列式. ∏≥>≥++++--+--=112)1(1)]1()1[()1(j i n n n n j a i a D∏≥>≥++---=112)1()]([)1(j i n n n j i∏≥>≥++⋅⋅⋅+-++-⋅-⋅-=1121)1(2)1()()1()1(j i n n n n n j i∏≥>≥+-=11)(j i n j i .(4)nnnnn d c d c b a b a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=11112; 解nnnnn d c d c b a b a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=11112(按第1行展开) nn n n n nd d c d c b a b a a 00011111111----⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅= 00)1(1111111112c d c d c b a b a b nn n n n nn ----+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-+. 再按最后一行展开得递推公式D 2n =a n d n D 2n -2-b n c n D 2n -2, 即D 2n =(a n d n -b n c n )D 2n -2. 于是 ∏=-=ni i i i i n D c b d a D 222)(.而111111112c b d a d c b a D -==, 所以 ∏=-=n i i i i i n c b d a D 12)(. (5) D =det(a ij ),其中a ij =|i -j |; 解 a ij =|i -j |,4321 4 01233 10122 21011 3210)det(⋅⋅⋅----⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-⋅⋅⋅==n n n n n n n n a D ij n 0 4321 1 11111 11111 11111 1111 2132⋅⋅⋅----⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅----⋅⋅⋅---⋅⋅⋅--⋅⋅⋅--⋅⋅⋅-=====n n n n r r r r 152423210 22210 02210 00210 0001 1213-⋅⋅⋅----⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅----⋅⋅⋅---⋅⋅⋅--⋅⋅⋅-+⋅⋅⋅+=====n n n n n c c c c =(-1)n -1(n -1)2n -2. (6)nn a a a D +⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅+⋅⋅⋅+=1 11 1 1111121, 其中a 1a 2⋅⋅⋅a n≠0.解nn a a a D +⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅+⋅⋅⋅+=1 11 1 1111121 nn n n a a a a a a a a a c c c c +-⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-=====--100001 000 100 0100 0100 00113322121321111312112111000011 000 00 11000 01100 001 ------+-⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅⋅⋅⋅=nn n a a a a a a a a∑=------+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=n i i n n a a a a a a a a 1111131******** 00010 000 00 10000 01000 001)11)((121∑=+=ni in a a a a .8.用克莱姆法则解下列方程组:(1)⎪⎩⎪⎨⎧=+++-=----=+-+=+++01123253224254321432143214321x x x x x x x x x x x x x x x x ;解 因为14211213513241211111-=----=D , 142112105132412211151-=------=D ,284112035122412111512-=-----=D ,426110135232422115113-=----=D ,14202132132212151114=-----=D , 所以 111==D D x ,222==D D x ,333==D D x ,144-==DDx . (2)⎪⎪⎩⎪⎪⎨⎧=+=++=++=++=+150650650651655454343232121x x x x x x x x x x x x x .解 因为 665510006510006510065100065==D , 150751001651000651000650000611==D ,114551010651000650000601000152-==D , 703511650000601000051001653==D ,39551601000051000651010654-==D , 2121100005100065100651100655==D , 所以66515071=x ,66511452-=x ,6657033=x ,6653954-=x ,6652124=x .9.问λ,μ取何值时,齐次线性方程组⎪⎩⎪⎨⎧=++=++=++0200321321321x x x x x x x x x μμλ有非零解?解 系数行列式为μλμμμλ-==1211111D .令D =0,得μ=0或λ=1.于是, 当μ=0或λ=1时该齐次线性方程组有非零解.10.问λ取何值时,齐次线性方程组⎪⎩⎪⎨⎧=-++=+-+=+--0)1(0)3(2042)1(321321321x x x x x x x x x λλλ有非零解?解 系数行列式为λλλλλλλ--+--=----=101112431111132421D=(1-λ)3+(λ-3)-4(1-λ)-2(1-λ)(-3-λ) =(1-λ)3+2(1-λ)2+λ-3. 令D =0, 得λ=0,λ=2或λ=3.于是, 当λ=0,λ=2或λ=3时,该齐次线性方程组有非零解.第二章 矩阵及其运算1.已知线性变换:⎪⎩⎪⎨⎧++=++=++=3213321232113235322y y y x y y y x y y y x , 求从变量x 1,x 2,x 3到变量y 1,y 2,y 3的线性变换. 解由已知: ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛221321323513122y y y x x x , 故 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-3211221323513122x x x y y y ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----=321423736947y y y ,⎪⎩⎪⎨⎧-+=-+=+--=321332123211423736947x x x y x x x y x x x y . 2.已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=32133212311542322y y y x y y y x y y x ,⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y ,求从z 1,z 2,z 3到x 1,x 2,x 3的线性变换. 解由已知⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=321310102013514232102z z z ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z , 所以有⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236z z z x z z z x z z z x .3.设⎪⎪⎭⎫ ⎝⎛--=111111111A ,⎪⎪⎭⎫⎝⎛--=150421321B , 求3AB -2A 及A T B .解⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=-1111111112150421321111111111323A AB⎪⎪⎭⎫⎝⎛----=⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-=2294201722213211111111120926508503, ⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=092650850150421321111111111B A T. 4.