湖南省中考数学试题及答案
中考湘教数学试题及答案

中考湘教数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. -1B. 0C. 1D. 2答案:C2. 一个数的平方根是它本身,这个数是?A. 1B. -1C. 0D. 4答案:C3. 圆的周长公式是?A. C = πrB. C = 2πrC. C = πdD. C = 2πd答案:B4. 如果一个三角形的三边长分别为a、b、c,且a + b > c,那么这个三角形是?A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定答案:D5. 一个数的绝对值是它本身,这个数是?A. 正数B. 负数C. 零D. 正数或零答案:D6. 下列哪个选项是二次根式?A. √4B. √(-1)C. √(2x)D. √(3/4)答案:C7. 一个数的倒数是1/2,这个数是?A. 1/2B. 2C. 1D. -2答案:B8. 一个直角三角形的两条直角边分别是3和4,斜边的长度是?A. 5B. 6C. 7D. 8答案:A9. 一个数的立方根是它本身,这个数可能是?A. 1B. -1C. 0D. 所有选项答案:D10. 以下哪个不等式是正确的?A. 2 < 3B. 2 > 3C. 2 ≤ 3D. 2 ≥ 3答案:A二、填空题(每题2分,共20分)11. 一个数的平方是16,这个数可以是______。
答案:±412. 一个数的立方是-8,这个数是______。
答案:-213. 一个圆的半径是5,它的面积是______。
答案:25π14. 一个三角形的内角和是______。
答案:180°15. 一个数的绝对值是5,这个数可以是______。
答案:±516. 一个直角三角形的斜边是10,一条直角边是6,另一条直角边是______。
答案:817. 如果a和b是互质数,那么它们的最大公约数是______。
答案:118. 一个数的平方根是3,这个数是______。
2023年湖南省怀化市中考数学真题(解析版)

怀化市2023年初中学业水平考试试卷数学温馨提示:1.本学科试卷分试题卷和答题卡两部分,考试时量为120分钟,满分150分.2.请你将姓名、准考证号等相关信息按要求填涂在答题卡上.3.请你在答题卡上作答,答在本试题卷上无效.一、选择题(每小题4分,共40分;每小题的四个选项中只有一项是正确的,请将正确选项的代号填涂在答题卡的相应位置上)1. 下列四个实数中,最小的数是( )A. 5- B. 0 C. 12 D. 【答案】A【解析】【分析】先根据实数的大小比较法则比较数的大小,再求出最小的数即可.【详解】1502-<<<Q \最小的数是:5-故选:A .【点睛】本题考查了实数的大小比较,能熟记实数的大小比较法则是解此题的关键.2. 2023年4月12日21时,正在运行的中国大科学装置“人造太阳”——世界首个全超导托卡马克东方超环(EAST )装置取得重大成果,在第122254次实验中成功实现了403秒稳态长脉冲高约束模式等离子体运行,创造了托卡马克装置高约束模式运行新的世界纪录.数据122254用科学记数法表示为( )A. 412.225410´ B. 41.2225410´ C. 51.2225410´ D. 60.12225410´【答案】C【解析】【分析】科学记数法的表示形式为10n a ´的形式,其中110a £<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:数据122254用科学记数法表示为51.2225410´,故选:C .【点睛】本题考查的知识点是科学记数法—表示较绝对值较大的数.把一个大于等于10的数写成科学记数法10n a ´的形式时,将小数点放到左边第一个不为0的数位后作为a ,把整数位数减1作为n ,从而确定它的科学记数法形式.3. 下列计算正确的是( )A. 235a a a ×= B. 623a a a ¸= C. ()2329ab a b = D. 523a a -=【答案】A【解析】【分析】根据同底数幂的乘法、同底数幂的除法、积的乘方和幂的乘方、合并同类项分别计算后,即可得到答案.【详解】解:A .235a a a ×=,故选项正确,符合题意;B .624a a a ¸=,故选项错误,不符合题意;C .()2326ab a b =,故选项错误,不符合题意;D .523a a a -=,故选项错误,不符合题意.故选:A .【点睛】此题考查了同底数幂的乘法、同底数幂的除法、积的乘方和幂的乘方、合并同类项,熟练掌握运算法则是解题的关键.4. 剪纸又称刻纸,是中国最古老的民间艺术之一,它是以纸为加工对象,以剪刀(或刻刀)为工具进行创作的艺术.民间剪纸往往通过谐音、象征、寓意等手法提炼、概括自然形态,构成美丽的图案.下列剪纸中,既是轴对称图形,又是中心对称图形的是( )A B. C. D.【答案】C【解析】【分析】根据轴对称图形和中心对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心,进行逐一判断即可.【详解】解:A 、不是轴对称图形,是中心对称图形,故A 选项不合题意;B 、是轴对称图形,不是中心对称图形,故B 选项不合题意..C 、既是轴对称图形又是中心对称图形,故C 选项符合题意;D 、是轴对称图形,不是中心对称图形,故D 选项不合题意.故选:C .【点睛】本题主要考查了轴对称图形和中心对称图形,解题关键在于能够熟练掌握轴对称图形和中心对称图形的定义.5. 在平面直角坐标系中,点(2,3)P -关于x 轴对称的点P ¢的坐标是( )A. (2,3)-- B. (2,3)- C. (2,3)- D. (2,3)【答案】D【解析】【分析】根据关于x 轴对称的两个点,横坐标相等,纵坐标互为相反数,即可求解.【详解】解:点(2,3)P -关于x 轴对称的点P ¢的坐标是(2,3),故选:D .【点睛】本题考查了关于x 轴对称的两个点的坐标特征,熟练掌握关于x 轴对称的两个点,横坐标相等,纵坐标互为相反数是解题的关键.6. 如图,平移直线AB 至CD ,直线AB ,CD 被直线EF 所截,160Ð=°,则2Ð的度数为( )A. 30°B. 60°C. 100°D. 120°【答案】B【解析】【分析】根据平移可得AB CD ∥,根据平行线的性质以及对顶角相等,即可求解.【详解】解:如图所示,∵平移直线AB 至CD∴AB CD ∥,160Ð=°,的∴13Ð=Ð,又∵23ÐÐ=,∴2160Ð=Ð=°,故选:B .【点睛】本题考查了平移的性质,平行线的性质,对顶角相等,熟练掌握平行线的性质是解题的关键.7. 某县“三独”比赛独唱项目中,5名同学的得分分别是:9.6,9.2,9.6,9.7,9.4.关于这组数据,下列说法正确的是( )A. 众数是9.6B. 中位数是9.5C. 平均数是9.4D. 方差是0.3【答案】A【解析】【分析】先把5个数据按从小到大的顺序排列,而后用中位数,众数,平均数和方差的定义及计算方法逐一判断.【详解】解:5个数按从小到大的顺序排列9.2,9.4,9.6,9.6,9.7,A 、9.6出现次数最多,众数是9.6,故正确,符合题意;B 、中位数是9.6,故不正确,不符合题意;C 、平均数是()19.2+9.4+9.62+9.7=9.55´,故不正确,不符合题意;D 、方差是()()()()222219.29.5+9.49.5+29.69.5+9.79.5=0.0325éù´----ëû,故不正确,不符合题意.故选:A .【点睛】本题考查了中位数,众数,平均数和方差,熟练掌握这些定义及计算方法是解决此类问题的关键.8. 下列说法错误的是( )A. 成语“水中捞月”表示的事件是不可能事件B. 一元二次方程230x x ++=有两个相等的实数根C. 任意多边形的外角和等于360°D. 三角形三条中线的交点叫作三角形的重心【答案】B【解析】【分析】根据不可能事件、根的判别式、多边形的外角和以及三角形的重心的定义分别进行判断即可.【详解】解:A 、成语“水中捞月”表示的事件是不可能事件,故此选项不符合题意;B 、21413110D =-´´=-<,则一元二次方程230x x ++=没有实数根,故此选项符合题意;C 、任意多边形的外角和等于360°,故此选项不符合题意;D 、三角形三条中线的交点叫作三角形的重心,故此选项不符合题意;故选:B .【点睛】本题考查不可能事件、根的判别式、多边形的外角和以及三角形的重心的定义,熟练掌握有关知识点是解题的关键.9. 已知压力(N)F 、压强()Pa P 与受力面积()2m S 之间有如下关系式:F PS =.当F 为定值时,下图中大致表示压强P 与受力面积S 之间函数关系的是( )A. B. C.D.【答案】D【解析】【分析】根据反比例函数的定义,即可得到答案.【详解】解:根据题意得:F P S=,∴当物体的压力F 为定值时,该物体的压强P 与受力面积S 的函数关系式是:F P S =,则函数图象是双曲线,同时自变量是正数.故选:D .【点睛】本题主要考查反比例函数,掌握F P S =以及反比例函数定义,是解题的关键.10. 如图,反比例函数(0)k y k x=>的图象与过点(1,0)-的直线AB 相交于A 、B 两点.已知点A 的坐标为(1,3),点C 为x 轴上任意一点.如果9ABC S =V ,那么点C 的坐标为()的A. (3,0)- B. (5,0) C. (3,0)-或(5,0) D. (3,0)或(5,0)-【答案】D【解析】【分析】反比例函数(0)k y k x=>的图象过点(1,3),可得3y x =,进而求得直线AB 的解析式为3322y x =+,得出B 点的坐标,设(),0C c ,根据1313922ABC S c æö=´+´+=ç÷èøV ,解方程即可求解.【详解】解:∵反比例函数(0)k y k x =>的图象过点(1,3)∴133k =´=∴3y x=设直线AB 的解析式为y mx n =+,∴30m n m n =+ìí=-+î,解得:3232m n ì=ïïíï=ïî,∴直线AB 的解析式为3322y x =+,联立33223y x y xì=+ïïíï=ïî,解得:13x y =ìí=î或232x y =-ìïí=-ïî,∴32,2B æö--ç÷èø,设(),0C c ,∵1313922ABC S c æö=´+´+=ç÷èøV ,解得:3c =或5c =-,∴C 的坐标为(3,0)或(5,0)-,故选:D .【点睛】本题考查了一次函数与反比例数交点问题,待定系数法求解析式,求得点B 的坐标是解题的关键.二、填空题(每小题4分,共24分;请将答案直接填写在答题卡的相应位置上)11. 有意义,则x 的取值范围是__________.【答案】9x ³【解析】【分析】根据二次根式有意义的条件得出90x -³,即可求解.有意义,∴90x -³,解得:9x ³,故答案为:9x ³.【点睛】本题考查了二次根式有意义的条件,熟练掌握二次根式有意义的条件是解题的关键.12. 分解因式:2242a a -+=_____.【答案】()221a -【解析】【详解】解:先提取公因式2后继续应用完全平方公式分解即可:原式()()2222121a a a =-+=-,故答案为:()221a -.13. 已知关于x 的一元二次方程220x mx +-=的一个根为1-,则m 的值为__________,另一个根为__________.