初中数学常用的解题方法总结
数学解题10种常用的方法

数学的解题方法是随着对数学对象的研究的深入而发展起来的。
教师钻研习题、精通解题方法,可以促进教师进一步熟练地掌握中学数学教材,练好解题的基本功,提高解题技巧,积累教学资料,提高业务水平和教学能力。
下面介绍的解题方法,都是初中数学中最常用的,有些方法也是中学教学大纲要求掌握的。
1、配方法所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。
通过配方解决数学问题的方法叫配方法。
其中,用的最多的是配成完全平方式。
配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。
2、因式分解法因式分解,就是把一个多项式化成几个整式乘积的形式。
因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。
因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。
3、换元法换元法是数学中一个非常重要而且应用十分广泛的解题方法。
我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
4、判别式法与韦达定理一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。
韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。
5、待定系数法在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。
初中数学需要掌握的解题方法和思路

解题方法1、几何变换法在数学问题的研究中,常常运用变换法,把复杂性问题转化为简单性的问题而得到解决。
所谓变换是一个集合的任一元素到同一集合的元素的一个一一映射。
中学数学中所涉及的变换主要是初等变换。
有一些看来很难甚至于无法下手的习题,可以借助几何变换法,化繁为简,化难为易。
另一方面,也可将变换的观点渗透到中学数学教学中。
将图形从相等静止条件下的研究和运动中的研究结合起来,有利于对图形本质的认识。
几何变换包括:(1)平移;(2)旋转;(3)对称。
2、面积法平面几何中讲的面积公式以及由面积公式推出的与面积计算有关的性质定理,不仅可用于计算面积,而且用它来证明平面几何题有时会收到事半功倍的效果。
运用面积关系来证明或计算平面几何题的方法,称为面积方法,它是几何中的一种常用方法。
用归纳法或分析法证明平面几何题,其困难在添置辅助线。
面积法的特点是把已知和未知各量用面积公式联系起来,通过运算达到求证的结果。
所以用面积法来解几何题,几何元素之间关系变成数量之间的关系,只需要计算,有时可以不添置补助线,即使需要添置辅助线,也很容易考虑到。
3、反证法反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。
反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。
用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。
反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一个/一个也没有;至少有n个/至多有(n一1)个;至多有一个/至少有两个;唯一/至少有两个。
归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。
2024年初中数学做题技巧和方法总结

2024年初中数学做题技巧和方法总结
1. 仔细阅读题目:在做数学题时,要仔细阅读题目,理解题目所给条件和要求。
在阅读过程中,可使用画图、标明已知量等方式帮助理解问题。
2. 确定解题思路:在阅读完题目后,要思考解题思路。
可以根据题目性质和已经学过的知识,考虑用何种方法解决问题。
可以尝试运用公式、图形展开、推理等方法进行解题。
3. 小题先做:在解题过程中,如果遇到了多个小题,可以先从容易的小题开始做起。
这样可以提高解题效率和信心,也能够节省时间。
4. 多画图:对于一些需要形象表示的问题,尤其是几何图形的题目,可以多画图,帮助理解题目和找到解题的方法。
5. 分类讨论:对于一些复杂的题目,可以根据不同情况进行分类讨论,然后逐个解决。
这样可以将问题简化,提高解题效率。
6. 考虑反证法:在解题过程中,如果无法直接找到解答,可以考虑使用反证法。
例如,假设该问题的对立面成立,然后推导出矛盾的结论,从而得出正确答案。
7. 反复检查:在解题完毕后,要及时对答案进行反复检查,确保答案的正确性。
可以将答案代入原题或采用其他方法进行验证。
总之,做好数学题目需要细心、有耐心、方法灵活。
希望以上的方法和技巧对你有所帮助。