计算下列乘积:(1)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134;解⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134⎪⎪⎭⎫ ⎝⎛⨯+⨯+⨯⨯+⨯-+⨯⨯+⨯+⨯=102775132)2(71112374⎪⎪⎭⎫ ⎝⎛=49635. (2)⎪⎪⎭⎫ ⎝⎛123)321(;解 ⎪⎪⎭⎫⎝⎛123)321(=(1⨯3+2⨯2+3⨯1)=(10).(3))21(312-⎪⎪⎭⎫⎝⎛; 解 )21(312-⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛⨯-⨯⨯-⨯⨯-⨯=23)1(321)1(122)1(2⎪⎪⎭⎫⎝⎛---=632142. (4)⎪⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412; 解 ⎪⎪⎪⎭⎫⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412⎪⎭⎫ ⎝⎛---=6520876.(5)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x ;解⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x=(a 11x 1+a 12x 2+a 13x 3 a 12x 1+a 22x 2+a 23x 3 a 13x 1+a 23x 2+a 33x 3)⎪⎪⎭⎫⎝⎛321x x x322331132112233322222111222x x a x x a x x a x a x a x a +++++=.5.设⎪⎭⎫ ⎝⎛=3121A ,⎪⎭⎫ ⎝⎛=2101B , 问: (1)AB =BA 吗? 解AB ≠BA .因为⎪⎭⎫ ⎝⎛=6443AB ,⎪⎭⎫ ⎝⎛=8321BA , 所以AB ≠BA . (2)(A +B )2=A 2+2AB +B 2吗? 解 (A +B )2≠A 2+2AB +B 2.因为⎪⎭⎫ ⎝⎛=+5222B A ,⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=+52225222)(2B A ⎪⎭⎫ ⎝⎛=2914148, 但 ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=++43011288611483222B AB A ⎪⎭⎫ ⎝⎛=27151610, 所以(A +B )2≠A 2+2AB +B 2. (3)(A +B )(A -B )=A 2-B 2吗? 解 (A +B )(A -B )≠A 2-B 2.因为⎪⎭⎫ ⎝⎛=+5222B A ,⎪⎭⎫ ⎝⎛=-1020B A ,⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=-+906010205222))((B A B A ,而 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-718243011148322B A , 故(A +B )(A -B )≠A 2-B 2. 6.举反列说明下列命题是错误的:(1)若A 2=0, 则A =0;解 取⎪⎭⎫ ⎝⎛=0010A , 则A 2=0, 但A ≠0. (2)若A 2=A ,则A =0或A =E ; 解 取⎪⎭⎫ ⎝⎛=0011A , 则A 2=A ,但A ≠0且A ≠E . (3)若AX =AY ,且A ≠0,则X =Y .解 取 ⎪⎭⎫ ⎝⎛=0001A ,⎪⎭⎫ ⎝⎛-=1111X ,⎪⎭⎫ ⎝⎛=1011Y , 则AX =AY ,且A ≠0,但X ≠Y .7.设⎪⎭⎫ ⎝⎛=101λA ,求A 2,A 3,⋅⋅⋅,A k . 解⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=12011011012λλλA , ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==1301101120123λλλA A A , ⋅⋅⋅⋅⋅⋅,⎪⎭⎫ ⎝⎛=101λk A k .8.设⎪⎪⎭⎫ ⎝⎛=λλλ001001A ,求A k . 解首先观察⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=λλλλλλ0010010010012A ⎪⎪⎭⎫ ⎝⎛=222002012λλλλλ, ⎪⎪⎭⎫ ⎝⎛=⋅=3232323003033λλλλλλA A A , ⎪⎪⎭⎫ ⎝⎛=⋅=43423434004064λλλλλλA A A , ⎪⎪⎭⎫ ⎝⎛=⋅=545345450050105λλλλλλA A A , ⋅⋅⋅⋅⋅⋅,⎝⎛=k A k k k k k k k k k k λλλλλλ0002)1(121----⎪⎪⎪⎭⎫. 用数学归纳法证明:当k =2时,显然成立. 假设k 时成立,则k +1时,⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛-=⋅=---+λλλλλλλλλ0010010002)1(1211k k k k k k k k k k k k A A A⎪⎪⎪⎪⎭⎫ ⎝⎛+++=+-+--+11111100)1(02)1()1(k k k k k k k k k k λλλλλλ, 由数学归纳法原理知:⎪⎪⎪⎪⎭⎫ ⎝⎛-=---k k k k k k k k k k k A λλλλλλ0002)1(121. 9.设A ,B 为n 阶矩阵,且A 为对称矩阵,证明B T AB 也是对称矩阵.证明因为A T =A , 所以(B T AB )T =B T (B T A )T =B T A T B =B T AB ,从而B T AB 是对称矩阵.10.设A ,B 都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是AB =BA .证明充分性:因为A T =A ,B T =B , 且AB =BA , 所以(AB )T =(BA )T =A T B T =AB ,即AB 是对称矩阵.必要性: 因为A T =A ,B T =B , 且(AB )T =AB , 所以AB =(AB )T =B T A T =BA .11.求下列矩阵的逆矩阵:(1)⎪⎭⎫ ⎝⎛5221;解⎪⎭⎫ ⎝⎛=5221A . |A |=1,故A -1存在.因为 ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=1225*22122111A A A A A , 故*||11A A A =-⎪⎭⎫ ⎝⎛--=1225. (2)⎪⎭⎫ ⎝⎛-θθθθcos sin sin cos ; 解⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos A . |A |=1≠0,故A -1存在.因为 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=θθθθcos sin sin cos *22122111A A A A A , 所以*||11A A A =-⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos . (3)⎪⎪⎭⎫ ⎝⎛---145243121; 解⎪⎪⎭⎫ ⎝⎛---=145243121A . |A |=2≠0,故A -1存在.因为 ⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛=214321613024*332313322212312111A A A A A A A A A A , 所以*||11A A A =-⎪⎪⎪⎭⎫ ⎝⎛-----=1716213213012.(4)⎪⎪⎪⎭⎫ ⎝⎛n a a a 0021(a 1a 2⋅⋅⋅a n ≠0) . 解⎪⎪⎪⎭⎫ ⎝⎛=n a a a A 0021,由对角矩阵的性质知 ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-n a a a A 10011211 . 12.解下列矩阵方程:(1)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛12643152X ; 解 ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-126431521X ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=12642153⎪⎭⎫ ⎝⎛-=80232. (2)⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--234311*********X ; 解 1111012112234311-⎪⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-=X ⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-=03323210123431131 ⎪⎪⎭⎫ ⎝⎛---=32538122.