【答案】①. 1- ②. 2【解析】【分析】将=1x -代入原方程,解得m ,根据一元二次方程根与系数的关系,得出122x x ´=-,即可求解.【详解】解:∵关于x 一元二次方程220x mx +-=的一个根为1-,∴120m --=解得:1m =-,设原方程的另一个根为2x ,则12·2x x =-,∵11x =-∴22x =故答案为:12-,.【点睛】本题考查了一元二次方程根的定义,一元二次方程根与系数的关系,熟练掌握一元二次方程根与系数的关系是解题的关键.14. 定义新运算:(,)(,)a b c d ac bd ×=+,其中a ,b ,c ,d 为实数.例如:(1,2)(3,4)132411×=´+´=.如果(2,3)(3,1)3x ×-=,那么x =__________.【答案】1【解析】【分析】根据新定义列出一元一次方程,解方程即可求解.【详解】解:∵(2,3)(3,1)3x ×-=∴()23313x ´+´-=即66x =解得:1x =故答案为:1.【点睛】本题考查了新定义运算,解一元一次方程,根据题意列出方程解题的关键.15. 如图,点P 是正方形ABCD 的对角线AC 上的一点,PE AD ^于点E ,3PE =.则点P 到直线AB 的距离为__________.的【答案】3【解析】【分析】过点P 作PQ AB ^于Q ,证明四边形四边形AEPQ 是正方形,即可求解.【详解】解:如图所示,过点P 作PQ AB ^于Q ,∵点P 是正方形ABCD 的对角线AC 上的一点,PE AD ^于点E∴四边形AEPQ 是矩形,45EAP Ð=°∴AEP △是等腰直角三角形,∴AE EP=∴四边形AEPQ 是正方形,∴3PQ EP ==,即点P 到直线AB 的距离为3故答案为:3.【点睛】本题考查了正方形的性质与判定,点到直线的距离,熟练掌握正方形的性质与判定是解题的关键.16. 在平面直角坐标系中,AOB V 为等边三角形,点A 的坐标为()1,0.把AOB V 按如图所示的方式放置,并将AOB V 进行变换:第一次变换将AOB V 绕着原点O 顺时针旋转60°,同时边长扩大为AOB V 边长的2倍,得到11A OB △;第二次旋转将11A OB △绕着原点O 顺时针旋转60°,同时边长扩大为11A OB △,边长的2倍,得到22A OB △,….依次类推,得到20332033A OB V ,则20232033A OB △的边长为__________,点2023A 的坐标为__________.【答案】①. 20232 ②. ()202220222,2【解析】【分析】根据旋转角度为60°,可知每旋转6次后点A 又回到x 轴的正半轴上,故点2023A 在第四象限,且202320232OA =,即可求解.【详解】解:∵AOB V 为等边三角形,点A 的坐标为()1,0,∴1OA =,∵每次旋转角度为60°,∴6次旋转360°,第一次旋转后,1A 在第四象限,12OA =,第二次旋转后,2A 在第三象限,222OA =,第三次旋转后,3A 在x 轴负半轴,332OA =,第四次旋转后,4A 在第二象限,442OA =,第五次旋转后,5A 在第一象限,552OA =,第六次旋转后,6A 在x 轴正半轴,662OA =,……如此循环,每旋转6次,点A 的对应点又回到x 轴正半轴,∵202363371¸=L ,点2023A 在第四象限,且202320232OA =,如图,过点2023A 作2023A H x ^轴于H ,在2023Rt OHA V 中,202360HOA Ð=°,∴202320232022202320231cos 2cos60222OH OA HOA =×Ð=´°=´=,20232022202320232023sin 22A H OA HOA =×Ð==,∴点2023A 的坐标为()202220222,2.故答案为:20232,()202220222,2.【点睛】本题考查图形的旋转,解直角三角形的应用.熟练掌握图形旋转的性质,根据旋转角度找到点的坐标规律是解题的关键.三、解答题(本大题共8小题,共86分)17. 计算:()1012sin 451(1)3-æö-+-°---ç÷èø【答案】4【解析】【分析】先计算负整数指数幂、算术平方根、零指数幂、减法运算,再进行加减混合运算即可.【详解】解:()1012sin 451(1)3-æö-++°---ç÷èø23311=+-++4=【点睛】此题考查了实数混合运算,熟练掌握相关运算法则是解题的关键.18. 先化简234111a a a -æö+¸ç÷--èø,再从1-,0,1,2中选择一个适当的数作为a 的值代入求值.【答案】12a -,当1a =-时,原式为13-;当0a =时,原式为12-.【解析】【分析】本题先对要求的式子进行化简,再选取一个适当的数代入即可求出结果.【详解】解:234111a a a -æö+¸ç÷--èø()()2213111a a a a a a +--æö=+¸ç÷---èø()()21122a a a a a +-=×-+-12a =-,当a 取2-,1,2时分式没有意义,所以1a =-或0,当1a =-时,原式11123==---;当0a =时,原式11022==--.【点睛】本题考查分式的化简求值,解题时要注意先对括号里边进行通分,再约分化简.19. 如图,矩形ABCD 中,过对角线BD 的中点O 作BD 的垂线EF ,分别交AD ,BC 于点E ,F .(1)证明:BOF DOE ≌△△;(2)连接BE 、DF ,证明:四边形EBFD 是菱形.【答案】(1)见解析(2)见解析【解析】【分析】(1)根据矩形的性质得出AD BC ∥,则12,34Ð=ÐÐ=Ð,根据O 是BD 的中点,可得BO DO =,即可证明()AAS BOF DOE ≌△△;(2)根据BOF DOE ≌△△可得ED BF =,进而可得四边形EBFD 是平行四边形,根据对角线互相垂直的四边形是菱形,即可得证.【小问1详解】证明:如图所示,∵四边形ABCD 是矩形,∴AD BC ∥,∴12,34Ð=ÐÐ=Ð,∵O 是BD 的中点,∴BO DO =,在BOF V 与DOE V 中1234BO DO Ð=ÐìïÐ=Ðíï=î,∴()AAS BOF DOE ≌△△;【小问2详解】∵BOF DOE≌△△∴ED BF =,又∵ED BF∥∴四边形EBFD 是平行四边形,∵EF BD^∴四边形EBFD 是菱形.【点睛】本题考查了矩形的性质,全等三角形的性质与判定,菱形的判定,熟练掌握特殊四边形的性质与判定是解题的关键.20. 为弘扬革命传统精神,清明期间,某校组织学生前往怀化市烈士陵园缅怀革命先烈.大家被革命烈士纪念碑的雄伟壮观震撼,想知道纪念碑的通高CD (碑顶到水平地面的距离),于是师生组成综合实践小组进行测量.他们在地面的A 点用测角仪测得碑顶D 的仰角为30°,在B 点处测得碑顶D 的仰角为60°,已知35m AB =,测角仪的高度是1.5m (A 、B 、C 在同一直线上),根据以上数据求烈士纪念碑的通高CD .1.732»,结果保留一位小数)【答案】烈士纪念碑的通高CD 约为31.8米【解析】【分析】根据题意,四边形,,AMNB NBCE AMEC 是矩形, 1.5CE =米,35MN AB ==米,根据三角形的外角的性质得出,30NMD MDN Ð=Ð=°,等角对等边得出35ND NM ==,进而解Rt DEN V ,求得DE ,最后根据CD DE CE =+,即可求解.【详解】解:依题意,四边形,,AMNB NBCE AMEC 是矩形, 1.5CE =米,35MN AB ==米,∵30,60DMN DNE Ð=°Ð=°∴30MDN DNE DMN Ð=Ð-Ð=°∴30NMD MDN Ð=Ð=°,∴35ND NM ==米,在Rt DEN V 中,sin DEDNE DNÐ=∴sin 603530.3DE DN =×°=»米∴ 1.530.331.8CD CE DE =+=+=米【点睛】本题考查了解直角三角形的应用,熟练掌握三角函数关系是解题的关键.21. 近年,“青少年视力健康”受到社会的广泛关注.某校综合实践小组为了解该校学生的视力健康状况,从全校学生中随机抽取部分学生进行视力调查.根据调查结果和视力有关标准,绘制了两幅不完整的统计图.请根据图中信息解答下列问题:(1)所抽取的学生人数为__________;(2)补全条形统计图,并求出扇形统计图中“轻度近视”对应的扇形的圆心角的度数;(3)该校共有学生3000人,请估计该校学生中近视程度为“轻度近视”的人数.【答案】(1)200人(2)统计图见解析,126°(3)1050人【解析】【分析】(1)用“视力正常”的人数除以其人数占比即可求出抽取的学生人数;(2)先求出“中度近视”的人数,进而求出“轻度近视”的人数,由此补全统计图即可;再用360°乘以“轻度近视”的人数占比即可求出对应的圆心角度数;(3)用3000乘以样本中“轻度近视”的人数占比即可得到答案.【小问1详解】解:9045%200¸=人,∴所抽取的学生人数为200人,故答案为:200;【小问2详解】解:中度近视的人数为20015%30´=人,“轻度近视”对应的扇形的圆心角的度数为70360126200°´=° ∴高度近视的人数为20090703010---=人,补全统计图如下:【小问3详解】解:7030001050200´=人,∴估计该校学生中近视程度为“轻度近视”的人数为1050人.【点睛】本题主要考查了条形统计图与扇形统计图信息相关联,用样本估计总体,正确读懂统计图是解题的关键.22. 如图,AB 是O e 的直径,点P 是O e 外一点,PA 与O e 相切于点A ,点C 为O e 上的一点.连接PC 、AC 、OC ,且PC PA =.(1)求证:PC 为O e 的切线;(2)延长PC 与AB 的延长线交于点D ,求证:PD OC PA OD ×=×;(3)若308CAB OD Ð=°=,,求阴影部分的面积.【答案】(1)见解析 (2)见解析(3)8π3-【解析】【分析】(1)连接PO ,证明V V ≌PAO PCO ,即可得证;(2)根据sin OCPAD OD PD ==,即可得证;(3)根据圆周角定理得出260COD CAB Ð=Ð=°,进而勾股定理求得CD ,根据OCD OBC S S S =-V 阴影扇形,即可求解.【小问1详解】证明:∵PA 是O e 的切线,∴90PAO Ð=°如图所示,连接POPAO V 与PCO △中,PA PCOA OCPO PO =ìï=íï=î在∴V V ≌PAO PCO ()SSS 90PCO PAO \Ð=Ð=°∵C 为O e 上的一点.∴PC 是O e 的切线;【小问2详解】∵PC 是O e 的切线;∴OC PD ^,∴sin OC PA D OD PD==∴PD OC PA OD×=×【小问3详解】解:∵ BCBC =,308CAB OD Ð=°=,∴260COD CAB Ð=Ð=°,∵OC PD^∴30D Ð=°,∴142OC OD ==∴CD =,∴2160π2360OCD OBC S S S CO CD CO =-=´´-´V 阴影扇形21144π26=´´-´π38=【点睛】本题考查了切线的性质与判定,圆周角定理,求含30度角的直角三角形的性质,勾股定理,求扇形面积,熟练掌握以上知识是解题的关键.23. 某中学组织学生研学,原计划租用可坐乘客45人的A 种客车若干辆,则有30人没有座位;若租用可坐乘客60人的B 种客车,则可少租6辆,且恰好坐满.