2024年初中数学常用的解题方法总结

2024年初中数学常用的解题方法总结随着教育改革的不断推进,初中数学的教学方法也在不断创新和发展。
2024年,在初中数学的教学中,常用的解题方法继续丰富多样,以适应学生的学习需求和培养他们的问题解决能力。
下面将对2024年初中数学常用的解题方法进行总结,以便学生们更好地学习和掌握这些方法。
一、数学思维方法1. 归纳法:通过观察和分析一系列具有相同特征的数学现象,总结出共同的规律和特性,进而应用于解决其他问题。
2. 演绎法:从已知的定理或条件出发,运用严密的逻辑推理,推出所要证明的结论。
3. 反证法:假设所要证明的结论不成立,通过推理得出一个矛盾的结论,从而证明所要证明的结论成立。
二、方程解题方法1. 移项法:通过变换方程,使含有未知数的项移到一个方程的一边,从而得到一个简化的方程。
2. 分类讨论法:根据问题的不同情况,分别列出各种可能的方程,再逐个解决,最后得出符合题意的解。
3. 代入法:将一个已知的值代入方程中,验证是否满足方程式,从而确定方程的解。
4. 消元法:通过将两个等式相加或相减,消去其中的某些项,从而得到一个简化的方程。
5. 图解法:将方程转化为图形,并通过观察图形的交点,确定方程的解。
三、几何解题方法1. 观察法:通过观察图形、图表等几何元素的特点和规律,找出问题的关键点,从而顺利解题。
2. 计算法:通过运用几何公式和定理,进行计算和推理,解决几何问题。
3. 对称法:通过利用图形的对称性质,将问题转化为对称图形的性质,从而解决问题。
4. 分割法:将复杂的几何图形进行分割,转化为若干简单的几何图形,从而解决问题。
5. 抽象法:把复杂的几何图形或问题进行简化、抽象,从而将问题转化为一个更简单的问题,更容易解决。
四、统计与概率解题方法1. 表格法:将统计数据整理成表格,通过观察表格中的数据规律,进行解题。
2. 频数图解法:将统计数据用频数图表示,通过观察频数图的形状和特点,进行解题。
3. 概率模型法:根据问题的条件,建立相应的概率模型,然后运用概率知识进行计算,解决概率问题。
初中数学常用的解题方法总结

初中数学常用的解题方法总结数学作为一门理科学科,对于大多数初中生来说,往往是一个令人头疼的难题。
然而,对于解题方法的掌握是成功应对数学难题的关键。
本文将总结初中数学中常用的解题方法,希望可以帮助同学们更好地应对数学题目。
一、代数ic 1:变量法变量法是解决代数题目常用的方法之一。
当遇到一些相对复杂的代数问题时,我们可以通过引入未知数来建立方程,然后解方程来确定未知数的值。
例如,假设题目中有这样一个问题:某个数的一半等于另一个数,这两个数的和是30。
我们可以假设其中一个数为x,那么另一个数就是2x。
于是我们可以得到这样一个方程:x + 2x = 30,通过解方程我们可以求得x的值,进而得到另一个数的值。
变量法在解决带有未知数的问题时非常有用,它能够将问题转化为数学方程,从而更好地理解问题并得到解答。
二、几何ic 1:图形分析法图形分析法是几何题中常用的解题方法之一。
当遇到与图形相关的问题时,我们可以通过绘制图形、分析图形特征和利用几何定理来解决问题。
例如,假设题目中有这样一个问题:一条平行于底边的直线将一个三角形划分成两个等面积的小三角形,求这个直线与底边的交点。
通过绘制图形我们可以发现,这条直线必须是中位线,即底边中点与顶点所连线段,然后利用中位线的性质我们可以得到直线与底边的交点。
图形分析法在几何题中非常有用,它可以帮助我们更好地理解和分析题目中的图形,并通过几何定理来解决问题。
三、概率ic 1:事件法在概率问题中,我们常常需要通过统计事件发生的频率来确定概率。
事件法是解决概率问题的一种常用方法。
例如,假设题目中有这样一个问题:一个骰子被投掷了100次,出现1的次数是20次,求投掷出1的概率。
我们可以通过统计事件发生的次数和总次数来确定概率,即:20/100=0.2,所以投掷出1的概率是0.2。
事件法在解决概率问题中非常实用,通过统计事件发生的次数可以更好地确定概率,并解决与概率相关的问题。
四、整数ic 1:分析法分析法是解决整数问题的常用方法之一。
初中数学常用的10种解题方法

初中数学常用的10种解题方法初中数学是基础课程之一,它的内容是我们学习高中数学和大学数学的基础。
在初中数学的学习当中,同学们需要掌握一些解题技巧和方法,这些方法不仅有助于我们学习初中数学的内容,更有助于我们在以后的学习中更快、更好地解决数学问题。
下面,本文将介绍初中数学常用的10种解题方法。
一、分类讨论法分类讨论法是指将一个问题划分为几个易于解决的小问题,然后分别解决,最后综合考虑各种情况得出答案。
这种方法在解决综合题时尤其常用,它可以帮助我们快速地解决各种复杂的数学问题。
二、画图解法画图解法是指在解题时,根据题目中提供的信息,用图形的方式来辅助解题。
这种方法可以帮助我们理解和记忆题目中的几何概念和规律,有效地解决几何题。