(3)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-101311022141X ; 解 11110210132141--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=X ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=210110131142121 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=21010366121⎪⎪⎭⎫ ⎝⎛=04111. (4)⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛021102341010100001100001010X . 解 11010100001021102341100001010--⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=X ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=010100001021102341100001010⎪⎪⎭⎫ ⎝⎛---=201431012. 13.利用逆矩阵解下列线性方程组:(1)⎪⎩⎪⎨⎧=++=++=++3532522132321321321x x x x x x x x x ; 解 方程组可表示为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321153522321321x x x , 故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-0013211535223211321x x x ,从而有 ⎪⎩⎪⎨⎧===001321x x x . (2)⎪⎩⎪⎨⎧=-+=--=--05231322321321321x x x x x x x x x . 解 方程组可表示为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----012523312111321x x x , 故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛-3050125233121111321x x x , 故有 ⎪⎩⎪⎨⎧===305321x x x . 14.设A k =O (k 为正整数),证明(E -A )-1=E +A +A 2+⋅⋅⋅+A k -1. 证明 因为A k =O , 所以E -A k =E . 又因为E -A k =(E -A )(E +A +A 2+⋅⋅⋅+A k -1),所以 (E -A )(E +A +A 2+⋅⋅⋅+A k -1)=E ,由定理2推论知(E -A )可逆, 且(E -A )-1=E +A +A 2+⋅⋅⋅+A k -1.证明一方面, 有E =(E -A )-1(E -A ).另一方面, 由A k =O , 有E =(E -A )+(A -A 2)+A 2-⋅⋅⋅-A k -1+(A k -1-A k )=(E +A +A 2+⋅⋅⋅+A k -1)(E -A ),故 (E -A )-1(E -A )=(E +A +A 2+⋅⋅⋅+A k -1)(E -A ),两端同时右乘(E -A )-1,就有(E -A )-1(E -A )=E +A +A 2+⋅⋅⋅+A k -1.15.设方阵A 满足A 2-A -2E =O ,证明A 及A +2E 都可逆,并求A -1及(A +2E )-1.证明 由A 2-A -2E =O 得A 2-A =2E , 即A (A -E )=2E ,或 E E A A =-⋅)(21, 由定理2推论知A 可逆, 且)(211E A A -=-. 由A 2-A -2E =O 得A 2-A -6E =-4E , 即(A +2E )(A -3E )=-4E ,或 E A E E A =-⋅+)3(41)2( 由定理2推论知(A +2E )可逆, 且)3(41)2(1A E E A -=+-.证明由A 2-A -2E =O 得A 2-A =2E ,两端同时取行列式得|A 2-A |=2,即 |A ||A -E |=2,故 |A |≠0,所以A 可逆,而A +2E =A 2,|A +2E |=|A 2|=|A |2≠0,故A +2E 也可逆. 由A 2-A -2E =O ⇒A (A -E )=2E⇒A -1A (A -E )=2A -1E ⇒)(211E A A -=-, 又由A 2-A -2E =O ⇒(A +2E )A -3(A +2E )=-4E⇒ (A +2E )(A -3E )=-4 E ,所以 (A +2E )-1(A +2E )(A -3E )=-4(A +2 E )-1,)3(41)2(1A E E A -=+-. 16.设A 为3阶矩阵,21||=A ,求|(2A )-1-5A *|. 解因为*||11A A A =-,所以 |||521||*5)2(|111----=-A A A A A |2521|11---=A A =|-2A -1|=(-2)3|A -1|=-8|A |-1=-8⨯2=-16.17.设矩阵A 可逆,证明其伴随阵A *也可逆,且(A *)-1=(A -1)*. 证明由*||11A A A =-,得A *=|A |A -1, 所以当A 可逆时, 有 |A *|=|A |n |A -1|=|A |n -1≠0,从而A *也可逆.因为A *=|A |A -1,所以(A *)-1=|A |-1A . 又*)(||)*(||1111---==A A A A A , 所以 (A *)-1=|A |-1A =|A |-1|A |(A -1)*=(A -1)*.18.设n 阶矩阵A 的伴随矩阵为A *, 证明:(1)若|A |=0,则|A *|=0;(2)|A *|=|A |n -1.证明(1)用反证法证明.假设|A *|≠0, 则有A *(A *)-1=E ,由此得 A =AA *(A *)-1=|A |E (A *)-1=O ,所以A *=O , 这与|A *|≠0矛盾,故当|A |=0时, 有|A *|=0.(2)由于*||11A A A =-, 则AA *=|A |E , 取行列式得到 |A ||A *|=|A |n .若|A |≠0, 则|A *|=|A |n -1;若|A |=0, 由(1)知|A *|=0, 此时命题也成立.因此|A *|=|A |n -1.19.设⎪⎪⎭⎫ ⎝⎛-=321011330A ,AB =A +2B , 求B . 解由AB =A +2E 可得(A -2E )B =A ,故⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛---=-=--321011330121011332)2(11A E A B ⎪⎪⎭⎫ ⎝⎛-=011321330. 20. 设⎪⎪⎭⎫ ⎝⎛=101020101A , 且AB +E =A 2+B , 求B . 解 由AB +E =A 2+B 得(A -E )B =A 2-E ,即 (A -E )B =(A -E )(A +E ).因为01001010100||≠-==-E A , 所以(A -E )可逆, 从而⎪⎪⎭⎫⎝⎛=+=201030102E A B .21. 设A =diag(1,-2,1),A *BA =2BA -8E , 求B . 解 由A *BA =2BA -8E 得 (A *-2E )BA =-8E , B =-8(A *-2E )-1A -1 =-8[A (A *-2E )]-1 =-8(AA *-2A )-1 =-8(|A |E -2A )-1 =-8(-2E -2A )-1 =4(E +A )-1=4[diag(2,-1,2)]-1)21 ,1 ,21(diag 4-==2diag(1,-2,1).22. 已知矩阵A 的伴随阵⎪⎪⎪⎭⎫⎝⎛-=8030010100100001*A , 且ABA -1=BA -1+3E , 求B . 解 由|A *|=|A |3=8, 得|A |=2.由ABA -1=BA -1+3E 得 AB =B +3A ,B =3(A -E )-1A =3[A (E -A -1)]-1A 11*)2(6*)21(3---=-=A E A E⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫⎝⎛--=-1030060600600006603001010010000161. 23.设P -1AP =Λ,其中⎪⎭⎫ ⎝⎛--=1141P ,⎪⎭⎫ ⎝⎛-=Λ2001,求A 11. 解由P -1AP =Λ,得A =P ΛP -1, 所以A 11=A =P Λ11P -1.|P |=3,⎪⎭⎫ ⎝⎛-=1141*P ,⎪⎭⎫ ⎝⎛--=-1141311P ,而⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=Λ11111120 012001,故⎪⎪⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=31313431200111411111A ⎪⎭⎫ ⎝⎛--=68468327322731. 24. 设AP =P Λ, 其中⎪⎪⎭⎫⎝⎛--=111201111P ,⎪⎪⎭⎫ ⎝⎛-=Λ511,求ϕ(A )=A 8(5E -6A +A 2). 解 ϕ(Λ)=Λ8(5E -6Λ+Λ2)=diag(1,1,58)[diag(5,5,5)-diag(-6,6,30)+diag(1,1,25)] =diag(1,1,58)diag(12,0,0)=12diag(1,0,0).