2020年初中数学解题方法总结

合集下载

2020初中数学一元二次方程知识点汇总 中考备考数学

2020初中数学一元二次方程知识点汇总 中考备考数学

面对高三数学大量的知识点,好多的同学都不知道应该从哪里复习。

下面就为大家分享高三数学第一轮复习函数知识点汇总,供参考。

一元二次方程是初中数学的重要内容,是中考的热点,它是在学习一元一次方程、二元一次方程、分式方程等基础之上学习的,它也是一种数学建模的方法。

学好一元二次方程是学好二次函数不可或缺的,是学好高中数学的奠基工程。

应该说,一元二次方程是本书的重点内容。

一、目标与要求1.了解一元二次方程及有关概念,一般式ax2+bx+c=0(a≠0)及其派生的概念,应用一元二次方程概念解决一些简单题目。

2.掌握通过配方法、公式法、因式分解法降次──解一元二次方程,掌握依据实际问题建立一元二次方程的数学模型的方法,应用熟练掌握以上知识解决问题。

二、重点1.一元二次方程及其它有关的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题。

2.判定一个数是否是方程的根;3.用配方法、公式法、因式分解法降次──解一元二次方程。

4.运用开平方法解形如(x+m)2=n(n≥0)的方程,领会降次──转化的数学思想。

5.利用实际问题建立一元二次方程的数学模型,并解决这个问题.三、难点1.一元二次方程配方法解题。

2.通过提出问题,建立一元二次方程的数学模型,•再由一元一次方程的概念迁移到一元二次方程的概念。

3.用公式法解一元二次方程时的讨论。

4.通过根据平方根的意义解形如x2=n,知识迁移到根据平方根的意义解形如(x+m)2=n(n≥0)的方程。

5.建立一元二次方程实际问题的数学模型,方程解与实际问题解的区别。

6.由实际问题列出的一元二次方程解出根后还要考虑这些根是否确定是实际问题的根。

四、知识点A、定义和特点1、一元二次方程:含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。

2、一元二次方程的一般形式:ax的平方+bx+c=0(a≠0),它的特征是:等式左边加一个关于未知数x的二次多项式,等式右边是零,其中ax的平方+叫做二次项,a叫做二次项系数;bx叫做一次项,b叫做一次项系数;c叫做常数项。

