重庆市巴川新高中2017级入学验收考试数学试题

合集下载

重庆市育才中学2017届高三上学期入学考试数学(理)试题Word版含答案

重庆市育才中学2017届高三上学期入学考试数学(理)试题Word版含答案

育才中学高2017级高三上入学考试数学试题(理科)一、选择题:本大题共12小题,每小题5分,共60分。

在每个小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合{}{}2log 1,1P x x Q x x =<-=<,则PQ =( ) A .10,2⎛⎫ ⎪⎝⎭ B. 1,12⎛⎫ ⎪⎝⎭C. ()0,1D. 11,2⎛⎫- ⎪⎝⎭2.“(,)2πθπ∈”是“sin cos 0θθ->”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件3.已知△ABC 中,125tan -=A ,则cos A =( ) A.1213 B. 1213- C.513- D. 513 4. 设2log 3=a ,21log 5=b ,3log 2=c ,则( )A .b c a >>B .a c b >>C .a b c >>D .b a c >>5.已知tan a =4,cot β=13,则tan(a +β)=( ) A. 711 B. 711- C. 713 D. 713-6. 函数13,0,()31,0.xx x f x x -⎧-≥⎪=⎨-<⎪⎩,则该函数为( )A. 单调递减函数,奇函数B. 单调递增函数,偶函数C. 单调递增函数,奇函数D. 单调递减函数,偶函数 7. 下列说法中正确的是( )A. “(0)0f =”是“函数()f x 是奇函数”的充要条件B. 若2000:,10p x x x ∃∈-->R ,则2:,10p x x x ⌝∀∈--<RC. 若p q ∧为假命题,则p ,q 均为假命题D. 命题“若6απ=,则1sin 2α=”的否命题是“若6απ≠,则1sin 2α≠”8.由曲线1xy =,直线,3y x x ==所围成的封闭图形的面积为( ) A .116B.92 C. 1ln 32+ D. 4ln3- 9. 已知()f x 是定义在R 上的奇函数,且对任意x R ∈都有(2)(2)4(2)f x f x f +=-+,且(1)3f =,则(2015)f =( ) A. 6B. 3C. 0D. 3-10.已知函数()1--=x x x f ,()x x x g 2+=,()x x x h ln +=的零点分别为321,,x x x ,则( )A. 312x x x <<B. 213x x x <<C. 132x x x <<D. 321x x x <<11.已知点P 为曲线3:C y x x =-上一点,曲线C 在点P 处的切线1l 交曲线C 于点Q (异于点P ),若直线1l 的斜率为1k ,曲线C 在点Q 处的切线2l 的斜率为2k ,则124k k -的值为( ) A . 5-B .4-C .3-D . 212.已知函数13)(23+-=x x x f ,⎪⎩⎪⎨⎧≤--->+=0,860,41)(2x x x x xx x g ,则方程[])0(0)(>=-a a x f g 的解的个数不可能是( )A .3个 B.4个 C.5个 D. 6个 二、填空题:本大题共5小题,每小题5分,共25分 13.⎰-=+221)(sin dx x _____________14. 已知)(x f ,)(x g 分别是定义域为R 的奇函数和偶函数,且xx g x f 3)()(=+,则)1(f 的值为_____________15.已知α、β都是锐角,且3cos()5αβ-+=,12sin 13β=,则cos α=_____________ 16.如果)(x f 的定义域为R ,对于定义域内的任意x ,存在实数a 使得)()(x f a x f -=+成立,则称此函数具有“)(a P 性质”. 给出下列命题: ①函数x ysin =具有“)(a P 性质”;②若奇函数)(x f y =具有“)2(P 性质”,且1)1(=f ,则(2015)1f =;③若函数)(x f y =具有“(4)P 性质”, 图象关于点(10),成中心对称,且在(1,0)-上单调递减,则)(x f y =在(2,1)--上单调递减,在(1,2)上单调递增;④若不恒为零的函数)(x f y =同时具有“)0(P 性质”和 “(3)P 性质”,且函数)(x g y =对R x x ∈∀21,,都有1212|()()||()()|f x f x g x g x -≥-成立,则函数)(x g y =是周期函数.其中正确的是(写出所有正确命题的编号).三、解答题:本大题共5小题,60分。

高三数学上学期入学考试试题 文1

高三数学上学期入学考试试题 文1

重庆八中高2017届高三上入学考试数学试题(文科)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,满分150分,考试时间120分钟第I 卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.sin(150)-的值为A .12-B .12C .32-D .322.已知命题:,20x p x R ∀∈>,命题:,sin cos 2q x R x x ∃∈+>,则 A .命题p q ∨是假命题B .命题p q ∧是真命题C .命题()p q ∧⌝是真命题D .命题()p q ∨⌝是假命题3.已知函数221,1(),1x x f x x ax x ⎧+<⎪=⎨+≥⎪⎩,若[](0)4f f a =,则实数a 等于A .12B .45C .2D .94.已知1sin cos 2x x -=,则sin 2x = A .34B .34-C .12-D .125.2()ln f x ax bx x =++在点(1,(1))f 处的切线方程为42y x =-,则b a -= A .1-B .0C .1D .26.在ABC ∆中,,,a b c 为角,,A B C 的对边,若6A π=,3cos 5B =,8b =,则a = A .403B .10C .203D .57.已知()sin()(0,0,)f x A x A x R ωϕω=+>>∈,则“()f x 在1x =处取得最大值”是“(1)f x +为偶函数”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件8.下图可能是下列哪个函数的图象 A .1x y x =+ B .ln x y x=C .2(2)x y x x e =-D .22||y x x =-9.将函数sin()(0,||)y x ωϕωϕπ=+><的图象向右平移6π个单位,再将图象上所有点的横坐标伸长到原来的2倍(纵坐标不变)所得的图象解析式为sin y x =,则sin()y x ωϕ=+图象上距离y 轴最近的对称轴方程为A .6x π=-B .3x π=C .12x π=-D .12x π=10.某几何体的三视图如图所示,则该几何体的体积可以是A .4483π+B .482π+C .8483π+D .483π+11.在ABC ∆中,60B =,3AC =,则2AB BC +的最大值为 A .23B .25C .26D .2712.设直线y t =与曲线2(3)y x x =-的三个交点分别为(,)A a t 、(,)B b t 、(,)C c t ,且a b c <<,现给出如下结论:①abc 的取值范围是(0,4);②222a b c ++为定值;③c a -有最小值无最大值。