(1)求原计划租用A 种客车多少辆?这次研学去了多少人?(2)若该校计划租用A 、B 两种客车共25辆,要求B 种客车不超过7辆,且每人都有座位,则有哪几种租车方案?(3)在(2)的条件下,若A 种客车租金为每辆220元,B 种客车租金每辆300元,应该怎样租车才最合算?【答案】(1)原计划租用A 种客车26辆,这次研学去了1200人(2)共有3种租车方案,方案一:租用A 种客车18辆,则租用B 种客车7辆;方案二:租用A 种客车19辆,则租用B 种客车6辆;方案三:租用A 种客车20辆,则租用B 种客车5辆,(3)租用A 种客车20辆,则租用B 种客车5辆才最合算【解析】【分析】(1)设原计划租用A 种客车x 辆,根据题意列出一元一次方程,解方程即可求解;(2)设租用A 种客车a 辆,则租用B 种客车()25a -辆,根据题意列出一元一次不等式组,解不等式组即可求解;(3)分别求得三种方案的费用,进而即可求解.【小问1详解】解:设原计划租用A 种客车x 辆,根据题意得,()4530606x x +=-,解得:26x =所以()602661200´-=(人)答:原计划租用A 种客车26辆,这次研学去了1200人;【小问2详解】解:设租用A 种客车a 辆,则租用B 种客车()25a -辆,根据题意,得()2574560251200a a a -£ìí+-³î解得:1820a ££,∵a 为正整数,则18,19,20a =,∴共有3种租车方案,方案一:租用A 种客车18辆,则租用B 种客车7辆,方案二:租用A 种客车19辆,则租用B 种客车6辆,方案三:租用A 种客车20辆,则租用B 种客车5辆,【小问3详解】∵A 种客车租金为每辆220元,B 种客车租金每辆300元,∴B 种客车越少,费用越低,方案一:租用A 种客车18辆,则租用B 种客车7辆,费用为1822073006060´+´=元,方案二:租用A 种客车19辆,则租用B 种客车6辆,费用为1922063005980´+´=元,方案三:租用A 种客车20辆,则租用B 种客车5辆,费用为2022053005900´+´=元,∴租用A 种客车20辆,则租用B 种客车5辆才最合算.【点睛】本题考查了一元一次方程的应用,一元一次不等式组的应用,根据题意列出一元一次方程与不等式组是解题的关键.24. 如图一所示,在平面直角坐标系中,抛物线28y ax bx =+-与x 轴交于(4,0)(2,0)A B -、两点,与y 轴交于点C .(1)求抛物线的函数表达式及顶点坐标;(2)点P 为第三象限内抛物线上一点,作直线AC ,连接PA 、PC ,求PAC △面积的最大值及此时点P 的坐标;(3)设直线135:4l y kx k =+-交抛物线于点M 、N ,求证:无论k 为何值,平行于x 轴的直线237:4l y =-上总存在一点E ,使得MEN Ð为直角.【答案】(1)228=+-y x x(2)PAC △面积的最大值为8,此时点P 的坐标为()2,8P --(3)见解析【解析】【分析】(1)待定系数法求解析式即可求解;(2)如图所示,过点P 作PD x ^轴于点D ,交AC 于点E ,得出直线AC 的解析式为28y x =--,设()2,28P m m m +-,则(),28E m m --,得出()224PE m =-++,当PE 取得最大值时,PAC △面积取得最大值,进而根据二次函数的性质即可求解;(3)设()11,M x y 、()22,N x y ,MN 的中点坐标为1212,22x x y y Q ++æöç÷èø,联立235428y kx k y x x ì=+-ïíï=+-î,消去y ,整理得:()23204x k x k +--+=,得出121232,4x x k x x k +=-=-+,则211351,224Q k k æö--ç÷èø,设Q 点到2l 的距离为QE ,则QE =22135371124422k k æö---=+ç÷èø,依题意,212352y y k +=-,()221212122y y x x x x -=-+-()()12122x x x x =-++()12k x x =-,得出()()2221212MN x x y y =-+-()221k =+,则21MN k =+,12MN QE =,E 点总在Q e 上,MN 为直径,且Q e 与237:4l y =-相切,即可得证.【小问1详解】解:将(4,0)(2,0)A B -、代入28y ax bx =+-,得164804280a b a b --=ìí+-=î,解得:12a b =ìí=î,∴抛物线解析式为:228=+-y x x ;【小问2详解】解:如图所示,过点P 作PD x ^轴于点D ,交AC 于点E ,由228=+-y x x ,令0x =,解得:8y =-,∴()0,8C -,设直线AC 的解析式为8y kx =-,将点()4,0A -代入得,480k --=,解得:2k =-,∴直线AC 的解析式为28y x =--,设()2,28P m m m +-,则(),28E m m --,∴()22828PE m m m =---+-24m m=--()224m =-++,当2m =-时,PE 的最大值为4∵114222PAC S PE OA PE PE =´=´´=△∴当PE 取得最大值时,PAC △面积取得最大值∴PAC △面积的最大值为248´=,此时2m =-,2284488m m +-=--=-∴()2,8P --【小问3详解】解:设()11,M x y 、()22,N x y ,MN 的中点坐标为1212,22x x y y Q ++æöç÷èø,联立235428y kx k y x x ì=+-ïíï=+-î,消去y ,整理得:()23204x k x k +--+=, ∴121232,4x x k x x k +=-=-+,∴12122x x k +=-,∴()()1212135135222424y y k x x k k k k +=++-=-+-213524k =-,∴211351,224Q k k æö--ç÷èø,设Q 点到2l 的距离为QE ,则QE =22135371124422k k æö---=+ç÷èø,∵()11,M x y 、()22,N x y ,∴212352y y k +=-,()221212122y y x x x x -=-+-()()12122x x x x =-++()12k x x =-∴()()2221212MN x x y y =-+-()()2221212x x k x x =-+-()()22121x x k =-+()()22121241x x x x k éù=+-+ëû()()222431k k k éù=-+-+ëû()()2211k k =++()221k =+∴21MN k =+,∴12MN QE =∴QM QN QE ==,∴E 点总在Q e 上,MN 为直径,且Q e 与237:4l y =-相切,∴MEN Ð为直角.∴无论k 为何值,平行于x 轴的直线237:4l y =-上总存在一点E ,使得MEN Ð为直角.【点睛】本题考查了二次函数的应用,一元二次方程根与系数的关系,切线的性质与判定,直角所对的弦是直径,熟练掌握以上知识是解题的关键.。
2023年湖南省娄底市中考数学真题(解析版)

娄底市2023年初中毕业学业考试试题卷数学温馨提示:1.本学科试卷分试题卷和答题卡两部分,数学卷面满分120分,考试时量120分钟.2.请你将姓名、准考证号等相关信息按要求填涂在答题卡上.3.请你在答题卡规定区域内作答,答在本试题卷上无效.一、选择题(本大题共12小题,每小题3分,满分36分,每小题给出的四个选项中,只有一个选项是符合题目要求的,请把你认为符合题目要求的选项填涂在答题卡上相应题号下的方框里)1. 2023的倒数是( )A. 2023- B. 2023C.12023D. 12023-【答案】C 【解析】【分析】直接利用倒数的定义,即若两个不为零的数的积为1,则这两个数互为倒数,即可一一判定.【详解】解:2023的倒数为12023.故选C .【点睛】此题主要考查了倒数的定义,熟练掌握和运用倒数的求法是解决本题的关键.2. 下列运算正确的是( )A. 248a a a ⋅= B. 2234a a a +=C. ()()2222a a a +-=- D. ()326328a ba b -=-【答案】D 【解析】【分析】根据同底数幂的乘法运算可判断A ,根据合并同类项可判断B ,根据平方差公式可判断C ,根据积的乘方运算可判断D ,从而可得答案.【详解】解:246a a a ⋅=,故A 不符合题意;2a ,3a 不是同类项,不能合并,故B 不符合题意;()()2224a a a +-=-,故C 不符合题意;()326328a b a b -=-,运算正确,故D 符合题意;故选D【点睛】本题考查的是同底数幂的乘法运算,合并同类项,平方差公式的应用,积的乘方运算,熟记以上基础的运算法则是解本题的关键.3. 新时代我国教育事业取得了历史性成就,目前我国已建成世界上规模最大的教育体系,教育现代化发展总体水平跨入世界中上国家行列,其中高等教育在学总规模达到4430万人,处于高等教育普及化阶段.4430万用科学记数法表示为( )A. 544310´ B. 74.4310´ C. 84.4310´ D. 80.44310´【答案】B 【解析】【分析】科学记数法的表示形式为10n a ´的形式,其中110a £<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,当原数绝对值10³时,n 是正整数,当原数绝对值1<时,n 是负整数.【详解】解:4430万744300000 4.4310==´, 故选:B .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ´的形式,其中110a £<,n 为整数,表示时关键要正确确定a 的值以及n 的值.4. 一个小组7名同学的身高(单位:cm )分别为:175,160,158,155,168,151,170.这组数据的中位数是( )A. 151 B. 155C. 158D. 160【答案】D 【解析】【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.【详解】解:由于此数据按照从小到大的顺序排列为151,155,158,160,168,170,175.发现160处在第4位.所以这组数据的中位数是160,故选:D .【点睛】本题属于基础题,考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求;如果是偶数个,则找中间两位数的平均数.5. 不等式组35220x x -+<ìí-£î的解集在数轴上表示正确的是( )A.B.C. D.【答案】C 【解析】【分析】先分别求出各不等式的解集,再利用数轴表示解集的公共部分即可.详解】解:35220x x -+<ìí-£î①②,由①得:2x >-,由②得:1x £,在数轴上表示两个不等式的解集如下:∴不等式组的解集为:21x -<£;故选:C【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知大于向右拐,小于向左拐的原则是解答此题的关键.6. 