ϕ(A )=P ϕ(Λ)P -1 *)(||1P P P Λ=ϕ ⎪⎪⎭⎫ ⎝⎛------⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---=1213032220000000011112011112⎪⎪⎭⎫ ⎝⎛=1111111114. 25. 设矩阵A 、B 及A +B 都可逆, 证明A -1+B -1也可逆, 并求其逆阵. 证明 因为A -1(A +B )B -1=B -1+A -1=A -1+B -1,而A -1(A +B )B -1是三个可逆矩阵的乘积, 所以A -1(A +B )B -1可逆, 即A -1+B -1可逆.(A -1+B -1)-1=[A -1(A +B )B -1]-1=B (A +B )-1A .26. 计算⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121. 解 设⎪⎭⎫ ⎝⎛=10211A ,⎪⎭⎫ ⎝⎛=30122A ,⎪⎭⎫ ⎝⎛-=12131B ,⎪⎭⎫ ⎝⎛--=30322B ,则 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫⎝⎛+=222111B A O B B A A ,而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=+4225303212131021211B B A ,⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛=90343032301222B A , 所以 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A ⎪⎪⎪⎭⎫ ⎝⎛---=9000340042102521, 即 ⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121⎪⎪⎪⎭⎫ ⎝⎛---=9000340042102521. 27.取⎪⎭⎫ ⎝⎛==-==1001D C B A ,验证|||||||| D C B A D C B A ≠.解 4100120021010*********0021010010110100101==--=--=D C B A , 而 01111|||||||| ==D C B A ,故 |||||||| D C B A D C B A ≠.28.设⎪⎪⎪⎭⎫ ⎝⎛-=22023443O O A ,求|A 8|及A 4. 解 令⎪⎭⎫ ⎝⎛-=34431A ,⎪⎭⎫ ⎝⎛=22022A ,则 ⎪⎭⎫⎝⎛=21A O O A A ,故 8218⎪⎭⎫ ⎝⎛=A O O A A ⎪⎭⎫ ⎝⎛=8281A O O A ,1682818281810||||||||||===A A A A A . ⎪⎪⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛=464444241422025005O O A O O A A . 29.设n 阶矩阵A 及s 阶矩阵B 都可逆,求 (1)1-⎪⎭⎫ ⎝⎛O B A O ; 解设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211C C C C O B A O , 则 ⎪⎭⎫ ⎝⎛O B A O ⎪⎭⎫ ⎝⎛4321C C C C ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=s n E O O E BC BC AC AC 2143. 由此得 ⎪⎩⎪⎨⎧====s n EBC OBC O AC E AC 2143⇒⎪⎩⎪⎨⎧====--121413B C O C O C A C ,所以⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛---O A B O O B A O 111. (2)1-⎪⎭⎫ ⎝⎛B C O A . 解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211D D D D B C O A , 则 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛s n E O O E BD CD BD CD AD AD D D D D B C O A 4231214321.由此得 ⎪⎩⎪⎨⎧=+=+==s nEBD CD O BD CD O AD E AD 423121⇒⎪⎩⎪⎨⎧=-===----14113211B D CA B D O D A D ,所以 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-----11111B CA B O A BC O A . 30. 求下列矩阵的逆阵:(1)⎪⎪⎪⎭⎫⎝⎛2500380000120025; 解 设⎪⎭⎫ ⎝⎛=1225A ,⎪⎭⎫ ⎝⎛=2538B , 则 ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--5221122511A ,⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--8532253811B .于是 ⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛----850032000052002125003800001200251111B A B A .(2)⎪⎪⎪⎭⎫⎝⎛4121031200210001. 解 设⎪⎭⎫ ⎝⎛=2101A ,⎪⎭⎫ ⎝⎛=4103B ,⎪⎭⎫ ⎝⎛=2112C , 则 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛------1111114121031200210001B CA B O A B C O A⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-----=411212458103161210021210001.第三章 矩阵的初等变换与线性方程组1. 把下列矩阵化为行最简形矩阵:(1)⎪⎪⎭⎫ ⎝⎛--340313021201; 解 ⎪⎪⎭⎫⎝⎛--340313021201(下一步:r 2+(-2)r 1,r 3+(-3)r 1.)~⎪⎪⎭⎫⎝⎛---020*********(下一步:r 2÷(-1),r 3÷(-2).)~⎪⎪⎭⎫⎝⎛--010*********(下一步:r 3-r 2.)~⎪⎪⎭⎫⎝⎛--300031001201(下一步:r 3÷3.)~⎪⎪⎭⎫⎝⎛--100031001201(下一步:r 2+3r 3.)~⎪⎪⎭⎫⎝⎛-100001001201(下一步:r 1+(-2)r 2,r 1+r 3.)~⎪⎪⎭⎫⎝⎛100001000001.(2)⎪⎪⎭⎫⎝⎛----174034301320;解 ⎪⎪⎭⎫⎝⎛----174034301320(下一步:r 2⨯2+(-3)r 1,r 3+(-2)r 1. )~⎪⎪⎭⎫⎝⎛---310031001320(下一步:r 3+r 2,r 1+3r 2. )~⎪⎪⎭⎫⎝⎛0000310010020(下一步:r 1÷2. )~⎪⎪⎭⎫⎝⎛000031005010.(3)⎪⎪⎪⎭⎫ ⎝⎛---------12433023221453334311;解⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311(下一步:r 2-3r 1,r 3-2r 1,r 4-3r 1. )~⎪⎪⎪⎭⎫⎝⎛--------1010500663008840034311(下一步:r 2÷(-4),r 3÷(-3) ,r 4÷(-5). )~⎪⎪⎪⎭⎫⎝⎛-----22100221002210034311(下一步:r 1-3r 2,r 3-r 2,r 4-r 2. )~⎪⎪⎪⎭⎫⎝⎛---00000000002210032011.(4)⎪⎪⎪⎭⎫ ⎝⎛------34732038234202173132.解 ⎪⎪⎪⎭⎫⎝⎛------34732038234202173132(下一步:r 1-2r 2,r 3-3r 2,r 4-2r 2. )~⎪⎪⎪⎭⎫⎝⎛-----1187701298804202111110(下一步:r 2+2r 1,r 3-8r 1,r 4-7r 1. )~⎪⎪⎪⎭⎫⎝⎛--41000410002020111110(下一步:r 1↔r 2,r 2⨯(-1),r 4-r 3. )~⎪⎪⎪⎭⎫⎝⎛----00000410001111020201(下一步:r 2+r 3. )~⎪⎪⎪⎭⎫⎝⎛--000410*******20201. 2. 设⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛987654321100010101100001010A , 求A .解 ⎪⎪⎭⎫⎝⎛100001010是初等矩阵E (1,2), 其逆矩阵就是其本身.⎪⎪⎭⎫ ⎝⎛100010101是初等矩阵E (1, 2(1)), 其逆矩阵是 E (1, 2(-1)) ⎪⎪⎭⎫ ⎝⎛-=100010101. ⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=100010101987654321100001010A ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=287221254100010101987321654. 