17级2017年2月入学考试数学试题

17级2017年2月入学考试数学试题

- 1 -第8题图重庆市字水中学2017级16-17学年度下期假期自主学习监测数 学 试 题(命题:尹红梅,审题:林小波)(本卷共五个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试卷上直接作答.2.作答前请认真阅读答题卡上的注意事项.参考公式:抛物线)0(2≠++=a c bx ax y 的顶点坐标为⎪⎪⎭⎫ ⎝⎛--a b ac a b 44,22,对称轴为直线a bx 2-= 一、选择题(本大题共12小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方格涂黑. 1.在-4,-1,0,2这四数中,最小的数是( ) A .-4B .-1C .0D .22.下列交通标志中不是..轴对称图形的是( )A B C D 3.计算233(2)x x ⋅-的结果是( ) A.518x -B.524x -C.624x -D.618x -4.下列四组数分别是三条线段的长度,能构成三角形的是( ) A .1,1,2B .1,3,4C .2,3,6D .4,5,85.2月13日重庆市字水中学举行了“开学表彰大会”,初三某班老师准备从包括小明在内的四名优秀团员中,随机抽取2名学生参加表彰大会,则抽取到小明的概率是( ) A.12B.13C.14D.166.如图,直线a 、b 被直线c 所截,a ∥b ,∠1=∠2,若∠4=65°,则∠3等于( A .30°B .50°C .65°D .115°7.在函数y =中,自变量x 的取值范围是( ). A .3x -≥且0x ≠ B .3x ≤且0x ≠ C .0x ≠ D .3x -≥8.如图,在□ABCD 中,E 为CD 上一点,连接AE 、BD ,且AE 、BD 交于点F ,25:4:=∆∆ABF DEF S S ,则DE :EC =( ). A .2:5 B .2:3 C .3:5 D .3:29.如图,AB 是⊙O 的直径,弦CD ⊥AB ,DE ⊥CE 于E , ∠AOD=60°,CD=23, 则S 阴影=( ) A .332-23πB .332-2πC .32 D .332-π 10.如图,下列图案均是长度相同的火柴并按一定的规律拼接而成:第1个图案需7根火柴,第2个图案需13根火柴,第3个图案需21根火柴,…,依此规律,第8个图案需火柴( )……第1个图 第2个图 第3个图 第4个图A .90根B .91根C .92根D .93根11.近来爱好跑步的人越来越多,人们对跑步机的需求也越来越大.图①、②分别是某种型号跑步机的实物图与示意图,已知踏板CD 长为1.6m ,CD 与地面DE 的夹角∠CDE 为12°,支架AC 长为0.8m ,∠ACD 为80°,则跑步机手柄的一端A 的高度h 四舍五入到0.1m 约为( )(参考数据:sin 12°=cos 78°≈0.21,sin 68°=cos 22°≈0.93,tan 68°≈2.48)A .0.9B .1.0C .1.1D .1.2ED CB A 30%EDCBA抽样调查中各种睡眠时间人数 占总人数的扇形统计图抽样调查中各种睡眠时间人数 的条形统计图情况人数326654321ED C BA12.如果关于x 的方程ax 2+4x -2=0有两个不相等的实数根,且关于x 的分式方程22121=----x axx 有正数解,则符合条件的整数a 的值是( ) A .-1B .0C .1D .2二、填空题(本大题6小题,每小题题4分,共24分)请将每小题的答案直接填写在答题卡中对应的横线上.13.重庆市的面积约为82400km 2,这个数据用科学计数法可表示为________km 2 14.计算:(11|2|12-⎛⎫--+ ⎪⎝⎭=____________ 15.如图所示,在⊙O 中,∠CBO=45°,∠CAO=15°,则∠AOB 的度数是 .16.现有6个质地,大小完全相同的小球上分别标有数字-1,0.5,23,112,1,2.先将标有数字-1,0.5,112的小球放在第一个不透明的盒子里,再将其余小球放在第二个不透明的盒子里,现分别从这两个盒子里各随机取出一个小球,则取出的两个小球上的数字互为倒数的概率为 .17.“欢乐跑中国∙重庆站”比赛前夕,小刚和小强相约晨练跑步.小刚比小强早1分钟跑步出门, 3分钟后他们相遇.两人寒暄2分钟后,决定进行跑步比赛.比赛时小刚的速度始终是180米/分,小强的速度是220米/分.比赛开始10分钟后,因雾霾严重,小强突感身体不适,于是他按原路以出门时的速 度返回,直到他们再次相遇.如图所示是小刚、小强之间的距离y (米)与小刚跑步所用时间x (分 钟)之间的函数图象.问小刚从家出发到他们再次相遇时,一共用了 分钟.18.如图,四边形ABCD 为正方形,H 是AD 上任意一点,连接CH ,过B 作BM ⊥CH 于M ,交AC 于F .过D 作DE ∥BM 交AC 于E ,交CH 于G .在线段BF 上作PF =DG ,接PG ,BE ,其中PG 交AC 于N 点. K为BE 上一点,连接PK ,KG .若∠BPK =∠GPK ,CG =12,KP :EF =3:5,求EGKG的值为 . 三、解答题(本大题2小题,每小题7分,共14分)解答题时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡...中对应的位置上. 19.如图,在ABC △中,D 为BC 上的一点,DA 平分EDC ∠,且E B ∠=∠,DE DC =.求证:AB AC =.20.在期末考试来临之际,同学们都进入紧张的复习阶段,为了了解同学们晚上的睡眠情况,现对年级部分同学进行了调查统计,并制成如下两幅不完整的统计图:(其中A 代表睡眠时间8小时左右,B 代表睡眠时间6小时左右,C 代表睡眠时间4小时左右,D 代表睡眠时间5小时左右,E 代表睡眠时间7小时左右),其中扇形统计图中“E”的圆心角为90︒,请你结合统计图所给信息解答下列问题:(1)共抽取了 名同学进行调查,同学们的睡眠时间的中位数是 小时左右,并将条形统计图补充完整;(2)请你估计年级每个学生的平均睡眠时间约多少小时?第17题图- 3 -四、解答题(本大题4小题,每小题10分,共40分)解答题时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡...中对应的位置上. 21. 计算:(1)2)12()3)(3()1(3---+-+a a a a a (2)222444(2)11x x x x x x x-+++-+÷--22.如图,一次函数 2-=ax y )0( ≠a 的图象与反比例函数 xk y =(0)k ≠的图象交于第二象限的点A ,且与x 轴、y 轴分别交于点C 、D .已知1tan 3AOC ∠=(1)求这个一次函数和反比例函数的解析式;(2)若点F 是点D 关于x 轴的对称点,求△ABF 的面积.23.一玩具城以49元/个的价格购进某种玩具进行销售,并预计当售价为50元/个时,每天能售出50个玩具.且在一定范围内,当每个玩具的售价平均每提高0.5元时,每天就会少售出3个玩具. (1)若玩具售价不超过60元/个,每天售出玩具总成本不高于686元,预计每个玩具售价的取值范围;(2)在实际销售中,玩具城以(1)中每个玩具的最低售价及相应的销量为基础,进一步调整了销售方案.将每个玩具的售价提高了a %,从而每天的销售量降低了2a %,当每天的销售利润为147元时,求a 的值.24.连续整数之间有许多神奇的关系,如:32+42=52,这表明三个连续整数中较小两个数的平方和等于最大数的平方,称这样的正整数组为“奇幻数组”,进而推广:设三个连续整数为a ,b ,c (a <b <c ) 若a 2+b 2=c 2,则称这样的正整数组为“奇幻数组”;若a 2+b 2<c 2,则称这样的正整数组为“魔幻数组”;若a 2+b 2>c 2,则称这样的正整数组为“梦幻数组”.(1)若有一组正整数组为“魔幻数组”,写出所有的“魔幻数组”; (2)现有几组“科幻数组”具有下面的特征:若有3个连续整数:32+42+5225=2;若有5个连续整数:102+112+122+132+142365=2;若有7个连续整数:212+222+232+242+252+262+2722030=2;…由此获得启发,若存在n (7<n <11)个连续正整数也满足上述规律,求这n 个数.x五、解答题.(本大题共2小题,每小题12分,共24分) 解答题时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡...中对应的位置上. 25.如图,△ABC 中,AB=BC ,以AB 为一边向外作菱形ABDE ,连接DC ,EB 并延长EB 交AC 于F ,且CB ⊥AE 于G . (1)如图1,若∠EBG=20°,求∠AFE ;(2)试问线段AE ,AF ,CF 之间的数量关系并证明;(3)如图2,延长DB 交AC 于H ,若O 为DH 的中点,过O 作MN ∥AC 交EF 于M ,交CD 于N ,连结NF ,若S 四边形ABDE =24,BE=6,直接写出BH+NF 的值.GFE DCBAOH MNGF EDCBA图1 图226.如图,抛物线y =-x 2+2x +3与x 轴交于A ,B 两点,与y 轴交于点C ,点D ,C 关于抛物线的对称轴对称,直线AD 与y 轴相交于点E . (1)求直线AD 的解析式;(2)如图1,直线AD 上方的抛物线上有一点F ,过点F 作FG ⊥AD 于点G ,作FH 平行于x 轴交直线AD 于点H ,求△FGH 周长的最大值;(3)如图2,点M 是抛物线的顶点,点P 是y 轴上一动点,点Q 是坐标平面内一点,四边形APQM 是以PM 为对角线的平行四边形,点Q′与点Q 关于直线AM 对称,连接M Q′,P Q′.当△PM Q′与□APQM 重合部分的面积是□APQM 面积的14时,求□APQM 面积.图1 图2 备用图。

2017级高中入学考试数学精彩试题

2017级高中入学考试数学精彩试题

实用文档文案大全2017级高中入学考试数学试题(总分150分,考试时间120分钟)一.选择题(每小题只有一个正确答案,每小题5分,共60分)1.若不等式组?????mxx3无解,则m的取值范围是()(A)3?m(B)3?m(C)3?m(D)3?m2.若“!”是一种运算符号,并定义:1!=1;2!=2×1=2;3!=3×2×1=6;……,则! 98! 100的值为()(A)4950(B)99! (C)9900 (D)2![来3.化简a1?的结果是()(A)aa?1(B)aa??1(C)aa?(D)aa??4.已知A?为锐角,且2tan3A?,那么下列判断正确的是()(A)0°A???30°(B)30°A???45°(C)45°A???60°(D)60°A???90°5. 如图,PA和PB是O的切线,点A和B是切点,AC是O的直径,已知P??40°,则ACB?的大小是()(A)60°(B)65°(C)70°(D)75°6.若,,abc都是非零实数,且0abc???,那么abcabcccbbaa???的所有可能的值为()(A)1或1?(B)0或2?(C)2或2?(D)07.已知xxxx????2322,则代数式xx222?的值是()(A)2 (B)6?(C)2或6?(D)2?或6实用文档文案大全mn8.如图,已知ABC?为直角三角形,分别以直角边,ACBC为直径作半圆AmC和BnC,以AB为直径作半圆ACB,记两个月牙形阴影部分的面积之和为1S,ABC?的面积为2S,则1S与2S的大小关系为()(A)12SS?(B)12SS?(C)12SS?(D)不能确定9.已知12(,2016),(,2016)AxBx是二次函数)0(82????abxaxy的图象上两点,则当12xxx??时,二次函数的值为()(A)822?ab(B)2016 (C)8 (D)无法确定10.关于x的分式方程121kx???的解为非负数,且使关于x的不等式组6112xxkx??????????有解的所有整数k的和为()(A)1?(B)0(C)1(D)211.已知梯形的两对角线分别为a和b,且它们的夹角为60°,则梯形的面积为()(A)ab23(B)ab43(C)ab83(D )ab3(提示:面积公式1sin2ABC SabC???)12.将棱长相等的正方体按如图所示的形状摆放,从上往下依次为第一层、第二层、第三层……,则第2004层正方体的个数是()(A)2009010 (B)2005000 (C)2007005 (D)2004二.填空题(每小题5分,共20分)13.分解因式:4244xxx????14.右图是一个立方体的平面展开图形,每个面上都有一个自然数,且相对的两个面上两数之和都相等,若13,9,3的对面的数分别是,,abc,则bcacabcba?????222的值为3913.实用文档文案大全15.书架上有两套同样的书,每套书分上下两册,在这两套书中随机抽取出两本,恰好是一套书的概率是16.已知关于x的方程22230xkxkk?????的两根分别是12,xx,则2212(1)(1)xx???的最小值是三.解答题(17题10分,其余每题12分,共70分)17.(1)计算:??20160672127sin60tan602009sin253??????????????(2)先化简再求值:?????????????????????????12222222babbaabaababaa,其中23??a,23??b。

2017年重庆中学考试数学A卷及问题详解

2017年重庆中学考试数学A卷及问题详解

重庆市2017年初中毕业生学业水平暨普通高中招生考试数学试题(A 卷)(全卷共五个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试题卷上直接作答。

2.作答前认真阅读答题卡上的注意事项。

3.考试结束,由监考人员将试题和答题卡一并收回。

参考公式:抛物线)0(2≠++=a c bx ax y 的顶点坐标为)44,2(2a b ac a b --,对称轴为ab x 2-=.一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.在实数-3,2,0,-4,最大的数是( )A.-3B.2C.0D.-4 2.下列图形中是轴对称图形的是( )A B C D 3.计算26x x ÷正确的结果是( )A.3B.3xC.4x D.8x 4.下列调查中,最适合采用全面调查(普查)方式的是( ) A.对重庆市初中学生每天阅读时间的调查 B.对端午节期间市场上粽子质量情况的调查 C.对某批次手机的防水功能的调查D.对某校九年级3班学生肺活量情况的调查 5.估计110+的值应在( )A.3和4之间B.4和5之间C.5和6之间D.6和7之间 6.若4,31=-=y x ,则代数式33-+y x 的值为( )A.-6B.0C.2D.67.要使分式34-x 有意义,x 应满足的条件是( ) A.3>x B.3=x C.3<x D.3≠x8.若ABC ∆错误!未找到引用源。