将直线 21y x =+向右平移2个单位所得直线的表达式为( )A. 21y x =- B. 23y x =- C. 23y x =+ D. 25y x =+【答案】B 【解析】【分析】直接根据“左加右减,上加下减” 的平移规律求解即可.【详解】解:将直线 21y x =+向右平移2个单位,所得直线的解析式为 2(2)1y x =-+,即 23y x =-,故选:B.【【点睛】本题考查一次函数图象与几何变换,在平面直角坐标系中,平移后解析式有这样一个规律“左加右减,上加下减”.7. 从367,3.1415926,3.3& )A.27B.37C.47D.57【答案】A 【解析】2=,2=-,∴367,3.1415926,3.3&∴从367,3.1415926,3.3&27;故选A【点睛】本题考查的是求解一个数的算术平方根,立方根,无理数的含义,利用概率公式求解简单随机事件的概率,掌握以上基础知识是解本题的关键.8. 一个长方体物体的一顶点所在A 、B 、C 三个面的面积比是3:2:1,如果分别按A 、B 、C 面朝上将此物体放在水平地面上,地面所受的压力产生的压强分别为A P 、B P 、C P (压强的计算公式为F P S=),则::A B C P P P =( )A. 2:3:6B. 6:3:2C. 1:2:3D. 3:2:1【答案】A 【解析】【分析】首先根据长方体的性质,得出相对面的面积相等,再根据物体的压力不变,结合反比例函数的性质进行分析,即可得出答案.【详解】解:∵长方体物体的一顶点所在A 、B 、C 三个面的面积比是3:2:1,∴长方体物体的A 、B 、C 三面所对的与水平地面接触的面积比也为3:2:1,∵FP S=,0F >,且F 一定,∴P 随S 的增大而减小,∴111::::2:3:6321A B C P P P ==.故选:A .【点睛】本题考查了反比例函数的性质,解本题的关键在熟练掌握反比例函数的性质.9. 如图,正六边形ABCDEF 的外接圆O e 的半径为2,过圆心O 的两条直线1l 、2l 的夹角为60°,则图中的阴影部分的面积为( )A.43p - B.43p C.23p - D.23p 【答案】C 【解析】【分析】如图,连接AO ,标注直线与圆的交点,由正六边形的性质可得:A ,O ,D 三点共线,COD △为等边三角形,证明扇形AOQ 与扇形COG 重合,可得COD COD S S S =-V 阴影扇形,从而可得答案.【详解】解:如图,连接AO ,标注直线与圆的交点,由正六边形的性质可得:A ,O ,D 三点共线,COD △为等边三角形,∴AOQ DOH Ð=Ð,60COD GOH Ð=Ð=°,∴COG DOH AOQ Ð=Ð=Ð,∴扇形AOQ 与扇形COG 重合,∴COD COD S S S =-V 阴影扇形,∵COD △为等边三角形,2OC OD ==,过O 作OK CD ^于K ,∴60COD Ð=°,1CK DK ==,OK ==∴260212236023COD COD S S S p p ´=-==´=V 阴影扇形故选C【点睛】本题考查的是正多边形与圆,扇形面积的计算,勾股定理的应用,熟记正六边形的性质是解本题的关键.10. 已知二次函数2y ax bx c =++的图象如图所示,给出下列结论:①0abc <;②420a b c -+>;③()a b m am b ->+(m 为任意实数);④若点()13,y -和点()23,y 在该图象上,则12y y >.其中正确的结论是( )A. ①②B. ①④C. ②③D. ②④【答案】D 【解析】【分析】由抛物线的开口向下,与y 轴交于正半轴,对称轴在y 轴的左边,可得a<0,0c >, 0b <,故①不符合题意;当0x =与2x =-时的函数值相等,可得420a b c c -+=>,故②符合题意;当=1x -时函数值最大,可得()a b m am b -³+,故③不符合题意;由点()13,y -和点()23,y 在该图象上,而()()()314132--=>---=,且离抛物线的对称轴越远的点的函数值越小,可得④符合题意.【详解】解:∵抛物线的开口向下,与y 轴交于正半轴,对称轴在y 轴的左边,∴a<0,0c >,02bx a=-<,∴0b <,∴0abc >,故①不符合题意;∵对称轴为直线=1x -,∴当0x =与2x =-时的函数值相等,∴420a b c c -+=>,故②符合题意;∵当=1x -时函数值最大,∴2a b c am bm c -+³++,∴()a b m am b -³+;故③不符合题意;∵点()13,y -和点()23,y 在该图象上,而()()()314132--=>---=,且离抛物线的对称轴越远的点的函数值越小,∴12y y >.故④符合题意;故选:D .【点睛】本题考查的是二次函数的图象与性质,熟记二次函数的开口方向,与y 轴的交点坐标,对称轴方程,增减性的判定,函数的最值这些知识点是解本题的关键.11. 从n 个不同元素中取出()m m n £个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用符号m nC 表示,()()()()12111m nn n n n m C m m --⋅⋅⋅-+=-⋅⋅⋅(n m ³,n 、m 为正整数);例如:255421C ´=´,38876321C ´´=´´,则4599C C +=( )A. 69C B. 410C C. 510C D. 610C 【答案】C 【解析】【分析】根据新定义分别进行计算比较即可得解.【详解】解:∵()()()()12111mn n n n n m C m m --⋅⋅⋅-+=-⋅⋅⋅,∴4599987698765126126252432154321C C ´´´´´´´+=+=+=´´´´´´´,A 选项,6998765484654321C ´´´´´==´´´´´,B 选项,410109872104321C ´´´==´´´,C 选项,51010987625254321C ´´´´==´´´´,D 选项,6101098765210654321C ´´´´´=´´´´=´,故选C .【点睛】本题考查了新定义运算以及求代数式的值.正确理解新定义是解题的关键.12.a 、b 、c 的ABC V 的面积为ABCS =△.ABC V 的边a 、b 、c 所对的角分别是∠A 、∠B 、∠C ,则111sin sin sin 222ABC S ab C ac B bc A ===△.下列结论中正确的是( )A. 222cos 2a b c C ab +-=B. 222cos 2a b c C ab +-=-C. 222cos 2a b c C ac+-=D. 222cos 2a b c C bc+-=【答案】A 【解析】,1sin 2ABC S ab C =V ,即222222222sin 2a b c a b a b C æö+--=ç÷èø,()22222221sin 2a b c a b C æö+--=ç÷èø,22222cos 2a b c C ab æö+-=ç÷èø,222cos 2a b c C ab+-=故选:A .【点睛】本题考查等式利用等式的性质解题化简,熟悉22sin cos 1C C +=是解题的关键.二、填空题(本大题共6小题,每小题3分,满分18分)13. 函数y 的自变量x 的取值范围为____________.【答案】x≥-1【解析】【详解】由题意得,x+1≥0,解得x≥﹣1.故答案为x≥﹣1.14. 若m 是方程2210x x --=的根,则221m m+=______.【答案】6【解析】【分析】由m 是方程2210x x --=的根,可得221m m =+,把221m m +化为12121m m +++,再通分变形即可.【详解】解:∵m 是方程2210x x --=的根,∴2210m m --=,即221m m =+,∴22112121m m m m +=+++()221121m m ++=+244221m m m ++=+844221m m m +++=+()62121m m +=+6=;【点睛】本题考查的是一元二次方程的解的含义,分式的化简求值,准确的把原分式变形,再求值是解本题的关键.15. 如图,点E 在矩形ABCD 的边CD 上,将ADE V 沿AE 折叠,点D 恰好落在边BC 上的点F 处,若10BC =.4sin 5AFB Ð=,则DE =______.【答案】5【解析】【分析】利用矩形的性质及折叠的性质可得10AD AF ==,EF ED =,可得4sin 1085AB AF AFB =⋅Ð=´=,6BF ==,设DE x =,则8CE CD DE x =-=-,利用勾股定理可得222EF CF CE =+,进而可得结果.【详解】解:∵四边形ABCD 是矩形,∴90B C D Ð=Ð=Ð=°,AB CD =,10AD BC ==,根据折叠可知,可知10AD AF ==,EF ED =,则,在Rt ABF V 中,4sin 1085AB AF AFB =⋅Ð=´=,则8CD =,∴6BF ==,则4CF BC BF =-=,设DE x =,则8CE CD DE x =-=-,在Rt CEF △中,222EF CF CE =+,即:()22284x x =-+,解得:5x =,即:5DE =,故答案为:5.【点睛】本题考查矩形的性质、折叠的性质、解直角三角形,灵活运用折叠的性质得到相等线段是解决问题的关键.16. 如图,在ABC V 中,3AC =,4AB =,BC 边上的高2AD =,将ABC V 绕着BC 所在的直线旋转一周得到的几何体的表面积为______.【答案】14p 【解析】【分析】由圆锥的侧面展开图是扇形,可得圆锥的侧面积公式12S lr =,再根据题干数据进行计算即可.【详解】解:由题意可得:旋转后的几何体是两个共底面的圆锥,∵BC 边上的高2AD =,∴底面圆的周长为:224p p ´=,∵3AC =,4AB =,∴几何体的表面积为1134+44=1422p p p ´´´´.故答案为:14p .【点睛】本题考查的是圆锥的侧面积的计算,几何体的形成,熟记圆锥的侧面积公式是解本题的关键.17. 如图,抛物线2y ax bx c =++与x 轴相交于点()1,0A 、点()3,0B ,与y 轴相交于点C ,点D 在抛物线上,当CD x ∥轴时,CD =______.【答案】4【解析】【分析】与抛物线2y ax bx c =++与x 轴相交于点()1,0A 、点()3,0B ,可得抛物线的对称轴为直线1322x +==,由CD x ∥轴,可得C ,D 关于直线2x =对称,可得()4,D c ,从而可得答案.【详解】解:∵抛物线2y ax bx c =++与x 轴相交于点()1,0A 、点()3,0B ,∴抛物线的对称轴为直线1322x +==,∵当0x =时,y c =,即()0,C c ,∵CD x ∥轴,∴C ,D 关于直线2x =对称,∴()4,D c ,∴404CD =-=;故答案为:4【点睛】本题考查的是利用抛物线上两点的坐标求解对称轴方程,熟练的利用抛物线的对称性解题是关键.18. 若干个同学参加课后社团——舞蹈活动,一次排练中,先到的n 个同学均匀排成一个以O 点为圆心,r 为半径的圆圈(每个同学对应圆周上一个点),又来了两个同学,先到的同学都沿各自所在半径往后移a 米,再左右调整位置,使这()2+n 个同学之间的距离与原来n 个同学之间的距离(即在圆周上两人之间的圆弧的长)相等.