初中数学解题思路汇总

初中数学解题思路汇总

初中数学解题思路汇总数学作为一门重要的学科,对于中学生来说是必修课程之一。

在学习数学的过程中,解题是一个重要的环节。

掌握解题思路,能够更加高效地解决问题。

本文将为大家总结一些常见的初中数学解题思路,希望能够对同学们的学习有所帮助。

一、代数解题思路1. 理清题意:在解答代数题目时,首先要仔细阅读并理解题目,分析所给条件和要求。

2. 引入变量:根据题目需要,引入合适的变量表示未知数或者其他特定内容。

3. 建立方程:根据题意用代数语言建立方程,并尽量简化、标准化方程式。

4. 解方程:通过变形、配方等方法解方程,求得未知数的值。

5. 检验答案:将求得的解代入原方程式进行检验,确认所求解是否正确。

二、几何解题思路1. 画图:几何题目一般需要通过图形进行分析,因此首先要画出清晰的示意图。

2. 利用几何定理:在解答几何问题时,可以根据几何定理或者公式进行推导和运用,例如勾股定理、相似三角形的性质等。

3. 利用已知条件:根据题目所给条件,利用已知角度、线段等信息进行推导和分析。

4. 运用几何运算:对于一些几何题目,可以通过计算角度、线段长度等运算过程来解答。

5. 推敲答案:将计算得到的结果代入原图形中进行验证,确认所求解是否正确。

三、概率与统计解题思路1. 确定事件:理解题意,确定所要计算的事件是什么。

2. 确定样本空间:通过分析题目给出的条件和要求,确定问题的样本空间。

3. 确定事件个数:通过排列组合、分析概率等方法,确定所要计算事件的可能数量。

4. 计算概率:根据概率公式,计算所求事件的概率值。

5. 分析结果:对计算出的结果进行分析,判断是否合理,给出相关结论。

四、函数解题思路1. 理解函数:对于给定的函数关系,首先要理解函数的定义、性质和特点。

2. 确定变量:根据问题要求和已知条件,确定所要研究的变量及其取值范围。

3. 建立函数方程:根据问题的描述,建立函数关系的数学表达式。

4. 运用函数性质:通过对函数性质的分析和运用,确定问题中的变量和关系。

初中数学解题思路整理

初中数学解题思路整理

初中数学解题思路整理数学是一门抽象而又实用的学科,在初中阶段,学生接触到了更加复杂和有挑战性的数学问题,这就需要他们运用一些解题思路和方法来解决。

下面将整理一些初中数学解题的思路和方法,帮助学生更好地应对不同类型的数学题目。

一、代数方程解题思路1. 明确问题:首先要仔细读题,确保理解问题的意思和要求。

找出问题中给出的已知条件和未知数,并确定方程中各项的含义。

2. 列方程:根据已知条件,列出合适的方程式。

注意使用符号来表示未知数和运算符号。

3. 解方程:根据方程的性质,通过加减乘除等运算,逐步约简方程。

最终得到未知数的值。

4. 检验答案:将得到的解代入原方程,验证得到的解是否满足方程的要求。

二、几何题解题思路1. 画图:对于几何题,首先要绘制清晰的图形,以便更好地理解和分析问题。

要确保按照题目要求绘制图形,并标明相关的线段、角度等。

2. 利用已知条件:根据题目中给出的已知条件,运用相关的几何定理和性质,推导出所需的结论。

3. 利用特殊性质:对于某些几何题目,可以尝试通过假设特殊情况来解决问题。

例如,可以将线段长度设为特定值,或者设为相等,以观察是否存在某种规律。

4. 运用均分法:对于某些与长度、角度有关的几何问题,可以尝试使用均分法来解决。

即将一段长度或一定角度分成若干等分,从而得到与之相关的线段长度或角度大小。

三、概率题解题思路1. 确定样本空间:首先要确定问题所涉及的样本空间,即所有可能的结果。

2. 计算事件发生的可能性:根据题目给出的条件,计算特定事件发生的可能性。

可以采用组合数学的知识,计算出特定事件所包含的元素数量,除以样本空间中元素的总数。

3. 利用概率计算方法:根据题目的要求,使用概率计算方法来得到问题的解答。

常用的概率计算方法包括互斥事件的概率加法原理和条件概率的乘法原理等。

四、比例题解题思路1. 确定比例关系:首先要明确题目中给出的比例关系。

可以根据比例关系列出等式,将已知数和未知数相对应。

初中数学的解题方法和技巧总结

初中数学的解题方法和技巧总结

初中数学的解题方法和技巧总结初中数学要怎么解题,实用有效的技巧是什么?想了解的小伙伴看过来,下面由小编为你精心准备了“初中数学的解题方法和技巧总结”仅供参考,持续关注本站将可以持续获取更多的内容!初中数学的解题方法和技巧【一】对于常用的公式如数学中的乘法公式、三角函数公式,常用的数字,如11~25的平方,特殊角的三角函数值,化学中常用元素的化学性质、化合价以及化学反应方程式等等,都要熟记在心,需用时信手拈来,则对提高演算速度极为有利。

总之,学习是一个不断深化的认识过程,解题只是学习的一个重要环节。

你对学习的内容越熟悉,对基本解题思路和方法越熟悉,背熟的数字、公式越多,并能把局部与整体有机地结合为一体,形成了跳跃性思维,就可以大大加快解题速度。

初中数学解题方法之学会画图数学的解题中对于学会画图是有必要的,希望同学们很好的学会画图。

画图是一个翻译的过程。

读题时,若能根据题义,把对数学(或其他学科)语言的理解,画成分析图,就使题目变得形象、直观。

这样就把解题时的抽象思维,变成了形象思维,从而降低了解题难度。

有些题目,只要分析图一画出来,其中的关系就变得一目了然。

尤其是对于几何题,包括解析几何题,若不会画图,有时简直是无从下手。

所以,牢记各种题型的基本作图方法,牢记各种函数的图像和意义及演变过程和条件,对于提高解题速度非常重要。

画图时应注意尽量画得准确。

画图准确,有时能使你一眼就看出答案,再进一步去演算证实就可以了;反之,作图不准确,有时会将你引入歧途。

初中数学解题方法之审题对于一道具体的习题,解题时最重要的环节是审题。

认真、仔细地审题。

审题的第一步是读题,这是获取信息量和思考的过程。

读题要慢,一边读,一边想,应特别注意每一句话的内在涵义,并从中找出隐含条件。

读题一旦结束,哪些是已知条件?求解的结论是什么?还缺少哪些条件,可否从已知条件中推出?在你的脑海里,这些信息就应该已经结成了一张网,并有了初步的思路和解题方案,然后就是根据自己的思路,演算一遍,加以验证。