∽DEF ∆,相似比为3:2,则对应高的比为( ) A.3:2 B.3:5 C.9:4 D.4:99.如图,矩形ABCD 的边AB=1,BE 平分ABC ∠,交AD 于点E ,若点E 是AD 的中点,以点B 为圆心,BE 为半径画弧,交BC 于点F ,则图中阴影部分的面积是( )A.4-2πB.4-23πC.8-2πD.8-23π10.下列图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有3个菱形,……,按此规律排列下去,第⑨个图形中菱形的个数为( )A.73B.81C.91D.10911.如图,小王在长江边某瞭望台D 处,测得江面上的渔船A 的俯角为040,若DE=3米,CE=2米,CE 平行于江面AB ,迎水坡BC 的坡度75.0:1=i ,坡长BC=10米,则此时AB 的长约为( ) (参考数据:84.040tan ,77.040cos ,64.040sin 000≈≈≈)A.5.1米B.6.3米C.7.1米D.9.2米12.若数a 使关于x 的分式方程4112=-+-xa x 的解为正数,且使关于y 的不等式组()⎪⎩⎪⎨⎧≤->-+021232a y yy 的解集为2-<y ,则符合条件的所有整数a 的和为( ) A.10 B.12 C.14 D.16二、填空题(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.“渝新欧”国际铁路联运大通道全长11000千米,成为服务“一带一路”的大动脉之一,将数11000用科学记数法表示为 。

【数学】重庆市2017届高三第二次检测数学试题文Word版含答案

【数学】重庆市2017届高三第二次检测数学试题文Word版含答案

【关键字】数学重庆二外高2017学部2016—2017学年度下期第2次月考文科数学1. 已知集合,,则=()A. ,B. ,C. ,D. ,2. 设,则=()D. 2A. B. C.3. 若,满足,则的最小值为()A. B. 7 C. 2 D. 54. 阅读下图的程序框图,运行相应的程序,输出的值是()A. 1B. 2C. 3D. 45. 在中,“”是“为钝角三角形”的()A. 充要条件B. 必要不充分条件C. 充分不必要条件D. 既不充分也不必要条件7. 定义在上的函数,则满足的取值范围是()A. ,B. ,C. ,D. ,8. 设,,为的三个内角A,B,C的对边,,若,且,则角A,B的大小分别为()A. B. C. D.9. 在中,是边上一点,且,,则()A. B. C. D.10. 给出下列三个命题:①函数的单调增区间是,②经过任意两点的直线,都可以用方程来表示;③命题:“,”的否定是“,”,其中正确命题的个数有()个A. 0B. 1C. 2D. 311. 设m,,若直线与圆相切,则m+n的取值范围是()A. B.C. ,D.12.已知函数(,e为自然对数的底数)与的图象上存在关于直线y=x对称的点,则实数a取值范围是()A. B. C. D.13. 已知数列是公差不为零的等差数列,,且成等比数列,则数列的通项公式为___________14. 已知5件产品中有2件次品,其余为合格品.现从这5件产品中任取2件,恰有一件次品的概率为___________15. 学校艺术节对同一类的,,,四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:甲说:“是或作品获得一等奖”;乙说:“作品获得一等奖”;丙说:“,两项作品未获得一等奖”;丁说:“是作品获得一等奖”.若这四位同学中只有两位说的话是对的,则获得一等奖的作品是.16. 如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,若该几何体的各个顶点在某一个球面上,则该球面的面积为___________17. 已知函数(Ⅰ)求的最大值;(Ⅱ)求的最小正周期与单调递加区间18. 从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:质量指标值分组频数 6 26 38 22 8 (1)在坐标系中作出这些数据的频率分布直方图(2)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表)(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定?19. 如图,在三棱柱ABC-A1B1C1中,各个侧面均是边长为2的正方形,D为线段AC的中点.(Ⅰ)求证:BD⊥平面ACC1A1;(Ⅱ)求证:直线AB1∥平面BC1D;(Ⅲ)设M为线段BC1上任意一点,在△BC1D内的平面区域(包括边界)是否存在点E,使CE⊥DM,并说明理由.20. 已知中心在坐标原点,焦点在x轴上的椭圆过点,且它的离心率(I)求椭圆的标准方程;(II)与圆相切的直线交椭圆于MN两点,若椭圆上一点C满足,求实数的取值范围21. 已知函数(1)讨论的单调性并求最大值;(2)设,若恒成立,求实数a的取值范围22. 选修4—4:坐标系与参数方程.在平面直角坐标系xOy中,直线L的参数方程是(t为参数),以O为极点,x 轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程为,且直线与曲线C交于P,Q两点(1)求曲线C的普通方程及直线L恒过的定点A的坐标;(2)在(1)的条件下,若,求直线L的普通方程23. 选修4-5:不等式选讲.函数(Ⅰ)若a=-2求不等式的解集(Ⅱ)若不等式的解集非空,求a的取值范围参考答案1.C2. B3.D4.B5.C6.C7.D8.C9.A 10.B 11.D 12.A13. 14. 15.B 16.17. 解:(Ⅰ)因为,最大值为2;(Ⅱ)最小正周期为令,解之得.单调递增区间为.18.解:(1)频率分布直方图如图所示:(2)质量指标的样本平均数为=80×0.06+90×0.26+100×0.38+110×0.22+120×0.08=100,质量指标的样本的方差为S2=(-20)2×0.06+(-10)2×0.26+0×0.38+102×0.22+202×0.08=104,这种产品质量指标的平均数的估计值为100,方差的估计值为104;(3)质量指标值不低于95的产品所占比例的估计值为0.38+0.22+0.08=0.68,由于该估计值小于0.8,故不能认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定19.(Ⅰ)证明:∵三棱柱ABC-A1B1C1中,各个侧面均是边长为2的正方形,∴CC1⊥BC,CC1⊥AC,∴CC1⊥底面ABC,∵BD⊂底面ABC,∴CC1⊥BD,又底面为等边三角形,D为线段AC的中点.∴BD⊥AC,又AC∩CC1=C,∴BD⊥平面ACC1A1;(Ⅱ)证明:连接B1C交BC1于O,连接OD,如图则O为B1C的中点,∵D是AC的中点,∴AB1∥OD,又OD⊂平面BC1D,OD⊄平面BC1D∴直线AB1∥平面BC1D;(Ⅲ)在△BC1D内的平面区域(包括边界)存在点E,使CE⊥DM,此时E在线段C1D上;证明如下:过C作CE⊥C1D交线段C1D与E,由(Ⅰ)可知BD⊥平面ACC1A1,而CE⊂平面ACC1A1,所以BD⊥CE,由CE⊥C1D,BD∩C1D=D,所以CE⊥平面BC1D,DM⊂平面BC1D,所以CE⊥DM.20. 解:(Ⅰ)设椭圆的标准方程为,由已知得:,解得,所以椭圆的标准方程为:.(Ⅱ)因为直线l:y=kx+t与圆(x-1)2+y2=1相切,所以,2k=,t≠0,把y=kx+t代入,并整理得:(3+4k2)x2+8ktx+4t2-24=0,设M(x1,y1),N(x2,y2),则有,y1+y2=kx1+t+kx2+t=k(x1+x2)+2t=,因为=(x1+x2,y1+y2),所以C(,),又因为点C在椭圆上,所以,,因为t2>0,所以,所以0<λ2<2,所以λ的取值范围为(-,0)∪(0,).21.解:(1)由题设有x>0,,可知f(x)在(0,1)单调递增,在单调递减;f(x)的最大值为;(2)由题有,令,则,设,则,当x>0时,可知为增函数,且,当,即时,当x>0时,,则单调递增,,则h(x)单调递增,则h(x)>h(0)=0,即恒成立,故;当2a>2,即a>1时,则唯一存在t>0,使得,则当,,则h'(x)单调递减,h'(x)<h'(0)=0,则h(x)单调递减,则h(x)<h(0)=0,则,不能在上恒成立,综上:实数a的取值范围是.22.解:(1)由、及已知得:;由直线的参数方程知直线的直角坐标方程为:,所以直线恒过定点A(2,0);(2)将直线l的方程代入曲线C的方程得:,由t的几何意义知:,,因为点A在椭圆内,这个方程必有两个实根,所以,则,所以,因为,所以,,则,由此直线的方程为或.23.解:(Ⅰ)当a=-2时,f(x)=|x+2|,f(x)+f(2x)=|x+2|+|2x+2|>2,不等式可化为或或,解得;(Ⅱ),当时,f(x)=a-x+a-2x=2a-3x,则;当时,f(x)=x-a+a-2x=-x,则;当时,f(x)=x-a+2x-a=3x-2a,则,所以函数f(x)的值域为,因为不等式的解集非空,即为,解得a>-1,由于a<0,则a的取值范围为(-1,0).此文档是由网络收集并进行重新排版整理.word可编辑版本!。

2017年重庆市2017年初中毕业暨高中招生考试数学模拟试题及答案

重庆市2017年初中毕业暨高中招生考试数 学 模 拟 试 题(全卷共五个大题,满分150分,考试时间120分钟)参考公式:抛物线2(0)y ax bx c a =++≠的顶点坐标为24,)24b ac b a a--(, 对称轴为2bx a=-. 一、选择题(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,期中只有一个是正确的,请将 答题卡上题号右侧正确答案所对应的方框涂黑。

1.在14,-1,0,2这四个数中,最小的数的是( )A 、14B 、-1C 、0D 、22.下列图形是中心对称图形而不是轴对称图形的是( )A .B .C .D 3.(2015•重庆A )计算()32a b 的结果是( )A. 63a bB. 23a bC. 53a bD. 6a b 4.下列调查中,最适合采用普查方式的是( ) A .调查一批灯泡的使用寿命B .调查全国人民对延迟退休政策的态度C .调查某航班的旅客是否携带了违禁物品D .调查全国人民对里约奥运会的收视情况5、(2015浙江嘉兴,6,4分)与无理数31最接近的整数是( ) A. 4 B. 5 C. 6 D. 76、如图,在ABCD 中,E 为CD 上一点,连接AE 、BD ,且AE 、BD 交于点F ,:4:25DEF ABF S S ∆∆=,则DE :EC =( )A 、2:5B 、2:3C 、3:5D 、3:2 7.代数式有意义,则x 的取值范围是( )A .x >2B .x ≥﹣2C .x ≥﹣2且x ≠0D .x ≥﹣2且x ≠﹣1(重庆市西南大学附中2016-2017学年九年级(上)入学数学试卷)8、.若b=++1,则a ﹣3b+1的值为( )A .0B .1C .2D .3(重庆市西南大学附中2016-2017学年九年级(上)入学数学试卷)9.如图,在边长为6的菱形ABCD 中,∠DAB=60°,以点D 为圆心,菱形的高DF为半径画弧,交AD 于点E ,交CD 于点G ,则图中阴影部分的面积是( A )A .18﹣9πB .18﹣3πC .9﹣D .18﹣3π(重庆市西南大学附中2016-2017学年九年级(上)入学数学试卷)10.如图是由火柴棒搭成的几何图案,其中图形①中有4根火柴,图形②中有12根火柴,图形③中有24根火柴,则图形⑧中火柴的根数是( )A .96B .112C .144D .180(重庆市西南大学附中2016-2017学年九年级(上)入学数学试卷)11. 为了弘扬九十五中学办学理念,我校将“立己立人,尽善尽美”的校训印在旗帜上,放置在教学楼的顶部(如图所示)。

重庆一中高2017级高一下期半期考试数学试题(含答案,多为原创题).