这()2+n 个同学排成圆圈后,又有一个同学要加入队伍,重复前面的操作,则每人须往后移______米(请用关于a 的代数式表示),才能使得这()3+n 个同学之间的距离与原来n 个同学之间的距离相等.【答案】2a 【解析】【分析】由第一次操作可得:()222r a r n n p p +=+,则2r n a =,设第二次操作时每位同学向后移动了x 米,可得()()2223r a r a x n n p p +++=++,解得2r a x n +=+,再代入化简即可.【详解】解:由第一次操作可得:()222r a r n n p p +=+,∴2r n a=,设第二次操作时每位同学向后移动了x 米,则()()2223r a r a x n n p p +++=++,∴()()22222a r a r a r a a x r n a r a +++====+++,故答案为:2a【点睛】本题考查的是一元一次方程的应用,分式的化简,准确的理解题意确定相等关系是解本题的关键.三、解答题(本大题共2小题,每小题6分,共12分)19. 计算:()020231tan60p-+-°.【答案】【解析】【分析】先计算零次幂,化简绝对值,化简二次根式,求解特殊角的正切,再合并即可.【详解】解:()020231tan60 p-+--°11=+=【点睛】本题考查是含特殊角的三角函数值的混合运算,零次幂的含义,化简绝对值,二次根式,熟记相关概念与运算法则是解本题的关键.20. 先化简,再求值:221111xx x xæö-¸ç÷+--èø,其中x满足2340x x--=.【答案】232x x--;2【解析】【分析】先计算括号内的分式的减法运算,再把除法化为乘法运算,得到化简的结果,再整体代入计算即可.【详解】解:221111xx x xæö-¸ç÷+--èø()()()()222=1111x x xx xx x---⋅+-+-232x x=--;∵2340x x--=,∴234x x-=,其中1x¹-,∴原式422=-=.【点睛】本题考查是分式的化简求值,熟练的化简分式并整体代入进行计算是解本题的关键.的的四、解答题(本大题共2小题,每小题8分,共16分)21. 某区教育局为了了解某年级学生对科学知识的掌握情况,在全区范围内随机抽取若干名学生进行科学知识测试,按照测试成绩分优秀、良好、合格与不合格四个等级,并绘制了如下两幅不完整统计图.(1)参与本次测试的学生人数为______,m =______.(2)请补全条形统计图.(3)若全区该年纪共有5000名学生,请估计该年级对科学知识掌握情况较好(测试成绩能达到良好及以上等级)的学生人数.【答案】(1)150人,30(2)补全图形见解析(3)3500人.【解析】【分析】(1)由良好60人除以其占比40%可得总人数,由优秀的45人除以总人数可得m 的值;(2)先利用总人数减去优秀,良好,不合格,得到合格的人数,再补全统计图即可;(3)由5000乘以测试成绩能达到良好及以上等级学生人数的占比可得答案.【小问1详解】解:6040%=150¸(人),∴参与本次测试的学生人数为150人,45100%=30%150´,∴30m =;故答案为:150人;30;【小问2详解】∵1504560540---=(人),的补全图形如下:.【小问3详解】45+6050003500150´=(人);∴全区该年纪共有5000名学生,请估计该年级对科学知识掌握情况较好(测试成绩能达到良好及以上等级)的学生人数有3500人.【点睛】本题考查的是从条形图与扇形图中获取信息,利用样本估计总体,能够正确的读图是解本题的关键.22. 几位同学在老师的指导下到某景区进行户外实践活动,在登山途中发现该景区某两座山之间风景优美,但路陡难行,为了便于建议景区管理处在这两山顶间建观光索道,他们分别在两山顶上取A 、B 两点,并过点B 架设一水平线型轨道CD (如图所示),使得ABC a Ð=,从点B 出发按CD 方向前进20米到达点E ,即20BE =米,测得AEB b Ð=.已知24sin 25a =,tan 3b =,求A 、B 两点间的距离.【答案】A 、B 两点间的距离为500米.【解析】【分析】如图,过A 作AQ CD ^于Q ,由2425AQ AB =,设24AQ x =,则25AB x =,可得7BQ x ==,而20BE =,可得720QE QB BE x =+=+,结合3AQ QE=,即3AQ QE =,再建立方程求解即可.【详解】解:如图,过A 作AQ CD ^于Q ,∵24sin 25a =,即2425AQ AB =,设24AQ x =,则25AB x =,∴7BQ x ==,而20BE =,∴720QE QB BE x =+=+,∵tan 3b =,∴3AQ QE=,即3AQ QE =,∴()243720x x =+,解得:20x =,∴252520500AB x ==´=(米),答:A 、B 两点间的距离为500米.【点睛】本题考查的是解直角三角形的实际应用,作出合适的辅助线构建直角三角形是解本题的关键.五、解答题(本大题共2小题,每小题9分,共18分)23. 为落实“五育并举”,绿化美化环境,学校在劳动周组织学生到校园周边种植甲、乙两种树苗.已知购买甲种树苗3棵,乙种树苗2棵共需12元,;购买甲种树苗1棵,乙种树苗3棵共需11元.(1)求每棵甲、乙树苗的价格.(2)本次活动共种植了200棵甲、乙树苗,假设所种的树苗若干年后全部长成了参天大树,并且平均每棵树的价值(含生态价值,经济价值)均为原来树苗价的100倍,要想获得不低于5万元的价值,请问乙种树苗种植数量不得少于多少棵?【答案】(1)每棵甲种树苗的价格为2元,每棵乙种树苗的价格3元;(2)乙种树苗种植数量不得少于100棵.【解析】【分析】(1)设每棵甲种树苗的价格为x 元,每棵乙种树苗的价格y 元,由“购买甲种树苗3棵,乙种树苗2棵共需12元,;购买甲种树苗1棵,乙种树苗3棵共需11元”列出方程组,可求解;(2)设乙种树苗种植数量为m 棵,则甲种树苗数量为()200m -棵,根据“获得不低于5万元的价值”列不等式解题即可.【小问1详解】解:设每棵甲种树苗的价格为x 元,每棵乙种树苗的价格y 元, 由题意可得:3212311x y x y +=ìí+=î, 解得:23x y =ìí=î, 答:每棵甲种树苗的价格为2元,每棵乙种树苗的价格3元;【小问2详解】设乙种树苗种植数量为m 棵,则甲种树苗数量为()200m -棵,∴()20020030050000m m -+³,解得:100m ³,∴m 的最小整数解为100.答:乙种树苗种植数量不得少于100棵.【点睛】本题考查的是二元一次方程组的应用,一元一次不等式的应用,熟练的确定相等关系与不等关系是解本题的关键.24. 如图1,点G 为等边ABC V 的重心,点D 为BC 边的中点,连接GD 并延长至点O ,使得DO DG =,连接GB ,GC ,OB ,OC(1)求证:四边形BOCG 为菱形.(2)如图2,以O 点为圆心,OG 为半径作Oe ①判断直线AB 与O e 的位置关系,并予以证明.②点M 为劣弧BC 上一动点(与点B 、点C 不重合),连接BM 并延长交AC 于点E ,连接CM 并延长交AB 于点F ,求证:AE AF +为定值.【答案】(1)见解析;(2)①直线AB 是O e 的切线;②见解析.【解析】【分析】(1)如图1,延长BG 交AC 于点H ,连接AD ,由ABC V 是等边三角形,G 是重心,点D 为BC 边的中点,得AD ⟂BC ,DB DC =,进而证明四边形BOCG 是平行四边形,于是即可得四边形BOCG 为菱形;(2)①延长BG 交AC 于点H ,连接AD ,先证BG 为ABC Ð的角平分线,进而求得30ABG GBO ÐÐ==°,又由菱形的性质得30CBO GBC ÐÐ==°,从而有90ABO ABG GBC CBO ÐÐÐÐ=++=°,于是根据切线的判定即可得出结论;②在优弧BC 上取一点N ,连接BN 、CN ,由①得30OBC Ð=°,进而求得N Ð=1260BOC Ð=°,再由圆内接四边形的性质求得180120BMC N ÐÐ=°-=°,从而根据角的和差关系求得ACF CBE ÐÐ=,于是证明()BEC CFA ASA V V ≌得AF CE =,即可证明结论成立.【小问1详解】证明:如图1,延长BG 交AC 于点H ,连接AD ,∵ABC V 是等边三角形,G 是重心,点D 为BC 边的中点,∴中线AD 过点G ,即A 、G 、D 三点共线,60BAC ABC ÐÐ==°,AB AC BC ==,∴AD ⟂BC ,DB DC =,∵DO DG =,∴四边形BOCG 是平行四边形,∵AD ⟂BC ,∴四边形BOCG 为菱形;【小问2详解】①解:直线AB 是O e 的切线,理由如下:延长BG 交AC 于点H ,连接AD ,∵ABC V 是等边三角形,G 是重心,点D 为BC 边的中点,∴中线AD 过点G ,即A 、G 、D 三点共线,60BAC ABC ACB ÐÐÐ===°,AB AC BC ==,AH CH =,∴BG 为ABC Ð的角平分线,∴30ABG GBO ÐÐ==°,∵四边形BOCG 是菱形,∴30CBO GBC ÐÐ==°,∴90ABO ABG GBC CBO ÐÐÐÐ=++=°,∴AB OB ^,∴直线AB 是O e 的切线;②证明:在优弧BC 上取一点N ,连接BN 、CN ,由①得30OBC Ð=°,∵OB OC =,∴30OBC OCB ÐÐ==°,∴180120BOC OBC OCB ÐÐÐ=°--=°,∴N Ð=1260BOC Ð=°,∵四边形BNCM 内接于O e ,∴180120BMC N ÐÐ=°-=°,∴18060CBE BCM BMC ÐÐÐ+=°-=°,∵60ACB ACF BCM ÐÐÐ=+=°,∴ACF BCM CBE BCM ÐÐÐÐ+=+,∴ACF CBE ÐÐ=,∵BC AC =,60BCE A ÐÐ==°,∴()ASA BEC CFA V V ≌∴AF CE=∵AE CE AC+=∴AE AF AE CE AC +=+=,即AE AF +为定值.【点睛】本题主要考查了全等三角形的判定及性质,等边三角形的性质,重心的性质,切线的判定以及菱形的判定,熟练掌握菱形的判定,全等三角形的判定及性质,等边三角形的性质,重心的性质以及切线的判定定理是解题的关键.六、综合题(本大题共2小题,每小题10分,共20分)25. 鲜艳的中华人民共和国国旗始终是当代中华儿女永不褪色的信仰,国旗上的每颗星都是标准五角星.为了增强学生的国家荣誉感、民族自豪感等.数学老师组织学生对五角星进行了较深入的研究.延长正五边形的各边直到不相邻的边相交,得到一个标准五角星.如图,正五边形ABCDE 的边BA DE 、的延长线相交于点F ,EAF Ð的平分线交EF 于点M .(1)求证:2AE EF EM =⋅.(2)若1AF =,求AE 的长.(3)求ABCDEAEF S S 正五边形△的值.【答案】(1)见解析 (2)AE = (3【解析】【分析】(1)根据正多边形的性质可以得到72FAE FEA Ð=Ð=°,再利用三角形的内角和以及角平分线的定义得到MAE F Ð=Ð,再根据FEA AEM Ð=Ð,可得到AEM FEA V V ∽,进而得到结论;(2)根据等角对等边可以得到1AF FE ==,AE AM FM ==,再由(1)得结论得到()211AE AE =´-,解方程可以求出结果;(3)设AEF S S =V ,AF a =连接AD ,AC ,根据正多边形可以推导出AFE ACD V V ≌,ABC AED V V ≌,则可表示出ABCDE S 正五边形,然后求出比值.