三、代数运算法代数运算法是指根据代数运算法则,将数学问题转化为代数方程或不等式,然后应用代数运算求解。
这种方法在解决方程、不等式等代数问题时非常有效。
四、反证法反证法是指假设命题不成立,通过推理得出推论与已知矛盾,从而证明原命题成立。
这种方法在解决证明题时非常有效。
五、应用选取法应用选取法是指根据题目中给定的条件,选择合适的公式或定理来解决问题。
这种方法在解决应用题时尤为重要,可以帮助我们快速地找到正确的解题方向。
六、PQRST法PQRST法是指问题、翻译、求解、检查和思考五个步骤。
这种方法在解决数学问题时非常实用,可以帮助我们系统性地分析和解决问题。
七、求和公式法求和公式法是指根据数列的通项公式和求和公式,快速求出数列的和。
这种方法在解决等差数列、等比数列等数列问题时非常有效。
八、分数展开法分数展开法是指将一个分数展开为若干个分式之和,这样可以简化计算。
这种方法在解决分数问题时非常实用。
九、比例法比例法是指根据两个或多个变量之间的比值关系,求出未知量。
这种方法在解决比例题时非常有效。
十、三角函数法三角函数法是指根据三角函数的性质,快速求解三角函数的值。
这种方法在解决三角函数问题时非常实用。
2024年初中数学常用的解题方法总结
2024年初中数学常用的解题方法总结2024年,初中数学解题方法的总结在未来的2024年,随着科技的进步和教育的发展,初中数学解题方法也将不断发展和改进。
以下是对2024年初中数学常用的解题方法的总结,内容包括推理和证明、问题拆解、模型建立和解决、技巧和方法等。
一、推理和证明在数学中,推理和证明是解题的核心,也是培养学生逻辑思维和分析问题能力的重要手段。
2024年,初中数学教育将更加注重培养学生的推理和证明能力,并将其作为考试和评价的重点。
1. 归纳法:归纳法是一种通过已知的事实来推断出结论的方法。
在2024年,初中数学教育中将更加突出归纳法在解题中的应用,通过观察、总结规律和归纳,帮助学生快速解决问题。
2. 反证法:反证法是一种通过假设否定结论,然后通过推理来推导出矛盾,从而证明结论的正确性的方法。
在2024年的初中数学教育中,反证法将被广泛运用于解题中,培养学生的逻辑思维和证明能力。
3. 数学归纳法:数学归纳法是数学中常用的证明方法之一,通过证明基本情况成立以及由n-1情况成立可推出n情况成立,最终证明结论的正确性。
在2024年,数学归纳法将继续成为初中数学教育中的重要内容。
二、问题拆解解题时,合理拆解问题是解决复杂问题的关键。
在2024年的初中数学教育中,将强调培养学生的问题拆解能力,通过将复杂问题拆解成简单的小问题,有序地解决每一个小问题,最终解决整个问题。
1. 分析问题:在解决问题之前,必须先仔细阅读题目,并进行问题分析。
分析问题是将一个大问题分解成若干个小问题,明确解决每一个小问题的方法和步骤,最终达到整体解决大问题的目的。
2. 逻辑推理:在问题拆解过程中,学生需要运用逻辑推理,根据题目提供的条件和要求,推断出问题的关键信息,并运用数学知识进行分析和解决。
三、模型建立和解决在解决实际问题时,建立数学模型是一个有效的解题方法。
2024年的初中数学教育将重点培养学生的模型建立和解决问题的能力,通过将实际问题抽象成数学模型,运用数学方法解决问题。
史上最全的初中数学解题方法大全
一、选择题的解法1、直接法:根据选择题的题设条件,通过计算、推理或判断,最后得到题目的所求。
2、特殊值法:(特殊值淘汰法)有些选择题所涉及的数学命题与字母的取值范围有关;在解这类选择题时,可以考虑从取值范围内选取某几个特殊值,代入原命题进行验证,然后淘汰错误的,保留正确的。
3、淘汰法:把题目所给的四个结论逐一代回原题的题干中进行验证,把错误的淘汰掉,直至找到正确的答案。
4、逐步淘汰法:如果我们在计算或推导的过程中不是一步到位,而是逐步进行,既采用“走一走、瞧一瞧”的策略;每走一步都与四个结论比较一次,淘汰掉不可能的,这样也许走不到最后一步,三个错误的结论就被全部淘汰掉了。
5、数形结合法:根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义;使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解题思路,使问题得到解决。
二、常用的数学思想方法1、数形结合思想:就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义;使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解体思路,使问题得到解决。
2、联系与转化的思想:事物之间是相互联系、相互制约的,是可以相互转化的。
数学学科的各部分之间也是相互联系,可以相互转化的。
在解题时,如果能恰当处理它们之间的相互转化,往往可以化难为易,化繁为简。