A. 2015 2
() B. 2 2015
10.(原创)已知平面向量 , 满足 2
C. 1 2014
3 ,且

D. 1 1007
2 的夹角为 150 ,则
t(
) 3 ,(t R) 的最小值是( ) .
2
3 A.
4
3 B.
3
3 C.
2
D. 3
二.填空题 .(本大题共 5 小题,共 25 分,将正确答案填写在答题卡上的相应位置 )
A.3
B.6
C. 8
D. 12
2.已知向量 a (2, 1),b ( x,3) ,若 a b ,则实数 x 的值是( )
A. 6
B. 6
3 C.
2
x 2y 4 0
3.实数 x, y 满足 x 1
,则 z 2x y 的最大值为( )
y0
3 D.
2
A.2
B. 7
2
C. 7
D.8
4.若 x 1,则 x 4 的最小值是( ) x1
( 2)记 AB 边的中点为 M ,求 CM 的最大值,并说明理由 .
20.(12 分)(原创)已知二次函数 f ( x) ax 2 bx c, a,b, c R, a 0.
( 1)是否存在 a N * ,b, c R 使得 2x
f (x)
2
x
1 对任意 x
R 恒成立?若存在,求出
相应的 a,b,c 的值;若不存在,请说明理由 .
起爬歌乐山的概率是
(用数字作答);
14.(原创)已知 x, y R 且 2 x y 3 ,若不等式 xy ( x 2 y) a 对任意 x, y R 恒成立,
则实数 a 的取值范围是

2017届重庆市高三学业质量调研抽测(第一次)数学(文)试卷(带解析)