【小问1详解】证明:∵ABCDE 是正五边形,∴360725FAE FEA °Ð=Ð==°,∴180180727236F FAE FEA Ð=°-Ð-Ð=°-°-°=°,又∵EAF Ð的平分线交EF 于点M ,∴11723622FAM MAE FAE Ð=Ð=Ð=´°=°,∴MAE F Ð=Ð,又∵FEA AEM Ð=Ð,∴AEM FEA V V ∽,∴AE ME FE AE=,即2AE EF EM =⋅;【小问2详解】解:∵36F FAM Ð=Ð=°,∴72AME Ð=°,∴1AF FE ==,AE AM FM ==,∵2AE EF EM =⋅,∴()211AE AE =´-,解得:AE =或AE =(舍去),∴AE =;小问3详解】设AEF S S =V ,AF a =,连接AD ,AC ,则根据(2)中计算可得AE =,∵ABCDE 是正五边形,∴108AB BC CD DE EA BAE AED EDC DCB CBA =====Ð=Ð=Ð=Ð=Ð=°,,∴36BAC BCA EDA EAD Ð=Ð=Ð=Ð=°,∴72ACD ADC Ð=Ð=°,∴AFE ACD V V ≌,ABC AED V V ≌,∴ADE AEF S ED S EF ==V V ,∴ADE S =V ,【∴ADE ADC ABC ABCDE S S S S S S =++=++=V V V 正五边形,∴ABCDEAEF S S ==V 正五边形. 【点睛】本题考查相似三角形的判定和性质,解一元二次方程,全等三角形的判定和性质,正多边形的性质,掌握相似三角形的判定和性质是解题的关键.26. 如图,抛物线2y x bx c =++过点()1,0A -、点()5,0B ,交y 轴于点C .(1)求b ,c 的值.(2)点()()000,05P x y x <<是抛物线上的动点①当0x 取何值时,PBC V 的面积最大?并求出PBC V 面积的最大值;②过点P 作PE x ^轴,交BC 于点E ,再过点P 作PF x ∥轴,交抛物线于点F ,连接EF ,问:是否存在点P ,使PEF !为等腰直角三角形?若存在,请求出点P 的坐标;若不存在,请说明理由.【答案】(1)4b =-,5c =-(2)①当052x =时,PBC V 的面积由最大值,最大值为1258;②当点P的坐标为或()4,5-时,PEF !为等腰直角三角形【解析】【分析】(1)将将()1,0A -、()5,0B 代入抛物线2y x bx c =++即可求解;(2)①由(1)可知:245y x x =--,得()0,5C -,可求得BC 的解析式为5y x =-,过点P 作PE x ^轴,交BC 于点E ,交x 轴于点Q ,易得20005E PE y y x x =-=-+,根据PBC V 的面积PECPEB S S =+△△,可得PBC V 的面积()()001122C B PE x x PE x x =⋅-+⋅-2055125228x æö=--+ç÷èø,即可求解;②由题意可知抛物线的对称轴为4221x -=-=´对,则04F x x =-,分两种情况:当点P 在对称轴左侧时,即002x <<时,当点P 在对称轴右侧时,即025x <<时,分别进行讨论求解即可.【小问1详解】解:将()1,0A -、()5,0B 代入抛物线2y x bx c =++中,可得:102550b c b c -+=ìí++=î,解得:45b c =-ìí=-î,即:4b =-,5c =-;【小问2详解】①由(1)可知:245y x x =--,当0x =时,5y =-,即()0,5C -,设BC 的解析式为:y kx b =+,将()5,0B ,()0,5C -代入y kx b =+中,可得505k b b +=ìí=-î,解得:15k b =ìí=-î,∴BC 的解析式为:5y x =-,过点P 作PE x ^轴,交BC 于点E ,交x 轴于点Q ,∵()()000,05P x y x <<,则200045y x x =--,∴点E 的横坐标也为0x ,则纵坐标为05E y x =-,∴()()220000005455E PE y y x x x x x =-=----=-+,PBC V 的面积PEC PEBS S =+△△()()001122C B PE x x PE x x =⋅-+⋅-()12B C PE x x =⋅-()200552x x =-+2055125228x æö=--+ç÷èø,∵502-<,∴当052x =时,PBC V 的面积有最大值,最大值为1258;②存在,当点P的坐标为或()4,5-时,PEF !为等腰直角三角形.理由如下:由①可知2005PE x x =-+,由题意可知抛物线的对称轴为直线4221x -=-=´对,∵PF x ∥轴,∴90EPF Ð=°,022F x x x +==对,则04F x x =-,当点P 在对称轴左侧时,即002x <<时,0042F PF x x x =-=-,当PE PF =时,PEF !为等腰直角三角形,即:2000254x x x -+=-,整理得:200740x x -+=,解得:0x =(02x =>,不符合题意,舍去)此时200045y x x =--=P ;当点P 在对称轴右侧时,即025x <<时,0024F PF x x x =-=-,当PE PF =时,PEF !为等腰直角三角形,即:2000452x x x -+=-,整理得:200340x x --=,解得:04x =(012x =-<,不符合题意,舍去)此时:2044455y =-´-=-,即点()4,5P -;综上所述,当点P的坐标为或()4,5-时,PEF !为等腰直角三角形.【点睛】本题二次函数综合题,考查了利用待定系数法求函数解析式,二次函数的性质及图象上的点的特点,等腰直角三角形的性质,解本题的关键是表示出点的坐标,进行分类讨论.。
湖南省中考数学试题及答案

湖南省中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是二次函数的图像?A. 一条直线B. 一个圆C. 一个抛物线D. 一个立方体答案:C2. 一个等边三角形的内角和是多少度?A. 90°B. 180°C. 360°D. 540°答案:B3. 一个数的绝对值总是:A. 负数B. 非负数C. 正数D. 零答案:B4. 如果一个角是30°,那么它的补角是多少度?A. 60°C. 120°D. 150°答案:C5. 以下哪个表达式可以简化为0?A. 3x - 3xB. 2x + 3xC. 4x - 2xD. 5x - 3x答案:A6. 一个圆的周长是2πr,那么它的面积是多少?A. πr²B. 2πr²C. πrD. 2πr答案:A7. 一个数的立方根是它本身的数是:A. 1B. -1C. 0D. A和B都是答案:D8. 以下哪个选项是不等式2x + 3 > 7的解?B. x < 2C. x > -2.5D. x < -2.5答案:C9. 一个等腰三角形的两个底角相等,如果一个底角是40°,那么顶角是多少度?A. 100°B. 80°C. 60°D. 40°答案:B10. 以下哪个选项是方程x² - 5x + 6 = 0的解?A. x = 2B. x = 3C. x = 2 或 x = 3D. x = -2 或 x = -3答案:C二、填空题(每题3分,共15分)11. 一个数的平方根是它本身的数是______。
答案:012. 一个数的相反数是它本身的数是______。
答案:013. 一个数的倒数是它本身的数是______。
答案:1 或 -114. 如果一个三角形的两边长分别是3和4,那么第三边的长x满足的不等式是______。
2023年湖南省永州市中考数学真题(解析版)

永州市2023年初中学业水平考试数学(试题卷)一、选择题(本大题共10个小题,每小题4分,共40分.每个小题只有一个正确选项,请将正确的选项填涂到答题卡上)1. 我国古代数学名著《九章算术》中对正负数的概念注有“今两算得失相反,要令正负以名之”、如:粮库把运进30吨粮食记为“30+”,则“30-”表示( )A. 运出30吨粮食B. 亏损30吨粮食C. 卖掉30吨粮食D. 吃掉30吨粮食【答案】A【解析】【分析】根据题意明确“正”和“负”所表示的意义,再根据题意即可求解.【详解】解:粮库把运进30吨粮食记为“30+”,则“30-”表示运出30吨粮食.故选:A【点睛】本题考查了正负数的意义,理解“正”和“负”分别表示相反意义的量是解题关键.2. 企业标志反映了思想、理念等企业文化,在设计上特别注重对称美,下列企业标志图为中心对称图形的是( )A. B. C. D.【答案】C【解析】【分析】根据中心对称图形的定义进行逐一判断即可:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.【详解】解:A .不是中心对称图形,故此选项不合题意;B .不是中心对称图形,故此选项不合题意;C .是中心对称图形,故此选项符合题意;D .不是中心对称图形,故此选项不合题意;故选C .【点睛】本题主要考查了中心对称图形的定义,解题的关键在于能够熟练掌握中心对称图形的定义.3. 下列多边形中,内角和等于360°的是( )A. B. C. D.【答案】B【解析】【分析】根据n 边形内角和公式()2180n -×°分别求解后,即可得到答案【详解】解:A .三角形内角和是180°,故选项不符合题意;B .四边形内角和为()42180360-´°=°,故选项符合题意;C .五边形内角和()52180540-´°=°,故选项不符合题意;D .六边形内角和为()62180720-´°=°,故选项不符合题意.故选:B .【点睛】此题考查了n 边形内角和,熟记n 边形内角和公式()2180n -×°是解题的关键.4. 关于x 的一元一次方程25x m +=的解为1x =,则m 的值为( )A. 3B. 3-C. 7D. 7-【答案】A【解析】【分析】把1x =代入25x m +=再进行求解即可.【详解】解:把1x =代入25x m +=得:25m +=,解得:3m =.故选:A .【点睛】本题主要考查了一元一次方程的解,以及解一元一次方程,解题的关键是掌握使一元一次方程左右两边相等的未知数的值是一元一次方程的解,以及解一元一次方程的方法和步骤.5. 下列各式计算结果正确的是( )A. 2325x x x +=B. 3=±C. ()2222x x =D. 1122-=【答案】D【解析】【分析】根据合并同类项的运算法则,二次根式的运算,积的乘方运算法则,以及负整数幂运算法则,逐个进行计算即可.【详解】解:A 、325x x x +=,故A 不正确,不符合题意;B3=,故B 不正确,不符合题意;为C 、()2224x x =,故C 不正确,不符合题意;D 、1122-=,故D 正确,符合题意;故选:D .【点睛】本题主要考查了合并同类项的运算法则,二次根式的运算,积的乘方运算法则,以及负整数幂运算法则,解题的关键是熟练掌握相关运算法则并熟练运用.6. 下列几何体中,其三视图的主视图和左视图都为三角形的是( )A. B. C.D.【答案】D【解析】【分析】根据三视图的意义判断即可.