初中数学应用题解题方法总结

初中数学应用题解题方法总结

初中数学应用题解题方法总结数学是一门需要运用理论知识解决实际问题的学科,而应用题是数学的实践性体现。

初中阶段是学生接触应用题的重要阶段,因此了解和掌握初中数学应用题的解题方法非常重要。

在这篇文章中,我们将总结一些常见的初中数学应用题解题方法。

一、图像法图像法是初中数学应用题中常用的解题方法之一。

当问题中涉及到几何形状、位置关系或者图表数据时,可以通过绘制图像来帮助解题。

例如,在解决面积、体积问题时,我们可以先绘制出相应的图形,利用几何图形的性质来计算面积或体积。

此外,在解决速度、距离、时间等问题时,我们也可以通过绘制速度-时间图来帮助理解和解决问题。

二、代数方法代数方法也是初中数学应用题中常用的解题方法之一。

当问题中涉及到等式、方程或者变量时,可以通过代数方法来解决。

例如,在解决关于年龄、比例、速度等问题时,可以通过设定变量,建立代数方程式来解决问题。

代数方法的优势在于可以建立模型,通过符号运算来解决问题,使问题更加抽象化,更容易推广到其他类似问题。

三、逻辑推理逻辑推理是初中数学应用题中常用的解题方法之一。

当问题中涉及到条件、假设或者逻辑关系时,可以通过逻辑推理来解决。

例如,在解决选课、选班干部等问题时,我们可以根据条件和假设来推导出最终的答案。

逻辑推理的优势在于可以通过推理和分析找到解题的规律和方法,提高解题的准确性。

四、数学建模数学建模是初中数学应用题中较高级的解题方法之一。

当问题中涉及到复杂的实际情境,无法直接用一、二、三种方法解决时,可以通过数学建模来解决。

数学建模的过程包括问题分析、建立模型、求解模型和验证模型四个步骤,通过分析实际问题的数学特点,转化为数学模型并进行求解,最后将求解结果反馈到实际问题中。

数学建模的优势在于能够将实际问题更具体地量化为数学问题,并通过数学模型来解决。

五、思维方法除了以上几种解题方法外,还可以运用一些思维方法来解决初中数学应用题。

例如,归纳法、反证法、策略方法等。

初中数学学习中的解题技巧和思路

初中数学学习中的解题技巧和思路

初中数学学习中的解题技巧和思路初中数学是学生学习的重要科目之一,掌握好解题技巧和思路对于提高数学成绩至关重要。

本文将介绍一些初中数学解题的常用技巧和思路,帮助学生提升解题能力。

一、理清题意,认真分析题目在解决数学题目之前,首先要认真阅读题目,理解题意。

明确题目要求,确定解题的方向。

考生应该注意判断题目是什么类型的题目,根据题目的类型选择相应的解题方法。

二、画图辅助解题很多数学题目可以通过画图来辅助解题。

适当运用几何图形的绘制、标注可以帮助更直观地理解问题。

利用图形可以更好地分析题目,发现问题的关键点,从而得出解答的思路。

比如,在解决几何题时,可以根据题目要求画出几何图形,利用相似三角形、勾股定理等几何原理来解题。

在解决代数题时,可以利用坐标图来帮助理解问题,得到方程的几何意义,进而解决问题。

三、利用逻辑思维解题解决数学问题还需要运用逻辑思维。

有些题目看似复杂,但实质上只需运用一些简单的逻辑关系即可解决。

在解决这类问题时,需要学生耐心思考,运用逻辑推理和分析能力。

例如,在解决排列组合问题时,可以利用排列组合的基本原理,找到问题的规律。

在解决等式或方程时,可以通过逆向思维,从已知的结果反推出未知的量。

运用这些逻辑思维的思考方法可以大大提高解题的效率。

四、灵活运用数学工具在解决数学题目时,常常需要使用计算器、尺子、圆规等数学工具。

适当运用这些工具可以提高解题的准确性和效率。

学生在解题过程中,应学会用数学工具在纸上作图、进行计算,从而更好地理解题目和解决问题。

同时,要注意使用数学工具的正确方法,避免出现错误。

五、尝试不同的解题方法解决数学问题时,通常存在多种解题方法。

学生可以尝试不同的方法去解题,从而找到最适合自己的解题思路。

同时,学生也可以通过尝试多种方法来加深对数学知识的理解和运用。

例如,在解决方程问题时,可以通过列方程、画图、逆向思维等不同的方法来求解。

这样不仅可以提高解题的灵活性,还能够加深对数学知识的理解。

2020中考数学压轴题:9种题型5种策略

2020中考数学压轴题:9种题型5种策略

2020中考数学压轴题:9种题型+5种策略数学压轴题不会做,没思路,怎么破?中高考的设立是为了高一级学校选拔优秀人才提供依据,其中中高考压轴题更是为了考查学生综合运用知识的能力而设计的题型,具有知识点多、覆盖面广、条件隐蔽、关系复杂、思路难觅、解法灵活等特点。