绝密★启用前2017届重庆市高三学业质量调研抽测(第一次)数学(文)试卷(带解析)注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明一、选择题1.已知集合={0,1,2},B ={0,x },若B ⊆A ,则x =( )A. 0或1B. 0或2C. 1或2D. 0或1或22.设命题p :∀x >0,x >ln x ,则¬p 为( )A. ∀x >0,x ≤ln xB. ∃x >0,x ≤ln xC. ∃x ≤0,x ≤ln xD. ∃x >0,x >ln x3.我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米2000石,验得米内夹谷,抽样取米一把,数得300粒内夹谷36粒,则这批米内夹谷约为( )A. 1760石B. 200石C. 300石D. 240石4.为了得到函数y =sin (2x +π3)的图象,只需把函数y =sin 2x 的图象( )A. 向左平行移动π3个单位长度B. 向左平行移动π3个单位长度C. 向右平行移动π6个单位长度D. 向右平行移动π6个单位长度 5.一个四面体的三视图如图所示,则该四面体的体积是( )A. 13 B. 1 C. 2+ 3 D. 2 26.在ΔA B C 中,|A B |=|B C |=3,∠A B C =120°,A D 是边B C 上的高,则A D ⋅A C 的值等于( )A. −9B. 9C. 27D. 97.给出30个数:1,3,5,7,…,59,要计算这30个数的和,如图给出了该问题的程序框图,那么框图中判断框①处和执行框②处可以分别填入()A. i≤30?和p=p+1B. i≤31?和p=p+1C. i≤31?和p=p+2D. i≤30?和p=p+28.在ΔO A B中,O为坐标原点,A(1,cosθ),B(sinθ,1),θ∈(0,π2],则当ΔO A B的面积取最大值时,θ=()A. π6B. π4C. π3D. π29.奇函数f(x)的定义域为R.若f(x+3)为偶函数,且f(1)=1,则f(6)+f(11)=()A. -2 B. -1 C. 0 D. 110.若平面区域{x+y−3≥02x−y−3≤0x−2y+3≥0夹在两条平行直线之间,则这两条平行直线间的距离的最小值是()A. 355B. 2 C. 322D. 511.设m,n∈R,若直线m x+n y−2=0与圆x2+y2=1相切,则m+n的取值范围是()A. [−2.2] B. (−∞,−2]∪[2,+∞) C. [−22,22] D. (−∞,−22]∪[22,+∞)12.定义在R上的连续可导函数f(x),当x≠0时,满足f′(x)+2f(x)x>0,则函数g(x)=f(x)+1x的零点的个数为()A. 0B. 1C. 2D. 3第II卷(非选择题)请点击修改第II卷的文字说明二、填空题13.已知i是虚数单位,复数1+i(1−i)2的虚部为__________.14.如图所示,在直角梯形B E C D中,A为线段C E上一点,D C⊥E C,∠B A E=15°,∠D A C= 60°,∠D B A=30°,A B=24m,则C D为__________m.15.已知底面为正方形的长方体A B C D−A1B1C1D1内接于球O,球O的表面积为16π,E为AA1的中点,O A⊥平面B D E,则底面正方形A B C D的边长为__________.16.如图,过抛物线y2=2p x(p>0)的焦点F的直线l交抛物线于点A,B,交其准线于点C,若|B C|=2|B F|,|A F|=4,则此抛物线的方程为__________.三、解答题17.已知数列{a n}的首项a1=35,a n+1=3a n4a n+1,n∈N∗.(Ⅰ)求证:数列{1a n−2}为等比数列;(Ⅱ)记S n=1a1+1a2+⋯+1a n,若S n<100,求n的最大值.18.某科技兴趣小组对昼夜温差的大小与小麦新品种发芽多少之间的关系进行了研究,记录了2016年12月1日至12月5日五天的昼夜温差与相应每天100颗种子的发芽得到了如下数据:现从这5组数据中任选两组,用余下的三组数据求回归直线方程,再对被选取的两组数据进行检验.(Ⅰ)求选取的两组数据恰好是不相邻的两天的概率;(Ⅱ)若选取的是12月1日和12月5日的两组数据,请根据余下的三组数据,求出y 与x 的线性回归直线方程y ^=b ^x +a ^;(Ⅲ)若由线性回归直线方程得到的估计值与所选出的两组实际数据的误差均不超过两颗,则认为得到的回归直线方程是可靠的,试判断(Ⅱ)中得到的线性回归直线方程是否可靠.附:在线性回归方程y ^=b ^x +a ^中,b ^= x i y i −nxy n i =1 x i 2ni =1−nx 2.19.如图所示,在长方体A B C D −A 1B 1C 1D 1中,E ,F ,P ,Q 分别是B C ,C 1D 1,AD 1,B D 的中点 . (Ⅰ)求证:E F //平面B B 1D 1D ;(Ⅱ)若A B =B B 1=2a ,A D =a ,求点A 到平面P D Q 的距离.20.已知函数f (x )=a ln x +a 2x 2+1,a ≠0.(Ⅰ)讨论函数f (x )的单调性;(Ⅱ)当−1<a <0时,有f (x )>1+a 2ln (−a )−12x 2恒成立,求a 的取值范围.21.已知F 1,F 2分别为椭圆C :x 23+y 22=1的左、右焦点,点P (x 0,y 0)在椭圆C 上.(Ⅰ)求PF 1 ⋅PF 2 的最小值;(Ⅱ)若y 0>0且PF 1 ⋅PF 2 =0,已知直线l :y =k (x +1)与椭圆C 交于两点A ,B,过点P 且平行于直线l 的直线交椭圆C 于另一点Q ,问:四边形P A B Q 能否程成为平行四边形?若能,请求出直线l 的方程;若不能,请说明理由.22.在直角坐标系中,曲线C 1:{x =t cos αy =t sin α+1(α为参数,t >0),曲线C 2:{x =1− 22s y =−1+ 22s(s 为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 3的极坐标方程为:ρcos θ−ρsin θ=2,记曲线C 2与C 3的交点为P .(Ⅰ)求点P 的直角坐标;(Ⅱ)当曲线C 1与C 3有且只有一个公共点时,C 1与C 2相较于A ,B 两点,求|P A |2+|P B |2的值.23.设f(x)=|x−1|+2|x+1|的最小值为m.(Ⅰ)求m的值;(Ⅱ)设a,b∈R,a2+b2=m,求1a+1+4b+1的最小值.参考答案1.C【解析】由题意可知,根据集合中元素的互异性原则,以及互为子集关系,可x 的值为1或2,故选C.2.B【解析】由题意,命题p 是全称命题,其非命题需要用特称命题来完成,故选B.3.D【解析】由题意,由统计知识可知,通样本的特征数来估计整体数据的特征,所以2000×36300=240,故选D.4.C【解析】由函数y =sin (2x +π3)=sin [2(x +π6)],所以只需把函数y =sin 2x 的图象沿着x 轴向左平移π6个单位而得到,故选C.5.A【解析】由题意,根据该四面体的三视图可知其体积为V =13S =13×12×2×1×1=13,故选A.6.C【解析】由题意可知,△A B C 是以∠A B C 为顶角,腰长为3的等腰三角形,则D 为B C 边上的中点,即|A D |=12|A C |,由余弦定理得|A C |= 3+3−2×3×3cos 120°=3 3,又A D 与A C 同向,所以A D ⋅A C =|A D |⋅|A C |=3 32×3 3=272,故选C 7.D【解析】由题意,i 是计数变量,p 是累加变量,由于总共30个数相加,所以当条件成立,执行循环体,又累加变量相差2,故选D.8.D【解析】由题意可作草图,如图所示,则S △O A B =1−12×1×cos θ−12×sin θ×1−12(1−cos θ)(1−sin θ)=1−14sin 2θ,又θ∈(0,π2],则2θ∈(0,π],所以当2θ=π,即sin 2θ=0时,△O A B 的面积最大,即θ=π2,故选D.9.B【解析】由f(x)为定义在R上的奇函数,则f(0)=0,又f(x+3)为偶函数,则f(−x+3)=f(x+ 3),f(6)=f(3+3)=f(−3+3)=f(0)=0,f(11)=f(−8+3)=f(−5)=−f(5)=−[f(−2+3)]=−f(1)=−1,所以f(6)+f(11)=−1,故选B.10.A【解析】由题意,可以考虑使用数形结合法,首先作出可行区域图,可以发现可行区域图是以A B=B C为腰的等腰三角形,则这两条平行线中以B C为其一条,而另一条过点A且与B C平行,此时两条平行线间的距离最小,即点A到直线B C的距离,则所求距离最小值为d==35,故选A.5点睛:此题主要考查线性规划在求最优解中的应用,属于中低档题型,也是最近几年高考的必考题型.利用线性规划求最优解的具体步骤是:1.依题意,设出变量,建立目标函数;2.列出线性约束条件;3.作出可行域(图形要准确,否则易出错);4.借助可行域确定函数的最优解.以上步骤可根据具体题目条件而定.11.C【解析】由题意知,圆心坐标为(0,0),半径为1,则=1⇒m2+n2=4,则m n≤2,而|m+n|=(m+n)2=4+2m n≤22,即−22≤m+n≤22,故选C.点睛:此题主要考查直线与圆的位置关系(相切),以及均值不等式在求参变量的取值范围中的应用等有关方面的知识,属于中档低题型,也是高频考点.判断直线与圆的位置关系常用圆心到直线的距离与圆的半径进行比较,从而得出直线与圆的位置关系;在使用均值不等式求值域时,注意:当两个正数的积为定值时,可以求它们的和的最小值,当两个正数的和为定值时,可以求它们的积的最小值,正所谓“一正,二定,三取等”.12.A>0⇒xf′(x)+f(x)>0⇒[x f(x)]′>0,所以函【解析】由题意,当x>0时,f′(x)+2f(x)x数y=x f(x)在(0,+∞)上为增函数,又函数g(x)的零点个数,可转化为方程x f(x)+1=0的根的个数,令F(x)=x f(x)+1,则F′(x)>0,所以F(x)在(0,+∞)上为单调递增函数,同理,当x<0时,F(x)在(−∞,0)上为单调递减函数,而函数y=f(x)为R上的连续可导的函数,所以x f(x)+1=0无实数根,故选A.点睛:此题主要考查导数在判断函数单调性,以及函数单调性在判断函数零点个数中的应用,属于中高档题型,也是高频考点.这里先构造函数F(x),再用导数知识确定函数F(x)的单调性,最后选择合适的区间,通过对端点的函数值符号的考察,从而确定函数零点的个数. 13.12【解析】由已知得,1+i(1−i)2=1+i−2i=−1+i2=−12+12i,所以所求复数的虚部为12.14.66【解析】由题意得,∠B A D=105°,∠B D A=45°,由正弦定理得,A Dsin∠D B A =A Bsin∠B D A⇒A D=24×sin30°sin45°=122,又D C⊥E C,且∠D B A=60°,所以C D=A D sin∠D A C=122×sin60°=66.15.2【解析】由题意,可设底面正方形A B C D的边长为a,因为O A⊥平面B D E,所以长方体对角AC1⊥A1C,则AA1=A C=2a,所以体对角线AC1=2R=a2+a2+(2a)2=2a,即a=R,又球的表面积为16π,则4πa2=16π,所以a=2,即所求底面正方形A B C D的边长为2.点睛:此题主要考查了空间立体几何中球的表面积与其内接长方体边长的关系,及其有关计算,属于中低档题型,属于高频考点.在解决此类问题中,常用到此结论:设长方体的棱长为a,b,c,其体对角线长为l,当球为长方体的外接球时,截面图为长方体的对角面和其外接圆,和正方体外接球的道理一样的,故球的半径为:R=l2=a2+b2+c22.16.66【解析】由抛物线定义,|B F|等于B到准线的距离,|B C|=2|B F|,得准线与直线l的夹角为30°,则直线l的倾斜角为60°,又|A F|=4,从而A(2+p2,23),又因为点A在抛物线上,所以(23)2=2p(2+p2)(p>0),解得p=2,即抛物线方程为y2=4x.