如:代换转化、已知与未知的转化、特殊与一般的转化、具体与抽象的转化、部分与整体的转化、动与静的转化等等。
3、分类讨论的思想:在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查;这种分类思考的方法,是一种重要的数学思想方法,同时也是一种重要的解题策略。
4、待定系数法:当我们所研究的数学式子具有某种特定形式时,要确定它,只要求出式子中待确定的字母得值就可以了。
为此,把已知条件代入这个待定形式的式子中,往往会得到含待定字母的方程或方程组,然后解这个方程或方程组就使问题得到解决。
初中数学常用解题技巧总结
初中数学常用解题技巧总结今天小编为大家整理了有关初中数学常用解题技巧总结的相关内容,以供大家阅读,更多相关信息请关注学习方法网!1、配方法所谓配方,就是把一个【解析】式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。
通过配方解决数学问题的方法叫配方法。
其中,用的最多的是配成完全平方式。
配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的最值和【解析】式等方面都经常用到它。
2、因式分解法因式分解,就是把一个多项式化成几个整式乘积的形式。
因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法,在代数、几何、三角等的解题中起着重要的作用。
因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。
3、换元法换元法是数学中一个非常重要而且应用十分广泛的解题方法。
我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
4、判别式法与韦达定理一元二次方程ax2+bx+c=0〔a、b、c属于R,a0〕根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。
韦达定理除了一元二次方程的一个根,求另一根;两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。
5、待定系数法在解数学问题时,假设先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。
初中数学解题技巧方法归纳
初中数学解题技巧方法归纳初中数学解题中的基本方法1. 观察与实验( 1 )观察法:有目的有计划的通过视觉直观的发现数学对象的规律、性质和解决问题的途径。
( 2 )实验法:实验法是有目的的、模拟的创设一些有利于观察的数学对象,通过观察研究将复杂的问题直观化、简单化。
它具有直观性强,特征清晰,同时可以试探解法、检验结论的重要优势。
2. 比较与分类( 1 )比较法是确定事物共同点和不同点的思维方法。
在数学上两类数学对象必须有一定的关系才好比较。
我们常比较两类数学对象的相同点、相异点或者是同异综合比较。
( 2 )分类的方法分类是在比较的基础上,依据数学对象的性质的异同,把相同性质的对象归入一类,不同性质的对象归为不同类的思维方法。
如上图中一次函数的 k 在不等于零的情况下的分类是大于零和小于零体现了不重不漏的原则。
3 .特殊与一般( 1 )特殊化的方法特殊化的方法是从给定的区域内缩小范围,甚至缩小到一个特殊的值、特殊的点、特殊的图形等情况,再去考虑问题的解答和合理性。
( 2 )一般化的方法4. 联想与猜想( 1 )类比联想类比就是根据两个对象或两类事物间存在着的相同或不同属性,联想到另一事物也可能具有某种属性的思维方法。
通过类比联想可以发现新的知识;通过类比联想可以寻求到数学解题的方法和途径:( 2 )归纳猜想牛顿说过:没有大胆的猜想就没有伟大的发明。
猜想可以发现真理,发现论断;猜想可以预见证明的方法和思路。
初中数学主要是对命题的条件观察得出对结论的猜想,或对条件和结论的观察提出解决问题的方案与方法的猜想。
归纳是对同类事物中的所蕴含的同类性或相似性而得出的一般性结论的思维过程。
归纳有完全归纳和不完全归纳。
完全归纳得出的猜想是正确的,不完全归纳得出的猜想有可能正确也有可能错误,因此作为结论是需要证明的。
关键是猜之有理、猜之有据。
5. 换元与配方( 1 )换元法解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学常用的解题方法总结
【配方法】
所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。
通过配方解决数学问题的方法叫配方法。
其中,用的最多的是配成完全平方式。
配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。
【因式分解法】
因式分解,就是把一个多项式化成几个整式乘积的形式。