【详解】A. 主视图和左视图都为长方形,不符合题意;B. 主视图和左视图都为长方形,不符合题意;C. 主视图和左视图都为长方形,不符合题意;D. 主视图和左视图都为三角形,符合题意,故选D .【点睛】本题考查了几何体的三视图,熟练掌握三视图的意义是解题的关键.7. 某县2020年人均可支配收入为2.36万元,2022年达到2.7万元,若2020年至2022年间每年人均可支配收入的增长率都为x ,则下面所列方程正确的是( )A. ()22.71 2.36x += B. ()22.361 2.7x +=C. ()22.71 2.36x -= D. ()22.361 2.7x -=【答案】B【解析】【分析】设2020年至2022年间每年人均可支配收入的增长率都为x ,根据题意列出一元二次方程即可.【详解】解:设2020年至2022年间每年人均可支配收入的增长率都为x ,根据题意得,()22.361 2.7x +=,故选:B .【点睛】本题考查了一元二次方程的应用,根据题意列出一元二次方程是解题的关键.8. 今年2月,某班准备从《在希望的田野上》《我和我的祖国》《十送红军》三首歌曲中选择两首进行排练,参加永州市即将举办的“唱响新时代,筑梦新征程”合唱选拔赛,那么该班恰好选中前面两首歌曲的概率是( )A. 12 B. 13 C. 23 D. 1【答案】B【解析】【分析】根据概率公式,即可解答.【详解】解:从三首歌曲中选择两首进行排练,有《在希望的田野上》《我和我的祖国》、《在希望的田野上》《十送红军》、《我和我的祖国》《十送红军》共三种选择方式,故选到前两首的概率是13,故选:B .【点睛】本题考查了根据概率公式计算概率,排列出总共可能的情况的数量是解题的关键.9. 已知点()2,M a 在反比例函数k y x =的图象上,其中a ,k 为常数,且0k >﹐则点M 一定在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】A【解析】【分析】根据反比例函数中的0k >,可知反比例函数经过第一、三象限,再根据点M 点的横坐标判断点M 所在的象限,即可解答【详解】解:0k >Q ,\反比例函数k y x=的图象经过第一、三象限,故点M 可能第一象限或者第三象限,()2,M a Q 的横坐标大于0,()2,M a \一定在第一象限,故选:A .在【点睛】本题考查了判断反比例函数所在的象限,判断点所在的象限,熟知反比例函数的图象所经过的象限与k 值的关系是解题的关键.10. 如图,在Rt ABC △中,90C Ð=°,以B 为圆心,任意长为半径画弧,分别交AB ,BC 于点M ,N ,再分别以M ,N 为圆心,大于12MN 的定长为半径画弧,两弧交于点P ,作射线BP 交AC 于点D ,作DE AB ^,垂足为E ,则下列结论不正确的是( )A. BC BE= B. CD DE = C. BD AD = D. BD 一定经过ABC V 的内心【答案】C【解析】【分析】根据作图可得BP 是CBA Ð的角平分线,根据角平分线的性质得出DC DE =,即可判断B ,证明Rt Rt BCD BED △≌△,根据全等三角形的性质,即可判断A ,根据三角形内心的定义,即可判断D 选项,假设BD AD =成立,得出30A Ð=°,即可判断C 选项.【详解】解:根据作图可得BP 是CBA Ð的角平分线,点D 在BP 上,,DC BC DE AB ^^,∴DC DE =,故B 选项正确,在Rt ,Rt BCD BED V V 中,CD DE BD BD =ìí=î,∴Rt Rt BCD BED △≌△()HL ,∴BC BE =,故A 选项正确;∵BP 是CBA Ð的角平分线,三角形的内心是三条角平分线的交点,∴BD 一定经过ABC V 的内心,故D 选项正确;若BD AD =,则DB DA =,DBA A Ð=Ð,又DBC DBA Ð=Ð,则90A DBA DBC Ð+Ð+Ð=°,∴30A Ð=°,而题目没有给出这个条件,故C 选项不一定正确,故选:C .【点睛】本题考查了作角平分线,三角形角平分线的定义,全等三角形的性质与判定,三角形的内心的定义,熟练掌握基本作图是解题的关键.二﹑填空题(本大题共8个小题,每小题4分,共32分.请将答案填在答题卡的答案栏内)11. 0.5-,3,2-三个数中最小的数为_______.【答案】2-【解析】【分析】根据有理数比较大小的法则即可求出答案.【详解】解:Q 0.5-,2-,3三个数中,只有3是正数,\3最大.0.50.5-=Q ,22-=,0.5<2\,0.5>-2\-.2\-最小.故答案为:2-.【点睛】本题考查了有理数比较大小,解题关键在于熟练掌握有理数比较大小的方法:正数始终大于负数;两个负数比较,绝对值大的反而小.12. 22a 与4ab 的公因式为________.【答案】2a【解析】【分析】根据确定公因式的确定方法:系数取最大公约数;字母取公共字母;字母指数取最低次的,即可解答.【详解】解:根据确定公因式的方法,可得22a 与4ab 的公因式为2a ,故答案为:2a .【点睛】本题考查了公因式的确定,掌握确定公因式的方法是解题的关键.13. 已知x在实数的范围内没有意义的x 值是_______.【答案】1(答案不唯一)【解析】【分析】根据二次根式有意义的条件,可得当30x -<没有意义,解不等式,即可解答.的【详解】解:当30x -<没有意义,解得3x <,x Q 为正整数,x \可取1,2,故答案为:1.【点睛】本题考查了二次根式有意义的条件,熟知根号下的式子小于零时,二次根式无意义,是解题的关键.14. 甲、乙两队学生参加学校仪仗队选拔,两队队员的平均身高均为1.72m ,甲队队员身高的方差为1.2,乙队队员身高的方差为5.6,若要求仪仗队身高比较整齐,应选择_______队较好.【答案】甲【解析】【分析】根据方差的意义判断即可.【详解】∵221.2 5.6S S ==甲乙,,∴22S S <甲乙,∴估计这两支仪仗队身高比较整齐的是甲,故答案为:甲.【点睛】本题主要考查样本估计总体、方差,解题的关键是掌握方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.15. 如图,,,80AB CD BC ED B Ð=°∥∥,则D Ð=_______度.【答案】100【解析】【分析】根据,80AB CD B Ð=°∥,得出80C Ð=°,根据BC ED ∥,即可得出180D C Ð=°-Ð,即可求解.【详解】解:∵,80AB CD B Ð=°∥,∴80C B Ð=Ð=°,∵BC ED ∥,∴180********D C Ð=°-Ð=°-°=°,故答案为:100.【点睛】本题主要考查了平行线的性质,解题的关键是熟练掌握两直线平行,内错角相等,同旁内角互补.16. 若关于x 的分式方程1144m x x -=--(m 为常数)有增根,则增根是_______.【答案】4x =【解析】【分析】根据使分式的分母为零的未知数的值,是方程的增根,计算即可.【详解】∵关于x 的分式方程1144m x x-=--(m 为常数)有增根,∴40x -=,解得4x =,故答案为:4x =.【点睛】本题考查了分式方程的解法,增根的理解,熟练掌握分式方程的解法是解题的关键.17. 已知扇形的半径为6,面积为6π,则扇形圆心角的度数为_________度.【答案】60【解析】【分析】根据扇形的面积公式即可求出答案.【详解】解:设扇形圆心角的度数为n ,2S 6360n R p p \==扇形,Q 扇形的半径为6,266360n p p ´\=60n \=°.故答案为:60.【点睛】本题考查了扇形的面积公式,解题的关键在于熟练掌握扇形的面积公式:2S 360n R p =扇形 .18. 如图,O e 是一个盛有水的容器的横截面,O e 的半径为10cm .水的最深处到水面AB 的距离为4cm ,则水面AB 的宽度为_______cm .【答案】16【解析】【分析】过点O 作OD AB ^于点D ,交O e 于点E ,则12AD DB AB ==,依题意,得出6OD =,进而在Rt AOD V 中,勾股定理即可求解.【详解】解:如图所示,过点O 作OD AB ^于点D ,交O e 于点E ,则12AD DB AB ==,∵水的最深处到水面AB 的距离为4cm ,O e 的半径为10cm .∴1046OD =-=cm ,在Rt AOD V 中,8AD ===cm∴216AB AD ==cm故答案为:16.【点睛】本题考查了垂径定理的应用,勾股定理,熟练掌握垂径定理是解题的关键.三、解答题(本大题共8个小题,共8分.解答应写出必要的文字说明、证明过程或演算步骤)19. 解关于x 的不等式组()2203172x x x->ìí--<-î【答案】12x <<【解析】【分析】分别解不等式组的两个不等式,再取两个不等式的解集的公共部分,即为不等式组的解集.【详解】解:()2203172x x x ->ìïí--<-ïî①②,解①得,1x >,解②得,2x <,\原不等式组的解集为12x <<.【点睛】本题考查了解一元一次不等式组的解集,取两个不等式的解集的公共部分的口诀为:“大大取大,小小取小,大小小大取中间,大大小小则无解”,熟知上述口诀是解题的关键.20. 先化简,再求值:211121x x x x æö-¸ç÷+++èø,其中2x =.【答案】1;3x +【解析】【分析】先对分式通分、因式分解、约分等化简,化成最简分式,后代入求值.【详解】211121x x x x æö-¸ç÷+++èø()211x x x x+=´+1x =+;当2x =时,原式213=+=.【点睛】本题考查了分式的化简求值,运用因式分解,通分,约分等技巧化简是解题的关键.21. 如图,已知四边形ABCD 是平行四边形,其对角线相交于点O ,3,8,5OA BD AB ===.(1)AOB V 是直角三角形吗?请说明理由;(2)求证:四边形ABCD 是菱形.【答案】(1)AOB V 是直角三角形,理由见解析.(2)见解析【解析】【分析】(1)根据平行四边形对角线互相平分可得142BO BD ==,再根据勾股定理的逆定理,即可得出结论;(2)根据对角线互相垂直的平行四边形是菱形,即可求证.【小问1详解】解:AOB V 是直角三角形,理由如下:∵四边形ABCD 是平行四边形,∴142BO BD ==,∵222222345OA OB AB +=+==,∴AOB V 是直角三角形.【小问2详解】证明:由(1)可得:AOB V 是直角三角形,∴90AOB Ð=°,即AC BD ^,∵四边形ABCD 是平行四边形,∴四边形ABCD 是菱形.【点睛】本题主要考查了平行四边形的性质,勾股定理的逆定理,菱形的判定,解题的关键是掌握平行四边形对角线互相平分,对角线互相垂直的平行四边形是菱形.22. 今年3月27日是第28个全国中小学生安全教育日.某市面向中小学生举行了一次关于心理健康、预防欺凌、防漏水、应急疏散等安全专题知识竞赛,共有18360名学生参加本次竞赛.为了解本次竞赛成绩情况,随机抽取了n 名学生的成绩x (成绩均为整数,满分为100分)分成四个组:1组()6070x £<、2组()7080x £<、3组()8090x £<、4组()90100x £<,并绘制如下图所示频数分布图(1)n =______;所抽取的n 名学生成绩的中位数在第_____组;(2)若成绩在第4组才为优秀,则所抽取的n 名学生中成绩为优秀的频率为______;(3)试估计18360名参赛学生中,成绩大于或等于70分的人数.