点睛:此题主要考查抛物线定义、方程、焦点、准线等,以及直线与抛物线位置关系等有关方面的知识,属于中档题型,是高频考点.这里有几点提示:1.做题之前必须弄清不同标准对应的抛物线不现开口方向以及p的大小;2.牢记抛物线焦点弦的各种结论;3.熟练运用抛物线焦点与准线的定义对解题能起到事倍功半的效果,注意采用数形结合法. 17.(Ⅰ)见解析; (Ⅱ)n max=50.【解析】(Ⅰ)根据题目所给条件,结合所证数列通项表达式,将条件a n+1=3a n4a n+1进行变化整理成等比数列定义表达式,再验证首项,问题即可得证;(Ⅱ)由(Ⅰ)可根据等比数列前n项和公式求出S n,再由数列极限求出n的最大值.试题解析:(Ⅰ)∵1a n +1=43+13a n , ∴1a n +1−2=13a n −23=13(1a n−2), 又∵1a 1−2=−13≠0, ∴数列{1a n−2}是首项为−13公比为13的等比数列. (Ⅱ)由(Ⅰ)可求得1a n −2=−13×(13)n −1,∴1a n =2−(13)n . S n =1a 1+1a 2+⋯+1a n =2n −(13+132+⋯+13n )=2n −13−13n +11−13=2n −12+12⋅3n 若S n <100,则2n −12+12⋅3n <100,∴n max =50.18.(Ⅰ)P =35;(Ⅱ)y ^=5x −23;(Ⅲ)线性回归方程y ^=5x −23是可靠的.【解析】(Ⅰ)根据题意,采用列举法,列出5组数据任取两组的总共情况,再数出不相邻两组数据的种数,根据古典概型概率的计算公式即可求得;(Ⅱ)根据题目所给参考公式,逐一进行计算即求出线性回归方程;(Ⅲ)根据题目所给数据,分别将12月1日、12月5日的数据代入检验即可.试题解析:(Ⅰ)设五组数据依次是A 1,A 2,A 3,A 4,A 5,则取出的两组数据构成:Ω={A 1A 2,A 1A 3,A 1A 4,A 1A 5,A 2A 3,A 2A 4,A 2A 5,A 3A 4,A 3A 5,A 4A 5}其中共有10个元素.则选取的两组数据恰好不相邻这一事件为:A ={A 1A 3,A 1A 4,A 1A 5,A 2A 4,A 2A 5,A 3A 5}其中共有6个元素.∴P =610=35. (Ⅱ)∵x =11+10+123=11,y =34+26+363=32 ∴b=11×34+10×26+12×36−3×11×32112+102+122−3×112=5, 又∵b ^x +a ^=y ^,5×11+a ^=32即a ^=−23,∴线性回归方程为:y ^=5x −23(Ⅲ)∴当x =9时,y ^=5×9−23=22,这与实际值y =21比较,误差没有超过两颗,又当x =13时,y ^=5×13−23=42,而实际值y =40是,误差也没有超过两颗,∴(Ⅱ)问中得到的线性回归方程y ^=5x −23是可靠的.19.(Ⅰ)见解析; (Ⅱ) 63a .【解析】(Ⅰ)此问题为要证线面平行,可根据线面平行判定定理,只要证明直线平行于该平面内的某一直线即可,则可取B 1D 1中点O 1,连接O 1F ,只要证四边形O 1B E F 为平行四边形即可;(Ⅱ)根据题意可由三棱锥体积相等,即由V P −A D Q =V A −P D Q 进行计算,从而问题可得解.试题解析:(Ⅰ)如图,取B1D1的中点O1,连结B O1,FO1,则有FO1//__12B1C1,∴B E//__FO1.∴四边形B E FO1是平行四边形.∴E F//B O1.又E F⊄平面B B1D1D,B O1⊂平面B B1D1D,∴E F//平面B B1D1D.(Ⅱ)设点A到平面P D Q的距离为x,P Q=12D1C,三角形P D Q为等边三角形.∵体积V P−A D Q=V A−P D Q,∴13⋅12a2⋅a=13⋅22a⋅3a2⋅x,∴x=63a,即点A到平面P D Q的距离为63a.点睛:此题主要考查了空间立体几何中线面平行的证明问题,以及计算点到平面的距离等有关方面的知识,属于中档题型,也是高频考点.求点到平面的距离是立体几何中不可忽视的一个基本问题,是近几年来高考的一个热点.求点到平面的距离一般有这么几种方法:1.直接作出所求之距离,再进行计算;2.不直接作出所求之距离,间接求之,如:利用二面角的平面角;利用斜线和平面所成的角;利用三棱锥体积相等;3.不经过该点间接确定点到平面的距离,如:利用直线到平面的距离计算;利用平行平面间的距离进行计算. 20.(Ⅰ)当a>0,f(x)在区间(0,+∞)上单调递增,当a<0,f(x)在区间(0,+∞)上单调递减.(Ⅱ)(1e−1,0).【解析】(Ⅰ)由已知求出函数f(x)的定义域,再利用导数法,由参数a的取值对导数正负的影响进行分类讨论,从而判断函数f(x)的单调性;(Ⅱ)由题意,将不等式中的未知数与参数分离,再构造新函数,通过导数法求出新函数的最值,从而将问题进行转化为关于参数a的不等式,再进行求解即可.试题分析:(Ⅰ)∵f(x)=a ln x+a2x2+1,∴f(x)的定义域为(0,+∞),又f′(x)=ax +a x=a(x2+1)x∴当a>0,f′(x)>0,∴f(x)在区间(0,+∞)上单调递增,当a <0,f ′(x )<0,∴f (x )在区间(0,+∞)上单调递减. (Ⅱ)由已知f (x )>1+a2ln (−a )−12x 2,得a ln x +a +12x 2>a2ln (−a ),令g (x )=a ln x +a +12x 2,g ′(x )=(a +1)x 2+ax,x ∈(0,+∞). 当−1<a <0时,由g ′(x )>0得x 2>−aa +1,∴x >−aa +1或x <−−aa +1(舍去)∴g (x )在( −aa +1,+∞)上单调递增,在(0, −aa +1)上单调递减;当−1<a <0时,g min (x )=g ( −aa +1),即原不等式等价于g ( −aa +1)>a2ln (−a ) 即a ln−aa +1+a +12⋅−aa +1>a2ln (−a ),整理得ln (a +1)>−1,∴a >1e−1,又∵−1<a <0,∴a 的取值范围为(1e −1,0).点睛:此题主要考查了导数在判断函数单调性,以及函数最值在恒等式中求参数取值范围等有关方面的知识,属于中高档题型,也是必考题型.利用导数研究函数单调性的一般步骤:(1)确定函数的定义域;(2)求导数f ′(x );(3)①若求单调区间(或证明单调性),只需在函数f (x )的定义域内解(或证明)不等式f ′(x )>0或f ′(x )<0.②若已知f (x )的单调性,则转化为不等式f ′(x )≥0或f ′(x )≤0在单调区间上恒成立问题求解. 21.(Ⅰ)1,(Ⅱ)y =−33(x +1),即x + 3y +1=0.【解析】试题分析: (Ⅰ)根据向量数量积坐标关系得PF 1 ⋅PF 2 =x 02+y 02−1,再根据点P (x 0,y 0)在椭圆C 上,将二元问题转化为一元二次函数,最后根据对称轴及定义区间位置关系确定函数最小值,(Ⅱ)由PF 1 ⋅PF 2 =0及点P (x 0,y 0)在椭圆C 上可解出点P 坐标.由四边形PA B Q 能成为平行四边形可得|A B |=|P Q |,由直线方程与椭圆方程联立方程组,利用韦达定理可得弦长,通过解方程可得k 的值,即直线l 的方程. 试题解析:解:(Ⅰ)由题意可知,F 1(−1,0),F 2(1,0),∴PF 1 =(−1−x 0,−y 0),PF 2 =(1−x 0,−y 0)∴PF 1 ⋅PF 2 =x 02+y 02−1 ∵点P (x 0,y 0)在椭圆C 上,∴x 023+y 022=1,即y 02=2−2x 023∴PF 1 ⋅PF 2 =x 02+2−23x 02−1=13x 02+1,且− 3≤x 0≤ 3∴PF 1 ⋅PF 2 最小值1.(Ⅱ)∵PF 1 ⋅PF 2 =0,∴x 0=−1,∵y 0>0∴P (−1,2 33)设A (x 1,y 1),B (x 2,y 2). 由{y =(k +1)x 23+y 22=1得,(2+3k 2)x 2+6k 2x +3k 2−6=0,∴x 1+x 2=−6 k 22+3k ,x 1,x 2=3k 2−62+3k , ∴|x 1−x 2|= (x 1+x 2)2−4x 1x 2=4 3⋅ 1+k 2+3k 2,∴|A B |= 1+k 2⋅|x 1−x 2|=4 3⋅(1+k 2)2+3k∵P (−1.2 33),P Q //A B ,∴直线PQ 的方程为y −2 33=k (x +1).由{y −2 33=k (x +1)x 23+y22=1得,(2+3k 2)x 2+6k (k +2 33)x +3(k +2 33)2−6=0, ∵x P =−1,∴x Q =2−3k 2−4 3k 2+3k 2,∴|P Q |= 1+k 2⋅|x P −x Q |= 1+k 2⋅|4−4 3k |2+3k ,若四边形P A B Q 能成为平行四边形,则|A B |=|P Q |, ∴4 3⋅ 1+k =|4−4 3k |,解得k =− 33. ∴符合条件的直线l 的方程为y =−33(x +1),即x + 3y +1=0.点睛:解析几何中的最值是高考的热点,在圆锥曲线的综合问题中经常出现,求解此类问题的一般思路为在深刻认识运动变化的过程之中,抓住函数关系,将目标量表示为一个(或者多个)变量的函数,然后借助于函数最值的探求来使问题得以解决. 22.(Ⅰ)P (1,−1)(Ⅱ)17【解析】试题分析: (Ⅰ)利用加减消元法得C 2普通方程x +y =0,根据ρcos θ=x ,ρsin θ=y 将极坐标方程化为直角坐标方程x −y −2=0,解方程组可得点P 的直角坐标;(Ⅱ)利用平方关系消参数得C 1普通方程:x 2+(y −1)2=t 2,根据直线与圆相切得t =3 22,再根据直线与圆相交,利用韦达定理可得两根之和及两根之积,最后将|P A |2+|P B |2化为两根之和及两根之积关系,并代入求值. 试题解析:解:(Ⅰ)由曲线C 2:{x =1−22s y =−1+22s可得普通方程x +y =0.由曲线C 3:ρcos θ−ρsin θ=2可得直角坐标方程:x −y −2=0. 由{x +y =0x −y −2=0得P (1,−1),(Ⅱ)曲线C 1:{x =t c o sαy =t s i n α+1(α为参数,t >0)消去参数α可得普通方程:x 2+(y −1)2=t 2,圆C 1的圆心C 1(0,1)半径为t ,∵曲线C 1与C 2有且只有一个公共点,∴2=t ,即t =3 22,设A (x 1,−x 1),B (x 2,−x 2)联立{x +y =0x 2+(y −1)2=92得4x 2+4x −7=0,∴x 1+x 2=−1,x 1x 2=−74∴|P A |2+|P B |2=2(x 1−1)2+2(x 2−1)2=2(x 12+x 22)−4(x 1+x 2)+4=2(x 12+x 22)−4(x 1+x 2)−4x 1x 2+4=17. 23.(Ⅰ)m =2(Ⅱ)94【解析】试题分析: (Ⅰ)根据绝对值定义将函数化为三段,分别求出各段上的最小值,最后取三个最小值的最小值,作为m 的值;(Ⅱ)根据条件可得所求式子中两个分母的和为定值4,利用1的代换方法,将式子转化:14[5+b 2+1a 2+1+4(a 2+1)b 2+1],最后根据基本不等式求最值.试题解析:解:(Ⅰ)当x ≤−1时,f (x )=−3x −1≥2当−1<x <1时,f (x )=x +3>2 当x ≥1时,f (x )=3x +1≥4∴当x =−1时,f (x )取得最小值m =2(Ⅱ)由题意知a 2+b 2=2,a 2+1+b 2+1=4∴1a 2+1+4b 2+1=14(a 2+1+b 2+1)(1a 2+1+4b 2+1) =14[5+b 2+1+1+4(a 2+1)+1]≥94 当且仅当b 2+1a +1=4(a 2+1)b +1时,即a 2=13,b 2=53等号成立,∴1a +1+4b +1的最小值为94.。