3. 试利用矩阵的初等变换, 求下列方阵的逆矩阵:(1)⎪⎪⎭⎫ ⎝⎛323513123; 解⎪⎪⎭⎫ ⎝⎛100010001323513123~⎪⎪⎭⎫ ⎝⎛---101011001200410123 ~⎪⎪⎭⎫ ⎝⎛----1012002110102/102/3023~⎪⎪⎭⎫ ⎝⎛----2/102/11002110102/922/7003 ~⎪⎪⎭⎫ ⎝⎛----2/102/11002110102/33/26/7001 故逆矩阵为⎪⎪⎪⎪⎭⎫ ⎝⎛----21021211233267.(2)⎪⎪⎪⎭⎫ ⎝⎛-----1210232112201023.解 ⎪⎪⎪⎭⎫ ⎝⎛-----10000100001000011210232112201023 ~⎪⎪⎪⎭⎫ ⎝⎛----00100301100001001220594012102321 ~⎪⎪⎪⎭⎫ ⎝⎛--------20104301100001001200110012102321 ~⎪⎪⎪⎭⎫ ⎝⎛-------106124301100001001000110012102321 ~⎪⎪⎪⎭⎫ ⎝⎛----------10612631110`1022111000010000100021 ~⎪⎪⎪⎭⎫ ⎝⎛-------106126311101042111000010000100001故逆矩阵为⎪⎪⎪⎭⎫ ⎝⎛-------10612631110104211. 4.(1)设⎪⎪⎭⎫ ⎝⎛--=113122214A ,⎪⎪⎭⎫ ⎝⎛--=132231B , 求X 使AX =B ; 解因为⎪⎪⎭⎫ ⎝⎛----=132231 113122214) ,(B A ⎪⎪⎭⎫ ⎝⎛--412315210 100010001 ~r , 所以 ⎪⎪⎭⎫ ⎝⎛--==-4123152101B A X . (2)设⎪⎪⎭⎫ ⎝⎛---=433312120A ,⎪⎭⎫ ⎝⎛-=132321B , 求X 使XA =B . 解 考虑A T X T =B T . 因为⎪⎪⎭⎫ ⎝⎛----=134313*********) ,(T T B A ⎪⎪⎭⎫ ⎝⎛---411007101042001 ~r , 所以 ⎪⎪⎭⎫ ⎝⎛---==-417142)(1T T T B A X , 从而 ⎪⎭⎫ ⎝⎛---==-4741121BA X . 5. 设⎪⎪⎭⎫ ⎝⎛---=101110011A ,AX =2X +A , 求X . 解 原方程化为(A -2E )X =A . 因为⎪⎪⎭⎫ ⎝⎛---------=-101101110110011011) ,2(A E A ⎪⎪⎭⎫ ⎝⎛---011100101010110001~, 所以 ⎪⎪⎭⎫ ⎝⎛---=-=-011101110)2(1A E A X . 6. 在秩是r 的矩阵中,有没有等于0的r -1阶子式? 有没有等于0的r 阶子式?解在秩是r 的矩阵中, 可能存在等于0的r -1阶子式, 也可能存在等于0的r 阶子式.例如,⎪⎪⎭⎫ ⎝⎛=010*********A ,R (A )=3. 0000是等于0的2阶子式,010001000是等于0的3阶子式. 7. 从矩阵A 中划去一行得到矩阵B , 问A ,B 的秩的关系怎样? 解R (A )≥R (B ).这是因为B 的非零子式必是A 的非零子式, 故A 的秩不会小于B 的秩.8. 求作一个秩是4的方阵, 它的两个行向量是(1,0,1,0,0),(1,-1,0,0,0).解用已知向量容易构成一个有4个非零行的5阶下三角矩阵:⎪⎪⎪⎪⎭⎫ ⎝⎛-0000001000001010001100001, 此矩阵的秩为4, 其第2行和第3行是已知向量.9. 求下列矩阵的秩, 并求一个最高阶非零子式:(1)⎪⎪⎭⎫ ⎝⎛---443112112013; 解⎪⎪⎭⎫ ⎝⎛---443112112013(下一步:r 1↔r 2. ) ~⎪⎪⎭⎫ ⎝⎛---443120131211(下一步:r 2-3r 1,r 3-r 1. ) ~⎪⎪⎭⎫ ⎝⎛----564056401211(下一步:r 3-r 2. ) ~⎪⎭⎫ ⎝⎛---000056401211, 矩阵的2秩为,41113-=-是一个最高阶非零子式. (2)⎪⎪⎭⎫ ⎝⎛-------815073*********;解 ⎪⎪⎭⎫ ⎝⎛-------815073*********(下一步:r 1-r 2,r 2-2r 1,r 3-7r 1. ) ~⎪⎭⎫ ⎝⎛------15273321059117014431(下一步:r 3-3r 2. ) ~⎪⎭⎫ ⎝⎛----0000059117014431, 矩阵的秩是2,71223-=-是一个最高阶非零子式.(3)⎪⎪⎪⎭⎫ ⎝⎛---02301085235703273812. 解 ⎪⎪⎪⎭⎫ ⎝⎛---02301085235703273812(下一步:r 1-2r 4,r 2-2r 4,r 3-3r 4. ) ~⎪⎪⎪⎭⎫ ⎝⎛------02301024205363071210(下一步:r 2+3r 1,r 3+2r 1. ) ~⎪⎪⎪⎭⎫ ⎝⎛-0230114000016000071210(下一步:r 2÷16r 4,r 3-16r 2. ) ~⎪⎪⎪⎭⎫ ⎝⎛-02301000001000071210~⎪⎪⎪⎭⎫ ⎝⎛-00000100007121002301, 矩阵的秩为3,070023085570≠=-是一个最高阶非零子式. 10. 设A 、B 都是m ⨯n 矩阵, 证明A ~B 的充分必要条件是R (A )=R (B ).证明 根据定理3, 必要性是成立的.充分性. 设R (A )=R (B ), 则A 与B 的标准形是相同的. 设A 与B 的标准形为D , 则有A ~D ,D ~B .由等价关系的传递性, 有A ~B .11. 设⎪⎪⎭⎫ ⎝⎛----=32321321k k k A , 问k 为何值, 可使 (1)R (A )=1;(2)R (A )=2;(3)R (A )=3.解 ⎪⎪⎭⎫ ⎝⎛----=32321321k k k A ⎪⎪⎭⎫ ⎝⎛+-----)2)(1(0011011 ~k k k k k r . (1)当k =1时,R (A )=1;(2)当k =-2且k ≠1时,R (A )=2;(3)当k ≠1且k ≠-2时,R (A )=3.12. 求解下列齐次线性方程组:(1)⎪⎩⎪⎨⎧=+++=-++=-++02220202432143214321x x x x x x x x x x x x ; 解 对系数矩阵A 进行初等行变换, 有A =⎪⎪⎭⎫ ⎝⎛--212211121211~⎪⎪⎭⎫ ⎝⎛---3/410013100101, 于是 ⎪⎪⎩⎪⎪⎨⎧==-==4443424134334x x x x x x x x , 故方程组的解为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛1343344321k x x x x (k 为任意常数). (2)⎪⎩⎪⎨⎧=-++=--+=-++05105036302432143214321x x x x x x x x x x x x ; 解 对系数矩阵A 进行初等行变换,有A =⎪⎪⎭⎫ ⎝⎛----5110531631121~⎪⎪⎭⎫ ⎝⎛-000001001021, 于是 ⎪⎩⎪⎨⎧===+-=4432242102x x x x x x x x ,故方程组的解为⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛10010012214321k k x x x x (k 1,k 2为任意常数). (3)⎪⎩⎪⎨⎧=-+-=+-+=-++=+-+07420634072305324321432143214321x x x x x x x x x x x x x x x x ; 解 对系数矩阵A 进行初等行变换,有A =⎪⎪⎪⎭⎫ ⎝⎛-----7421631472135132~⎪⎪⎪⎭⎫ ⎝⎛1000010000100001,于是 ⎪⎩⎪⎨⎧====00004321x x x x , 故方程组的解为⎪⎩⎪⎨⎧====00004321x x x x .(4)⎪⎩⎪⎨⎧=++-=+-+=-+-=+-+03270161311402332075434321432143214321x x x x x x x x x x x x x x x x . 解 对系数矩阵A 进行初等行变换,有A =⎪⎪⎪⎭⎫ ⎝⎛-----3127161311423327543~⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--000000001720171910171317301,于是 ⎪⎪⎩⎪⎪⎨⎧==-=-=4433432431172017191713173x x x x x x x x x x , 故方程组的解为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛1017201713011719173214321k k x x x x (k 1,k 2为任意常数).13. 求解下列非齐次线性方程组:(1)⎪⎩⎪⎨⎧=+=+-=-+83111021322421321321x x x x x x x x ; 解 对增广矩阵B 进行初等行变换,有B =⎪⎪⎭⎫ ⎝⎛--80311102132124~⎪⎭⎫ ⎝⎛----600034111008331, 于是R (A )=2, 而R (B )=3, 故方程组无解.。