因此,如何解中高考数学压轴题成了很多同学关心话题。

下面介绍几种常用的压轴题的九种形式和解题策略,供大家参考学习!九种题型1线段、角的计算与证明问题中考的解答题一般是分两到三部分的。

第一部分基本上都是一些简单题或者中档题,目的在于考察基础。

第二部分往往就是开始拉分的中难题了。

对这些题轻松掌握的意义不仅仅在于获得分数,更重要的是对于整个做题过程中士气,军心的影响。

线段与角的计算和证明,一般来说难度不会很大,只要找到关键“题眼”,后面的路子自己就“通”了。

2图形位置关系中学数学当中,图形位置关系主要包括点、线、三角形、矩形/正方形以及圆这么几类图形之间的关系。

在中考中会包含在函数,坐标系以及几何问题当中,但主要还是通过圆与其他图形的关系来考察,这其中最重要的就是圆与三角形的各种问题。

3动态几何从历年中考来看,动态问题经常作为压轴题目出现,得分率也是最低的。

动态问题一般分两类,一类是代数综合方面,在坐标系中有动点,动直线,一般是利用多种函数交叉求解。

另一类就是几何综合题,在梯形,矩形,三角形中设立动点、线以及整体平移翻转,对考生的综合分析能力进行考察。

所以说,动态问题是中考数学当中的重中之重,只有完全掌握,才有机会拼高分。

4一元二次方程与二次函数在这一类问题当中,尤以涉及的动态几何问题最为艰难。

几何问题的难点在于想象,构造,往往有时候一条辅助线没有想到,整个一道题就卡壳了。

相比几何综合题来说,代数综合题倒不需要太多巧妙的方法,但是对考生的计算能力以及代数功底有了比较高的要求。

中考数学当中,代数问题往往是以一元二次方程与二次函数为主体,多种其他知识点辅助的形式出现的。

初中数学35个解题技巧

初中数学35个解题技巧

初中数学35个解题技巧摘要:1.引言2.解题技巧1-103.解题技巧11-204.解题技巧21-305.解题技巧31-356.结语正文:【引言】初中数学是许多学生学习生涯中的一个重要阶段。

在这个阶段,学生们开始接触更为复杂数学概念和题型,而解题技巧的提升无疑是提高成绩的关键。

本文将为您介绍35个初中数学解题技巧,帮助您更好地应对各种数学问题。

【解题技巧1-10】1.理解题意,把握关键词。

2.画图辅助,直观解题。

3.运用公式,简化计算。

4.分类讨论,逐个击破。

5.替换变量,化简方程。

6.数形结合,相互印证。

7.逻辑推理,严谨论证。

8.转化思想,化繁为简。

9.利用已知,举一反三。

10.检查答案,防止错误。

【解题技巧11-20】11.代入验证,筛选答案。

12.构造方程,求解问题。

13.巧妙运用比例,解决实际问题。

14.几何中的角度和比例关系。

15.利用因式分解,化简方程。

16.利用二次方程求根公式,解题。

17.平均值不等式应用。

18.理解函数图像,解析函数问题。

19.动态几何问题解决方法。

20.数轴上的问题求解。

【解题技巧21-30】21.解析几何中的解析方法。

22.三角函数的应用。

23.立体几何基本知识。

24.概率论基本概念。

25.比和比例的应用。

26.解三角形问题技巧。

27.解析几何中的向量方法。

28.利用不等式求最值。

29.解圆方程及其应用。

30.逻辑思维在解题中的应用。

【解题技巧31-35】31.解题中的最值问题。

32.利用微积分思想解题。

33.解题中的归纳与猜想。

34.数学建模方法。

35.综合运用多种解题方法。

【结语】掌握这些初中数学解题技巧,相信能帮助大家在面对各种数学题目时更加游刃有余。

学习数学不仅要注重解题方法,还要养成良好的学习习惯,勤于练习,善于总结。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学解题方法总结:
一、选择题的解法
1、直接法:根据选择题的题设条件,通过计算、推理或判断,,最后得到题目的所求。

2、特殊值法:(特殊值淘汰法)有些选择题所涉及的数学命题与字母的取值范围有关;
在解这类选择题时,可以考虑从取值范围内选取某几个特殊值,代入原命题进行验证,然后淘汰错误的,保留正确的。

3、淘汰法:把题目所给的四个结论逐一代回原题的题干中进行验证,把错误的淘汰掉,
直至找到正确的答案。

4、逐步淘汰法:如果我们在计算或推导的过程中不是一步到位,而是逐步进行,既采
用“走一走、瞧一瞧”的策略;每走一步都与四个结论比较一次,淘汰掉不可能的,这样也许走不到最后一步,三个错
误的结论就被全部淘汰掉了。

5、数形结合法:根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又
揭示其几何意义;使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解题思路,使问题
得到解决。

二、常用的数学思想方法
1、数形结合思想:就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义;
使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解体思路,使问题
第 1 页共12。

相关文档
最新文档