2016-2017学年重庆八中高三(上)入学数学试卷(理科)(解析版)

2016-2017学年重庆八中高三(上)入学数学试卷(理科)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)已知集合M={y|y=2x,x>0},N={x|y=lg(2x﹣x2)},则M∩N为()A.(1,2)B.(1,+∞)C.[2,+∞)D.[1,+∞)2.(5分)已知复数z=,则在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.(5分)已知向量,满足||=,•=1,则||=()A.B.2C.D.104.(5分)曲线y=e ax+在点(0,2)处的切线与直线y=x+3平行,则a=()A.1B.2C.3D.45.(5分)下列命题正确的是()A.命题“∃x∈R,使得x2﹣4<0”的否定是“∀x∈R,均有x2﹣4>0”B.命题“若x≠1,则x2≠1”的否命题是“x=1,则x2=1”C.命题“存在四边相等的四边形不是正方形”是假命题D.命题“若cos x=cos y,则x=y”的逆否命题是真命题6.(5分)若函数f(x)=sinωx(ω>0)在区间[,]上递减,则ω=()A.B.C.2D.37.(5分)已知奇函数f(x)在(0,+∞)上单调递增,且f(2)=0,则不等式≥0的解集为()A.[﹣2,0)∪(0,2]B.[﹣2,0)∪[2,+∞)C.(﹣∞,2]∪(0,2]D.(﹣∞,﹣2]∪[2,+∞)8.(5分)已知函数f(x)=x2+bx的图象在点A(1,f(1))处的切线l与直线3x﹣y+2=0平行,若数列{}的前n项和为S n,则S2014的值为()A.B.C.D.9.(5分)如图,AB是圆O的直径,P是圆弧上的点,M,N是直径AB上关于O对称的两点,且AB=4,MN=2,则•等于()A.3B.5C.6D.710.(5分)已知数列{a n},{b n}都是等差数列,S n,T n分别是它们的前n项和,且,则的值为()A.B.C.D.11.(5分)若函数y=mlnx(m>0)的图象与函数y=的图象有两个不同的交点,则实数m的取值范围为()A.(1,)B.(,e)C.(e,+∞)D.(,+∞)12.(5分)已知函数f(x)=x3+x2+cx+d(a<b)在R上单调递增,则的最小值为()A.1B.3C.4D.9二、填空题(本大题共4小题,每小题5分,共20分,把答案填写在答题卡相应位置上)13.(5分)(2x+)dx=.14.(5分)等比数列{a n}的前n项和为S n,且4a1,2a2,a3成等差数列.若a1=1,则S4=.15.(5分)在△ABC中,A、B、C所对边分别为a、b、c.若,则A=.16.(5分)设函数f(x)=x3+x,x∈R,若0<θ<时,不等式f(m sinθ)+f(1﹣m)>0恒成立.则实数m的取值范围是.三、解答题(共70分,解答时应写出文字说明,证明过程或演算步骤)17.(12分)已知数列{a n}的前n项和为S n,a1=1,且na n+1=2S n(n∈N*),数列{b n}满足b1=,b2=,对任意n∈N+,都有b n+12=b n•b n+2(I)求数列{a n},{b n}的通项公式;(II)设{a n b n}的前n项和为T n,若T n>对任意的n∈N+恒成立,求λ得取值范围.18.(12分)某高校在上学期依次举行了“法律、环保、交通”三次知识竞赛活动,要求每位同学至少参加一次活动.该高校2014级某班50名学生在上学期参加该项活动的次数统计如图所示.(1)从该班中任意选两名学生,求他们参加活动次数不相等的概率.(2)从该班中任意选两名学生,用ξ表示这两人参加活动次数之差的绝对值,求随机变量ξ的分布列及数学期望Eξ.(3)从该班中任意选两名学生,用η表示这两人参加活动次数之和,记“函数f(x)=x2﹣ηx﹣1在区间(3,5)上有且只有一个零点”为事件A,求事件A发生的概率.19.(12分)如图所示的一个几何体A1D1﹣ABCD中,底面ABCD为一个等腰梯形,AD∥BC且AD=,BC=2,对角线AC⊥BD,且交于点O,正方形ADD1A1垂直于底面ABCD.(1)试判断D1O是否平行于平面AA1B,并证明你的结论;(2)求二面角B﹣A1C﹣A的余弦值.20.(12分)已知抛物线C的标准方程为y2=2px(p>0),M为抛物线C上一动点,A(a,0)(a≠0)为其对称轴上一点,直线MA与抛物线C的另一个交点为N.当A为抛物线C的焦点且直线MA与其对称轴垂直时,△MON的面积为.(Ⅰ)求抛物线C的标准方程;(Ⅱ)记t=,若t值与M点位置无关,则称此时的点A为“稳定点”,试求出所有“稳定点”,若没有,请说明理由.21.(12分)已知函数f(x)=x2﹣2x+alnx(a∈R).(1)讨论函数f(x)的单调性;(2)若函数f(x)有两个极值点x1,x2(x1<x2),且不等式f(x1)≥mx2恒成立,求实数m的取值范围.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分,作答时,请写清题号[选修4-1:几何证明选讲]22.(10分)已知AB为半圆O的直径,AB=4,C为半圆上一点,过点C作半圆的切线CD,过点A作AD⊥CD于D,交半圆于点E,DE=1.(Ⅰ)求证:AC平分∠BAD;(Ⅱ)求BC的长.[选修4-4:坐标系与参数方程]23.已知曲线C的极坐标方程是ρ=2cosθ,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线L的参数方程是(t为参数).(1)求曲线C的直角坐标方程和直线L的普通方程;(2)设点P(m,0),若直线L与曲线C交于A,B两点,且|P A|•|PB|=1,求实数m的值.[选修4-5:不等式选讲]24.已知m≥0,函数f(x)=2|x﹣1|﹣|2x+m|的最大值为3.(Ⅰ)求实数m的值;(Ⅱ)若实数a,b,c满足a﹣2b+c=m,求a2+b2+c2的最小值.2016-2017学年重庆八中高三(上)入学数学试卷(理科)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.【解答】解:M={y|y>1},N中2x﹣x2>0∴N={x|0<x<2},∴M∩N={x|1<x<2},故选:A.2.【解答】解:∵z===﹣i,∴=+i,∴在复平面内对应的点为.∴在复平面内对应的点位于第一象限.故选:A.3.【解答】解:由已知得|﹣|2=(﹣)2=2+2﹣2•=2+2﹣2=6,即2+2=8,即有|+|2=(+)2=2+2+2•=8+2=10,即.故选:C.4.【解答】解:由y=e ax+,得,∵曲线y=e ax+在点(0,2)处的切线与直线y=x+3平行,∴y'|x=0=a﹣1=1,∴a=2.故选:B.5.【解答】解:A.命题“∃x∈R,使得x2﹣4<0”的否定应为“∀x∈R,均有x2﹣4≥0”;B.根据否命题的定义知该选项正确;C.存在四边相等的四边形不一定为正方形,可以为空间四边形,所以该命题为真命题;D.若cos x=cos y得不到x=y,x=2π﹣y也可以,所以该命题为假命题,∴它的逆否命题为假命题.故选:B.6.【解答】解:函数f(x)=sinωx(ω>0)在区间[,]上递减,∴=kπ+,k∈Z,解得ω=3k+,k∈Z,又ω>0,∴ω的最小值是.故选:B.7.【解答】解:∵奇函数f(x)在(0,+∞)上为增函数,又f(2)=0,∴函数f(x)在(﹣∞,0)上为增函数,且f(﹣2)=﹣f(2)=0,∴函数f(x)的图象如图,则不等式不等式≥0等价为,等价为x>0时,f(x)≤0,此时0<x≤2.当x<0时,f(x)≥0,此时﹣2≤x<0,即不等式的解集是:[﹣2,0)∪(0,2].故选:A.8.【解答】解:∵f(x)=x2+bx,∴f′(x)=2x+b∵直线3x﹣y+2=0的斜率为k=3,函数f(x)=x2+bx的图象在点A(1,f(1))处的切线l与直线3x﹣y+2=0平行,∴f′(1)=2+b=3,解得b=1,∴f(x)=x2+x,∴a n===,∴S n=(1﹣)+(﹣)+…+(﹣)=1﹣=,∴S2014=.故选:B.9.【解答】解:以O为原点,以AB为x轴建立坐标系,则M(﹣1,0),N(1,0),设P(2cosα,2sinα),∴=(﹣1﹣cosα,﹣2sinα),=(1﹣2cosα,﹣2sinα),∴=(﹣1﹣2cosα)(1﹣2cosα)+4sin2α=4cos2α﹣1+4sin2α=3,故选:A.10.【解答】解:=═==.故选:D.11.【解答】解:令b=>1,则y=mlnx==log b x;y==b x,即函数y=mlnx(m>0)与y=互为反函数,且为增函数,两函数图形关于直线y=x对称,故其有两个交点等价于y=log b x与y=x有两个交点,即函数f(x)=log b x﹣x有两个零点,由f'(x)=,当0<x<log b e时,f'(x)>0;当x>log b e时,f'(x)<0;故f(x)max=f(log b e),所以f(log b e)>0;即:log b(log b e)>log b e⇒>e;⇒e>b e⇒e>;解得:m>e;故选:C.12.【解答】解:f′(x)=ax2+bx+c.∵三次函数f(x)=++cx+d(a<b)在R上单调递增,∴f′(x)≥0在R上恒成立(不恒等于0),∴,即a>0,b2≤4ac,∴,∴=,令,=(当且仅当t=4,即b=4a=4c时取“=”)故选:B.二、填空题(本大题共4小题,每小题5分,共20分,把答案填写在答题卡相应位置上)13.【解答】解:∵(lnx)′=,(x2)′=2x,∴=x2|1e+lnx|1e=e2﹣1+lne﹣ln1=e2故答案为:e214.【解答】解:∵2a2﹣4a1=a3﹣2a2,∴2q﹣4=q2﹣2q,q2﹣4q+4=0,q=2,∴a1=1,a2=2,a3=4,a4=8,∴S4=1+2+4+8=15.答案:1515.【解答】解:已知等式变形得:1+======﹣=﹣,∴cos A=﹣,则A=.故答案为:16.【解答】解:∵f(x)=x3+x,∴f(﹣x)=(﹣x)3+(﹣x)=﹣x3﹣x=﹣f(x),∴函数f(x)=x3+x为奇函数;又f′(x)=3x2+1>0,∴函数f(x)=x3+x为R上的单调递增函数.∴f(m sinθ)+f(1﹣m)>0恒成立⇔f(m sinθ)>﹣f(1﹣m)=f(m﹣1)恒成立,∴m sinθ>m﹣1(0<θ<)恒成立⇔m(1﹣sinθ)<1恒成立,由0<θ<知,0<sinθ<1,0<1﹣sinθ<1,>1由m<恒成立知:m≤1.∴实数m的取值范围是(﹣∞,1].故答案为:(﹣∞,1].三、解答题(共70分,解答时应写出文字说明,证明过程或演算步骤)17.【解答】解:(Ⅰ)∵na n+1=2S n,∴(n﹣1)a n=2S n﹣1(n≥2),两式相减得,na n+1﹣(n﹣1)a n=2a n,∴na n+1=(n+1)a n,即=(n≥2),又因为a1=1,a2=2,从而=2,∴a n=1××…×=n(n≥2),故数列{a n}的通项公式a n=n(n∈N*).在数列{b n}中,由b n+12=b n•b n+2,知数列{b n}是等比数列,首项、公比均为,∴数列{b n}的通项公式b n=;(Ⅱ)∵T n=a1b1+a2b2+…+a n b n =+2×()2+…+n ×①∴T n =()2+2×()3+…+(n﹣1)×+n ×()n+1②由①﹣②,得T n =+()2+()3+…+﹣×()n+1=1﹣,∴T n=2﹣,T n >对任意的n∈N+恒成立,λ>对任意的n∈N+恒成立,设f(n )=,f(n)﹣f(n﹣1)=<0,则f(n)在[1,+∞)上单调递减,f(n)≤f(1)=3恒成立,则λ>3满足条件.综上所述,实数λ的取值范围是(3,+∞).18.【解答】解:(1)从该班任取两名学生,他们参加活动的次数恰好相等的概率:P ==,故P=1﹣=.(2)从该班中任选两名学生,用ξ表示这两学生参加活动次数之差的绝对值,则ξ的可能取值分别为:0,1,2,于是P(ξ=0)=,P(ξ=1)==,P(ξ=2)==,从而ξ的分布列为:Eξ=0×+1×+2×=.(3)因为函数f(x)=x2﹣ηx﹣1 在区间(3,5)上有且只有一个零点,则f(3)⋅f(5)<0,即:(8﹣3η)(24﹣5η)<0,∴<η<,又由于η的取值分别为:2,3,4,5,6,故η=3或4,故所求的概率为:P(A)==.19.【解答】解:∵底面ABCD为一个等腰梯形,AD∥BC且AD=,BC=2,对角线AC⊥BD,∴OA=OD=1,OB=OC=2,建立以O为坐标原点,OB,OC为x,y轴的空间直角坐标系如图:则B(2,0,0),C(0,2,0),A(0,﹣1,0),D(﹣1,0,0),A1(0,﹣1,),D1(﹣1,0,),则=(﹣1,0,),=(0,0,),=(2,1,﹣),若D1O平行于平面AA1B,则存在x,y有=x+y,即(﹣1,0,)=x(0,0,)+y(2,1,﹣),即,得,此时方程无解,即D1O不平行于平面AA1B.(2)=(0,3,﹣),=(2,1,﹣),则平面A1CA的法向量为=(1,0,0),设平面BA1C的法向量为=(x,y,z),则由•=0,•=0,得,令z=,则y=,x=,即=(,,),则cos<,>=====,即二面角B﹣A1C﹣A的余弦值是.20.【解答】解:(I)∵当A为抛物线C的焦点且直线MA与其对称轴垂直时,△MON的面积为.∴S△MON=×2p==,解得p=3.∴抛物线C的标准方程为y2=6x.(II)设M(x1,y1),N(x2,y2),直线MN的方程为:x=my+a,联立.化为y2﹣6my﹣6a=0,△>0,y1+y2=6m,y1y2=﹣6a.由对称性,不妨设m>0.(i)a<0时,∵y1y2=﹣6a>0,∴y1,y2同号.又t==+,∴t2===,不论a取何值,t值与M点位置有关,即此时的点A不为“稳定点”.(ii)a>0时,∵y1y2=﹣6a<0,∴y1,y2异号.又t==+,∴t2===•=,∴仅当﹣1=0时,即a=时,t与m无关,此时A即为抛物线的焦点,因此抛物线对称轴上仅有焦点一个“稳定点”.21.【解答】解:(1)f′(x)=2x﹣2+=(x>0),令f'(x)=0,得2x2﹣2x+a=0,①当△=4﹣8a≤0,即a≥时,f'(x)≥0,函数f(x)在(0,+∞)上单调递增;②当△=4﹣8a>0即a<时,由2x2﹣2x+a=0,得x=,由f'(x)>0,得0<x<或x>,由f'(x)<0,得<x<,a≤0时,≤0,f(x)在(0,)递减,在(,+∞)递增,0<a<时,得>0,f(x)在(0,)递减,在(,)递增,在(,+∞)递减;综上,当a≥时,f(x)的单调递增区间是(0,+∞);当0<a<时,f(x)的单调递增区间是(0,),(,+∞),单调递减区间是(,);a≤0时,f(x)在(0,)递减,在(,+∞)递增;(2)函数f(x)在(0,+∞)上有两个极值点,由(1)可得0<a<,由f'(x)=0,得2x2﹣2x+a=0,则x1+x2=1,x1=,x2=,由0<a<,可得0<x1<,<x2<1,=1﹣x1++2x1lnx1,令h(x)=1﹣x++2xlnx,(0<x<),h′(x)=﹣1﹣+2lnx,由0<x<,则﹣1<x﹣1<﹣,<(x﹣1)2<1,﹣4<﹣<﹣1,又2lnx<0,则h′(x)<0,即h(x)在(0,)递减,即有h(x)>h()=﹣﹣ln2,即>﹣﹣ln2,即有实数m的取值范围为(﹣∞,﹣﹣ln2].请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分,作答时,请写清题号[选修4-1:几何证明选讲]22.【解答】(Ⅰ)证明:连接OC,因为OA=OC,所以∠OAC=∠OCA,(2分)因为CD为半圆的切线,所以OC⊥CD,又因为AD⊥CD,所以OC∥AD,所以∠OCA=∠CAD,∠OAC=∠CAD,所以AC平分∠BAD.(4分)(Ⅱ)解:由(Ⅰ)知,∴BC=CE,(6分)连接CE,因为ABCE四点共圆,∠B=∠CED,所以cos B=cos∠CED,(8分)所以,所以BC=2.(10分)[选修4-4:坐标系与参数方程]23.【解答】解:(1)曲线C的极坐标方程是ρ=2cosθ,化为ρ2=2ρcosθ,可得直角坐标方程:x2+y2=2x.直线L的参数方程是(t为参数),消去参数t可得.(2)把(t为参数),代入方程:x2+y2=2x化为:+m2﹣2m=0,由△>0,解得﹣1<m<3.∴t1t2=m2﹣2m.∵|P A|•|PB|=1=|t1t2|,∴m2﹣2m=±1,解得,1.又满足△>0.∴实数m=1,1.[选修4-5:不等式选讲]24.【解答】解:(Ⅰ)f(x)=2|x﹣1|﹣|2x+m|=|2x﹣2|﹣|2x+m|≤|(2x﹣2)﹣(2x+m)|=|m+2|∵m≥0,∴f(x)≤|m+2|=m+2,当x=1时取等号,∴f(x)max=m+2,又f(x)的最大值为3,∴m+2=3,即m=1.(Ⅱ)根据柯西不等式得:(a2+b2+c2)[12+(﹣2)2+12]≥(a﹣2b+c)2,∵a﹣2b+c=m=1,∴,当,即时取等号,∴a2+b2+c2的最小值为.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、 选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为
A 、
B 、
C 、
D 的四个答案,其中只有一个是正确的。