因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。
因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。
【换元法】
换元法是数学中一个非常重要而且应用十分广泛的解题方法。
我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
【判别式法与韦达定理】
一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数
式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。
韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。
【待定系数法】
在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。
它是中学数学中常用的方法之一。
【构造法】
在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。
运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。
【反证法】
反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。
反证法可以分为归谬
反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。
用反证法证明一个命题的步骤,大体上分为:
(1)反设;(2)归谬;(3)结论。
反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一个/一个也没有;至少有n个/至多有(n一1)个;至多有一个/至少有两个;唯一/至少有两个。
归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。
推理必须严谨。
导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。
【面积法】
平面几何中讲的面积公式以及由面积公式推出的与面积计算有关的性质定理,不仅可用于计算面积,而且用它来证明平面几何题有时会收到事半功倍的效果。
运用面积关系来证明或计算平面几何题的方法,称为面积方法,它是几何中的一种常用方法。
用归纳法或分析法证明平面几何题,其困难在添置辅助线。
面积法的特点是把已知和未知各量用面积公式联系起来,通过运算达到求证的结果。
所以用面积法来解几何题,几何元素之间关系变成数量之间的关系,只需要计算,有时可以不添置补助线,即使需要添置辅助线,也很容易考虑到。
【几何变换法】
在数学问题的研究中,常常运用变换法,把复杂性问题转化为简单性的问题而得到解决。
所谓变换是一个集合的任一元素到同一集合的元素的一个一一映射。
中学数学中所涉及的变换主要是初等变换。
有一些看来很难甚至于无法下手的习题,可以借助几何变换法,化繁为简,化难为易。
另一方面,也可将变换的观点渗透到中学数学教学中。
将图形从相等静止条件下的研究和运动中的研究结合起来,有利于对图形本质的认识。
几何变换包括:
(1)平移;(2)旋转;(3)对称。
【客观性题的解题方法】
选择题是给出条件和结论,要求根据一定的关系找出正确答案的一类题型。
选择题的题型构思精巧,形式灵活,可以比较全面地考察学生的基础知识和基本技能,从而增大了试卷的容量和知识覆盖面。
填空题是标准化考试的重要题型之一,它同选择题一样具有考查目标明确,知识复盖面广,评卷准确迅速,有利于考查学生的分析判断能力和计算能力等优点,不同的是填空题未给出答案,可以防止学生猜估答案的情况。
要想迅速、正确地解选择题、填空题,除了具有准确的计算、严密的推理外,还要有解选择题、填空题的方法与技巧。
下面通过实例介绍常用方法。
(1)直接推演法:直接从命题给出的条件出发,运用概念、公式、定理等进行推理或运算,得出结论,选择正确答案,这就是传统的解题方法,这种解法叫直接推演法。
(2)验证法:由题设找出合适的验证条件,再通过验证,找出正确答案,亦可将供选择的答案代入条件中去验证,找出正确答案,此法称为验证法(也称代入法)。
当遇到定量命题时,常用此法。
(3)特殊元素法:用合适的特殊元素(如数或图形)代入题设条件或结论中去,从而获得解答。
这种方法叫特殊元素法。
(4)排除、筛选法:对于正确答案有且只有一个的选择题,根据数学知识或推理、演算,把不正确的结论排除,余下的结论再经筛选,从而作出正确的结论的解法叫排除、筛选法。
(5)图解法:借助于符合题设条件的图形或图象的性质、特点来判断,作出正确的选择称为图解法。
图解法是解选择题常用方法之一。
(6)分析法:直接通过对选择题的条件和结论,作详尽的分析、归纳和判断,从而选出正确的结果,称为分析法。