计算机网络第一章bb测试

计算机网络第一章bb测试

计算机⽹络第⼀章bb测试错题8,31课程211计算机⽹络测试⽹络概论与体系结构状态已完成尝试分数得 340 分,满分 360 分已⽤时间14 分钟说明第⼀章⽹络概论测试显⽰的结果所有答案, 已提交的答案, 正确答案· 问题 1得 10 分,满分 10 分以下关于数据报传输⽅式的特点的描述中错误的是_____所选答案: A.数据报⽅式适⽤于长报⽂、会话式通信答案: A.数据报⽅式适⽤于长报⽂、会话式通信B.同⼀报⽂的不同分组可以经过不同的传输路径通过通信⼦⽹C.同⼀报⽂的不同分组到达⽬的主机时可能出现乱序、重复与丢失现象D.每个分组在传输过程中都必须带有⽬的地址与源地址· 问题 2得 10 分,满分 10 分以下关于环状拓扑结构特点的描述中错误的是_____。

所选答案: B.环中数据可以沿两个⽅向逐站传送答案: A.环状拓扑结构简单,传输延时确定B.环中数据可以沿两个⽅向逐站传送C.环的运⾏和维护协议复杂D.节点通过点⼀点通信线路连接成闭合环路· 问题 3得 10 分,满分 10 分以下关于Internet核⼼交换与边缘部分结构特点的描述中错误的是_____。

所选答案: C.边缘部分的端系统是由路由器组成答案: A.⽹铬应⽤程序运⾏在端系统,核⼼交换部分为应⽤程序进程通信提供服务B.Internet系统可以看成是由边缘部分与核⼼交换部分两部分组成Internet系统可以看成是由边缘部分与核⼼交换部分两部分组成C.边缘部分的端系统是由路由器组成D.核⼼交换部分包括由⼤量互联的⼴域⽹、城域⽹· 问题 4得 10 分,满分 10 分以下关于ISP概念的描述中错误的是_____。

所选答案: A.第⼀层的国家服务提供商NSP是由ISOC批准的答案: A.第⼀层的国家服务提供商NSP是由ISOC批准的B.ISP为⽤户接⼊Internet与使⽤各种⽹络服务提供服务C.ISP分为最顶层的第⼀层ISP、第⼆层的区域或国家级的ISP以及第三层的ISPD.本地服务提供商ISP也可以是校园⽹或企业⽹· 问题 5得 10 分,满分 10 分以下关于ZigBee技术特点的描述中错误的是_____。

大学计算机基础答案(第三版)北京邮电大学出版社

大学计算机基础答案(第三版)北京邮电大学出版社
第十章数据库技术基础
选择题
1—10ABBDA AACCA
11—16BBBAAA
大学计算机基础答案(第三版)
第一章计算机系统基础
选择题
1—10BDACB CCBCA
11—20ADCBA DABAD
21—30BCBAB DBABD
第二章操作系统基础
选择题
1—10BABDD CCCAA
11—20CCCBDCCCBD
21—22AB
第三章Word 2003文字处理
选择题
1—10DCACB DCACC
大学计算机基础答案第三版第一章计算机系统基础选择题110bdacbccbca1120adcbadabad2130bcbabdbabd第二章操作系统基础选择题110babddcccaa1120cccbdcccbd2122ab第三章word2003文字处理选择题110dcacbdcacc1115cbdcc第四章excel2003电子表格处理选择题110acacbcbcac1115bbbbc第五章powerpoint2003演示文稿制作选择题110cadbacadcb第六章计算机网络基础选择题110ccabbdddcc1120ddbddcbcca2122dd第七章internet及其应用选择题110bdacddbccc1114daba第八章信息系统安全与社会责任选择题110aabdabadac1120ccaddccaba第九章多媒体技术基础选择题110ccaadbcaca1120bbbbcbaadb2130dbaabaadba第十章数据库技术基础选择题110abbdaaacca1116bbbaaa
11—15CBDCC
第四章Excel 2003电子表格处理
选择题
1—10ACACB CBCAC

第一章-热力学第一、二定律试题及答案【整理版】

第一章-热力学第一、二定律试题及答案【整理版】

第一章 热力学第一定律一、选择题1-A; 2-C; 3-A; 4-D; 5-B; 6-D; 7-A; 8-D; 9-A; 10-D; 11-B; 12-B; 13- A; 14-C; 15-C; 16-B; 17-C;1.下述说法中,哪一种正确(a )(A)热容C 不是状态函数; (B)热容C 与途径无关;(C)恒压热容C p 不是状态函数;(D)恒容热容C V 不是状态函数。