1.下列运算正确的是( )。

A .a 2·a 3=a 6 B.a 8÷a 4=a 2 C.a 3+a 3=2a 6 D.(a 3)2=a 6
2. 下列几何体的主视图是三角形的是( )
4. 如果关于x 的一元二次方程220x kx -+=中,k 是投掷骰子所得的数字(1,2,3,4,5,6),则该二次方程有两个不等实数根的概率P = ( )
A . 23
B .12
C . 13
D . 16
5. 一列货运火车从重庆北站出发,匀加速行驶一段时间后开始匀速行驶,过了一段时间,火车到达下一个车站停下,装完货以后,火车又匀加速行驶,一段时间后再次开始匀速行驶,可以近 . . . .
A .
B .
C .
D .
A .3或5
B .5
C .4或5
D .4
9. 如图,在矩形ABCD 中,AB=1,BC=2,将其折叠使AB 落在对角线AC 上,得到折痕AE ,那么
10. 如图,点A 反比例函数2y x
=-在第二象限内图象上一点,点B 是反 比例函数4y x
=在第一象限内图象上一点,直线AB 与y 轴交于点C , 且AC =BC ,连接OA 、OB ,则△AOB 的面积是( )
A .2
B .52
C .3
D .72
二、填空题(本大题6个小题,每小题4分,共24分)
11.集合试题
12. 已知x 1,x 2是方程x 2+3x ﹣4=0的两个根,那么:两个相减的绝对值x 21+x 22=

13. 如右图,AB 是⊙O 的直径,点C 在AB 的延长线上,CD 切⊙O 于点D ,
连接AD ,若∠A =25°,则∠C = .度.
14. 此题简单在平面直角坐标系中,已知一次函数21y x =+的图像经过111(,)P x y ,222(,)P x y 两点,若12x x <,则1y 2y .(填“<”、“>”或“=”)
15. 如图.在正方形ABCD 的边长为3,以A 为圆心,2为半径作圆弧.以D 为圆心,3为半径作圆弧.若图中阴影部分的面积分为S 1、S 2.则S 1-S 2= .
16. 对于平面直角坐标系中任意两点P 1(x 1,y 1)、P 2(x 2,y 2),
称|x 1-x 2|+|y 1-y 2|为P 1、P 2两点的直角距离,记作:d (P 1,P 2).
若P 0(x 0,y 0)是一定点,Q (x ,y )是直线y=kx+b 上的一动点,
称d (P 0,Q )的最小值为P 0到直线y=kx+b 的直角距离.
令P 0(2,-3),O 为坐标原点.则:
(1)d (O ,P 0)= .
(2)若P (a ,-3)到直线y=x+1的直角距离为6,则a= .
三、解答题(本大题3个小题,共19分)
17.(5分)解不等式组:()245132216x x x x --⎧>-⎪⎨⎪+-≤⎩
,并把解集在数轴上表示出来.
18.(7分)如图,在△ABC 中,AB=AC ,四边形ADEF 是菱形,求证:BE=CE .
19.(7分)
四、解答题(本大题6个小题,共67分)
20.(7分)先化简,再求值:已知12+=x ,求x
x x x x x x 112122÷⎪⎭⎫
⎝⎛+---+的值.
21.(10分)袋子中装有2个红球,1个黄球,它们除颜色外其余都相同.小明和小英做摸球游戏,约定一次游戏规则是:小英先从袋中任意摸出1个球记下颜色后放回,小明再从袋中摸出1个球记下颜色后放回,如果两人摸到的球的颜色相同,小英赢,否则小明赢.
(1)请用树状图或列表格法表示一次游戏中所有可能出现的结果; (2)这个游戏规则对双方公平吗?请说明理由.
23.(12分)已知关于x的方程x 2-(2k+1)x+4(k- 12
)=0. (1)求证:无论k 取何值,这个方程总有实数根;知识点考重了,可在范围下求最值
(2)若等腰三角形ABC 的一边长a=4,另两边的长b 、c 恰好是这个方程的两个根,求三角形ABC 的周长.
24.(12分)在江北服装批发市场,某种品牌的时装当季节将来临时,价格呈上升趋势,设这种时装开始时定价为20元/件(第1周价格),并且每周价格上涨,如图示,从第6周开始到第11周保持30元/件的价格平稳销售;从第12周开始,当季节即将过去时,每周下跌,直到第16周周末,该服装不再销售。

⑴求 销售价格y (元/件)与周次x 之间的函数关系式;
⑵若这种时装每件进价Z (元/件)与周次x 次之间的关系为Z =()128125.02+--x (1≤x ≤16),且x 为整数,试问该服装第几周出售时,每件销售利润最大?最大利润为多少?
25. (12分) 如图,直线y=-x+3与x ,y 轴分别交于点A ,B ,与反比例函数的图象交于点P (2,
1).
(1)求该反比例函数的关系式;
(2
)设PC ⊥y 轴于点C ,点A 关于y 轴的对称点为A′;
①求△A′BC 的周长和sin ∠BA′C 的值;
②对大于1的常数m ,求x 轴上的点M 的坐标,使得sin ∠BMC=
1m
.可以
26.(14分)已知抛物线2213188
y x mx m m =++-与x 轴交于1212(,0),(,0),()A x B x x x <两点,与y 轴交于点C (0,b ),O 为原点.
(1)求m 的取值范围;
(2)若118
m >且OA+OB=3OC ,求抛物线的解析式及A 、B 、C 的坐标. (3)在(2)的情形下,点P 、Q 分别从A 、O 两点同时出发以相同的速度沿AB 、OC 向B 、C 运动,联结PQ 与BC 交于M ,设AP=k ,问是否存在k ,使以P 、B 、M 为顶点的三角形与⊿ABC 相似.若存在,求所有的k 值,若不存在说明理由.。

相关文档
最新文档