2.对于内能是体系状态的单值函数概念,错误理解是(c )(A) 体系处于一定的状态,具有一定的内能;(B) 对应于某一状态,内能只能有一数值不能有两个以上的数值;(C) 状态发生变化,内能也一定跟着变化;(D) 对应于一个内能值,可以有多个状态。

3.某高压容器中盛有可能的气体是O 2 ,Ar, CO 2, NH 3中的一种,在298K 时由5dm3绝热可逆膨胀到6dm3,温度降低21K ,则容器中的气体( a )(A) O 2 (B) Ar (C) CO 2 (D) NH 34.戊烷的标准摩尔燃烧焓为-3520kJ·mol -1,CO 2(g)和H 2O(l)标准摩尔生成焓分别为-395 kJ·mol -1和-286 kJ·mol -1,则戊烷的标准摩尔生成焓为( d )(A) 2839 kJ·mol -1 (B) -2839 kJ·mol -1 (C) 171 kJ·mol -1 (D) -171 kJ·mol -15.已知反应)()(21)(222g O H g O g H =+的标准摩尔反应焓为)(T H m r θ∆,下列说法中不正确的是( b )。

(A).)(T H m r θ∆是H 2O(g)的标准摩尔生成焓 (B). )(T H m r θ∆是H 2O(g)的标准摩尔燃烧焓 (C). )(T H m r θ∆是负值 (D). )(T H m r θ∆与反应的θm r U ∆数值相等 6.在指定的条件下与物质数量无关的一组物理量是( d )(A) T , P, n (B) U m , C p, C V(C) ΔH, ΔU, Δξ (D) V m , ΔH f,m (B), ΔH c,m (B)7.实际气体的节流膨胀过程中,下列那一组的描述是正确的( a )(A) Q=0 ΔH=0 ΔP< 0 ΔT≠0 (B) Q=0 ΔH<0 ΔP> 0 ΔT>0(C) Q>0 ΔH=0 ΔP< 0 ΔT<0 (D) Q<0 ΔH=0 ΔP< 0 ΔT≠08.已知反应 H 2(g) + 1/2O 2(g) →H 2O(l)的热效应为ΔH ,下面说法中不正确的是( d )(A) ΔH 是H 2O(l)的生成热 (B) ΔH 是H 2(g)的燃烧热(C) ΔH 与反应 的ΔU 的数量不等 (D) ΔH 与ΔH θ数值相等9.为判断某气体能否液化,需考察在该条件下的( a )(A) μJ-T> 0 (B) μJ-T< 0 (C) μJ-T = 0 (D) 不必考虑μJ-T的数值10.某气体的状态方程为PV=RT+bP(b>0),1mol该气体经等温等压压缩后其内能变化为(d )(A) ΔU>0 (B) ΔU <0 (C) ΔU =0 (D) 该过程本身不能实现11.均相纯物质在相同温度下C V > C P的情况是( b )(A) (∂P/∂T)V<0 (B) (∂V/∂T)P<0(C) (∂P/∂V)T<0 (D) 不可能出现C V>C P12.理想气体从相同始态分别经绝热可逆膨胀和绝热不可逆膨胀到达相同的压力,则其终态的温度,体积和体系的焓变必定是( b )(A) T可逆> T不可逆, V可逆> V不可逆, ΔH可逆>ΔH不可逆(B) T可逆< T不可逆, V可逆< V不可逆, ΔH可逆<ΔH不可逆(C) T可逆< T不可逆, V可逆> V不可逆, ΔH可逆<ΔH不可逆(D) T可逆< T不可逆, V可逆< V不可逆, ΔH可逆>ΔH不可逆13.1mol、373K、1atm下的水经下列两个不同过程达到373K、1atm下的水汽:(1)等温可逆蒸发,(2)真空蒸发。

《基础化学》教材习题答案(第3版)

《基础化学》教材习题答案(第3版)

第一章 习题答案1.答:能量单位J 、质量单位μg 、长度单位nm 、温度单位℃、属于SI 单位;其他不是。

2.答:SI 基本单位:m 、kg 、s 、A 、K 、mol 、cd 。

3.答:一切属于国际单位制的单位都是我国的法定计量单位。

根据我国的实际情况,在法定计量单位中还明确规定采用了若干可与国际单位制并用的非国际单位制单位。

第二章习题答案1. 解: 根据)()O H ()O H ()O H (222蔗糖n n n x +=0292m o l .0m o l 342g g0.10)( mol 56.5mol 18.0g g 100)O H (1-1-2=⋅==⋅=蔗糖n n 995.00.0292m o lm o l 56.5mol56.5)O H (2=+=xkPa 33.20.995kPa 34.2)O H ()O H (2*2=⨯==x p p2.解:)B ()O H ()()O H (999.00.1molmol 08mol08)O H ()O H ()O H ()O H (899.00.1molmol 04mol 04)O H ()O H ()O H ()(999.00.1molmol 80mol80)()()()O H (999.00.1mol mol 80mol80)O H ()O H ()O H (*2**2*22*22*2*22*23***2*2*22*21答案为苯苯苯苯苯∴>=+⋅===+⋅===+⋅===+⋅==p p p p x p p p p x p p p p x p p p p x p p 3.解:与人体血浆等渗。

11os f 11os f B f B f f 11-1-1-os L mmol 310L mol 31.0C58.0K58.0L mol 31.0mol kg K 86.1L mol 31.0L00.1mol 147g g33.03mol 74.6g g 30.02mol 58.5g g 50.82-----⋅=⋅=︒-==⋅⨯⋅⋅=≈≈=∆⋅=⋅⨯+⋅⨯+⋅⨯=c T c K c iK b iK T c4.解:K 85.1mol kg K 512.00.510Kmol kg K 86.1mol g 1.28mol kg 0281.00.510K 250g g 00.7mol kg K 512.011b b f B f f 111b A B b B =⋅⋅⋅⋅⋅=∆⋅=⋅=∆⋅=⋅=⨯⨯⋅⋅=∆⋅⋅=-----K T K b K T T m m K MT f = -1.85℃ 5. 解:压略高于人体眼液的渗透kPa 869K 310K mol L kPa 314.8L mol 337.0L mmol 337L mol 337.0mL10001.000LmL 1000mol 61.8g g 00.17mol 161.5g g 00.52111-os 1-1-1-1-os =⨯⋅⋅⋅⨯⋅==⋅=⋅=⨯⋅+⋅⨯=--RT c Πc6. 解:11A fB f B 11A b B b B mol kg 61.1100g0.220K g0.19mol kg K 86.1mol kg 62.1100g 0.0600K g 0.19mol kg .512K 0----⋅=⨯⨯⋅⋅=∆=⋅=⨯⨯⋅⋅=∆=m T m K M m T m K M用两种方法计算该物质的相对分子质量基本相同。

教育综合基础知识复习题答案(修改)

教育综合基础知识复习题答案(修改)

第一部分教育学原理复习题第一章教育与教育学一、单选题1—5、BBDAB 6—10、ACCBB 11—15、CDBDA 16、D二、多选题1、ABCD2、ABDE3、ABD4、ABC5、CD6、BC三、简答题1.简述传统教育学派与现代教育学派的师生观。

答:传统教育学派的基本观点是,教育者是教育活动的主体,受教育者是教育活动的客体。

受教育者是接受教育、被教育者,认识和塑造的对象,即被认识、被控制的客体。

它忽视了受教育者是具有一定主动性的人,教育是由教育者与受教育者所组成的双边活动。

现代教育学派只承认受教育者是教育活动的主体,否认教育者也是教育活动的主体。

杜威为代表的实用主义教育观认为,教育活动归根到底是使受教育者得到发展,而受教育者的发展只有通过其自身的活动才能实现,教育者相对于受教育者而言只是外部条件,不能构成为教育活动的主体。

2.简述学校教育产生的条件。

答:(1)社会生产必须出现相当数量的剩余产品,使一部分人可以脱离生产劳动。

同时体力劳动和脑力劳动分工,开始出现专门从事教育的教师和专门从事学习的学生。

(2)具有相当数量的经验积累,为学校教育提供特定的教育内容。

(3)文字等记载和传递文化的工具达到了一定水平。

可见学校教育的产生既有社会经济和政治的原因,也有文化发展方面的原因。

3、简述教育学的学科特点。

答:第一、研究对象的普遍性、平凡性。

第二,问题域界的恒定性和解答的不确定性。

第三,学科基础的广泛性和跨学科性。

第四、理论类型的多元性、学科路径多样化。

4、简述教育学的发展趋势。

答:(1)教育学研究的问题领域不断扩大。

(2)教育学研究基础的扩展和研究范式的多样化。

(3)教育学学科的细密分化和高度综合同时进行。

(4)教育学研究与教育实践改革的关系日益密切。

第二章教育与社会一、单选题1—5、ACDAC 6—10、AAABD二、多选题1、ABD2、ABCDE3、BCD4、ABCDE5、ABCDE三、简答题1、简述教育的经济功能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

下列化合物(CH 3CH 2)2C(CH 3)2的命名为
所选答案:
A. 3,3-二甲基戊烷
问题
2
环己烷有下列四种相对较稳定构象,其稳定性大小顺序为
>
所选答案:
A. A > B > C
问题 3
两个原子间可以形成多个σ-单键。

所选答案: 错
问题 4
自由基反应是一种连锁反应,其反应机理总是经过链引发、链增长和链终止三个阶段。

发生自由基反应的一般情形有:自由基引发剂催化、光照或高温加热等。

所选答案: 对
问题 5
下面四个1-甲基-4-异丙基环己烷的构象的稳定性大小可以 的顺序排列
所选答案:
C. A>C>D>B
问题 6
sp 3杂化轨道的几何形状为
所选答案:
A. 四面体
问题 7
甲烷的氯代反应产物往往是各阶段取代产物的混合物。

为了控制反应在一元取代
阶段,应该采取的措施是
所选答案:
B. 大量的甲烷和少量的氯气
问题 8
由于存在环张力,环状化合物的稳定性一般六员环>五员环,例如环己烷比环戊烷稳定,
但内酯的稳定性γ–戊内酯>δ-戊内酯。

所选答案: 对
问题 9
下列表述 是正确的
>
所选答案:
C. 尽管化合物B 的产率比化合物A 的产率高,然而叔氢的反应活
性却比伯氢的高
问题 10
自由基取代反应是烷烃特有的反应。

所选答案: 错
问题 11
烷烃的氯代反应的链引发是Cl-Cl 键的断裂而不是C-H 键或C-C 键的断裂。

这是因为
所选答案:
A. Cl-Cl 的键能较小
问题 12
共价键的断裂方式分为均裂和异裂。

所选答案:对
问题13
环己烷椅式结构上直立键的取代基比平伏键的取代基不稳定是因为直立键的基
团之间有斥力,而平伏键基团之间没有斥力。

所选答案:错
问题14
甲烷在日光下与Br2发生反应,其反应历程属于
所选答案: B. 自由基取代
问题15
下列陈述是错误的
所选答案: C. 协同反应则既不是均裂也不是异裂,而是介于两者之间的反应
问题16
下列化合物的命名为
所选答案: C. 2,6,6-三甲基-3-乙基辛烷
问题17
构象异构是由σ-单键的旋转产生的,构象异构体即是同一分子实际存在的不同立体结构状态,它们不能被分离;当σ-单键的旋转受阻时,这种构象异构可产生构型异构,能分
离出不同的立体异构体。

由此可以说,构象异构与构型异构没有明确的界线。

所选答案:对
问题18
环己烷的构象中椅式最稳定,因为椅式的环无张力,而其他的环都有张力。

所选答案:错
问题19
有机化合物的物理性质是由分子的分子间力、相对分子量、分子的极性和分子
的表面积等决定的,这些性质包括
所选答案:
A. 密度、沸点、熔点、溶解度、颜色等,但不包括折光率、旋
光性
问题
20
4-甲基-5-乙基辛烷结构式正确的是:
所选答案:
B.
问题 21
有机化学反应的实质是某些旧的共价键的断裂和新的共价键的形成,它可分为
所选答案:
A. 均裂反应、异裂反应及协同反应
问题 22
烷烃的最主要的化学性质是它的杰出的化学稳定性,正因为如此,以化学性质而言,有
机化学是官能团的化学。

所选答案: 对
问题 23
甲烷在光照下的氯代反应是按自由基反应机理进行,其反应应符合下列实验事实:
其中 的陈述是错误的
所选答案:
C. 氯气光照后,在暗处通入甲烷,或者甲烷光照后,在暗处通入
氯气,反应都不能发生
问题 24
某烷烃的分子式为C 5H 12,只有二种二氯衍生物,那么它的结构为:
所选答案:
C. 新戊烷
问题 25
同分异构分为构象异构和构型异构两大类。

所选答案: 错。

相关文档
最新文档