【答案】(1)600,3(2)25%(3)成绩大于或等于70分的人数约为15606人【解析】【分析】(1)将各组的频数相加,即可求出n 的值,再根据中位数的定义,即可得出中位数所在组数;(2)用第4组的频数除以抽取的学生总数,即可求解;(3)用总人数乘以成绩大于或等于70分的人数所占百分比,即可求解.【小问1详解】解:90160200150600n =+++=,∵6002300¸=,∴抽取的n 名学生成绩的中位数为第300名学生和第301名学生成绩的平均数,∵90160250300+=<,90160200450300++=>,∴抽取的n 名学生成绩的中位数在第3组;故答案为:600,3;【小问2详解】解:所抽取的n 名学生中成绩为优秀的频率150100%25%600=´=,故答案为:25%;小问3详解】解:1602001501836015606600++´=(人),答:成绩大于或等于70分的人数约为15606人.【点睛】本题主要考查了频数和频率的定义,用样本估计总体,解题的关键是正确识别统计图,根据统计图,获取需要数据进行求解.23. 永州市道县陈树湘纪念馆中陈列的陈树湘雕像高2.9米(如图1所示),寓意陈树湘为中国革命“断肠明志”牺牲时的年龄为29岁.如图2,以线段AB 代表陈树湘雕像,一参观者在水平地面BN 上D 处为陈树湘雕拍照,相机支架CD 高0.9米,在相机C 处观测雕像顶端A 的仰角为45°,然后将相机架移到MN 处拍照,在相机M 处观测雕像顶端A 的仰角为30°,求D 、N 两点间的距离(结果精确到0.1米,参考数1.732»)【【答案】1.5【解析】【分析】如图, 2.9AB =,0.9CD =,四边形EBNM ,四边形EBDC 是矩形,四边形CDNM 是矩形,Rt AEC △中,45ACE Ð=°,2AE AB EB =-=,2EC AE ==,Rt AEM △中,30AME Ð=°,tan 30AE EM °==EM ==,进一步求得 1.5CM EM EC =-»,所以1.5DN CM ==.【详解】如图, 2.9AB =米,0.9CD =米四边形EBNM ,四边形EBDC 是矩形,四边形CDNM 是矩形∴0.9EB CD MN ===米,DN CM=∵Rt AEC △中,45ACE Ð=°,∴ 2.90.92AE AB EB AB CD =-=-=-=米,∴2EC AE ==米∵Rt AEM △中,30AME Ð=°,∴tan 30AE EM °==∴EM ==米∴22 1.7322 1.5CM EM EC =-=»´-»米∴ 1.5DN CM ==米【点睛】本题考查解直角三角形,矩形的判定和性质,观察图形,确定组合图形中,通过直角三角形、矩形之间的位置关系确定线段间的数量关系是解题的关键.24. 小明观察到一个水龙头因损坏而不断地向外滴水,为探究其漏水造成的浪费情况,小明用一个带有刻度的量筒放在水龙头下面装水,每隔一分钟记录量简中的总水量,但由于操作延误,开始计时的时候量筒中已经有少量水,因而得到如下表的一组数据:时间t (单位:分钟)12345…总水量y (单位:毫升)712172227…(1)探究:根据上表中的数据,请判断k y t=和y kt b =+(k ,b 为常数)哪一个能正确反映总水量y 与时间t 的函数关系?并求出y 关于t 的表达式;(2)应用:①请你估算小明在第20分钟测量时量筒的总水量是多少毫升?②一个人一天大约饮用1500毫升水,请你估算这个水龙头一个月(按30天计)的漏水量可供一人饮用多少天.【答案】(1)y kt b =+能正确反映总水量y 与时间t 的函数关系;52y t =+(2)①102毫升;②144天【解析】【分析】(1)观察表格,可发现前一分钟比后一分钟少5毫升的水,故可得y kt b =+能正确反映总水量y 与时间t 的函数关系,再选取两组数据代入函数解析式,根据待定系数法,即可得到y 关于t 的表达式;(2)①将20t =代入函数,即可解答;②由解析式可知,每分钟滴水量为5毫升,故可算出1个月的总滴水量,再除以一个人每天的饮水量,即可解答.【小问1详解】解:观察表格,可发现前一分钟比后一分钟少5毫升的水,故可得y kt b =+能正确反映总水量y 与时间t 的函数关系,把17t y =ìí=î,212t y =ìí=î代入y kt b =+,可得7122k b k b =+ìí=+î,解得52k b =ìí=î,\y 关于t 的表达式52y t =+;【小问2详解】①当20t =时,5202102y =´+=,故小明在第20分钟测量时量筒的总水量是102毫升,答:小明在第20分钟测量时量筒的总水量是102毫升.②由解析式可知,每分钟的滴水量为5毫升,30天()302460=´´分钟43200=分钟,可供一人饮水天数4320051441500´=天,答:这个水龙头一个月(按30天计)的漏水量可供一人饮用144天.【点睛】本题考查了待定系数法求一次函数,一次函数的应用,正确读懂题意,求得正确的一次函数解析式是解题的关键.25. 如图,以AB 为直径的O e 是ABC V 的外接圆,延长BC 到点D .使得BAC BDA Ð=Ð,点E 在DA 的延长线上,点AM 在线段AC 上,CE 交BM 于N ,CE 交AB 于G .(1)求证:ED 是O e 的切线;(2)若5,AC BD AC CD ==>,求BC 的长;(3)若DE AM AC AD ×=×,求证:BM CE ^.【答案】(1)证明见解析(2)3(3)证明见解析【解析】【分析】(1)由AB 是O e 的直径得到90ACB Ð=°,则90BAC ABC Ð+Ð=°,由BAC BDA Ð=Ð得到90BDA ABC Ð+Ð=°,则90BAD Ð=°,结论得证;(2)证明ACB DCA V V ∽,则BC AC AC AC DC BD BC ==-=,解得2BC =或3,由AC CD >即可得到BC 的长;(3)先证明ABC DAC △∽△,则AC AB DC AD=,得到AC AD CD AB ×=×,由DE AM AC AD ×=×得到DE AM CD AB ×=×,则AM AB DC DE=,由同角的余角相等得到BAM CDE Ð=Ð,则AMB DCE V V ∽,得E ABM Ð=Ð,进一步得到90EGA E ABM BGN Ð+Ð=Ð+Ð=°,则90BNG Ð=°,即可得到结论.【小问1详解】证明:∵AB 是O e 的直径,∴90ACB Ð=°,∴90BAC ABC Ð+Ð=°,∵BAC BDA Ð=Ð,∴90BDA ABC Ð+Ð=°,∴90BAD Ð=°,∴ED 是O e 的切线;【小问2详解】∵BAC BDA Ð=Ð,90ACB DCA Ð=Ð=°,∴ACB DCA V V ∽,∴BC AC AC AC DC BD BC==-,=,解得2BC =或3,当2BC =时,3CD BD BC =-=,当3BC =时,2CD BD BC =-=,∵AC CD >CD >,∴3BC =;【小问3详解】证明:∵AB 是O e 的直径,∴90ACB DCA Ð=Ð=°,∵BAC BDA Ð=Ð,∴ABC DAC △∽△,∴AC AB DC AD=,∴AC AD CD AB ×=×,∵DE AM AC AD ×=×,∴DE AM CD AB ×=×,∴AM AB DC DE=,∵BAM CDE Ð=Ð,∴AMB DCE V V ∽,∴E ABM Ð=Ð,∵EGA BGN Ð=Ð,∴90EGA E ABM BGN Ð+Ð=Ð+Ð=°,∴90BNG Ð=°,∴BM CE ^.【点睛】此题考查了相似三角形的判定和性质、圆周角定理、切线的判定定理等知识,熟练掌握相似三角形的判定和性质是解题的关键.26. 如图1,抛物线2y ax bx c =++(a ,b ,c 为常数)经过点()0,5F ,顶点坐标为()2,9,点()11,P x y 为抛物线上的动点,PH x ^轴于H ,且152x ³.(1)求抛物线的表达式;(2)如图1,直线11:y OP y x x =交BF 于点G ,求BPG BOGS S △△的最大值;(3)如图2,四边形OBMF 为正方形,PA 交y 轴于点E ,BC 交FM 的延长线于C ,且,BC BE PH FC ^=,求点P 的横坐标.【答案】(1)245y x x =-++(2)54(3【解析】【分析】(1)根据顶点式坐标公式和待定系数法分别求出a ,b ,c 值,即可求出抛物线解析式.(2)利用抛物线的解析式可知道B 点坐标,从而求出直线BF 的解析式,从而设(),5G m m -+,根据直线OP 的解析式11y y x x =可推出1115x m x y =+,从而可以用11,x y 表达GT 长度,在观察图形可知1BPG BOG S PH S GT=-△△,将其GT 和PH 长度代入,即可将面积比转化成二次函数的形式,根据P 横坐标取值范围以及此二次函数的图像性质即可求出BPG BOGS S △△的最大值.(3)根据正方形的性质和FC PH =可求出PT MC =,再利用EOB CMB V V ≌相似和OB MB =可推出OE MC =,设()0,E d ,即可求出直线AP 的解析式,用a 表达P 点的横纵坐标,最后代入抛物线解析式,求出d 的值即可求出P 点横坐标.【小问1详解】解:Q 抛物线2y ax bx c =++(a ,b ,c 为常数)经过点()0,5F ,顶点坐标为()2,9,5c \=,22b a -=,2494ac b a-=,242094b a a b a=-ìï\í-=ïî,14a b =-ì\í=î,\抛物线的解析式为:245y x x =-++.故答案为:245y x x =-++.【小问2详解】解:过点G 作GT x ^轴于点T ,如图所示,Q 抛物线的解析式为:245y x x =-++,且与x 轴交于A ,B 两点,()5,0B \,()0,5F Q ,设直线BF 的解析式为:y kx b =+¢,则505k b b +¢=ìí¢=î,15k b =-ì\í¢=î,\直线BF 的解析式为:5y x =-+.G Q 在直线BF 上,(),5G m m -+,Q G 在直线OP 上,OP 的解析式为:11y y x x =,115y m m x \-+=,1115x m x y \=+. 1111115555x y GT m x y x y \=-+=-+=++S S S BPG BPO BOG =-V V V Q,15S S S S 2=1111S S S 52BPG BPO BOG BPO BOG BOG BOG PH PH GT GT ´´-\=-=-=-´´V V V V V V V .Q 11111155y x y PH y GT x y +==+11S 11S 5BPG BOG x y PH GT +\=-=-V V ()2111,45P x x x -++Q ,22111111S 4515511S 55524BPG BOG x y x x x x +-++æö\=-=-=--+ç÷èøV V .152x ³Q ,105-<,\当52x =时, S S BPG BOG V V 有最大值,且最大值为:21555552244æö-´-+=ç÷èø .故答案为:54.【小问3详解】解:∵+BC BE ^,90MBC MBE \Ð+Ð=°,90OBE MBE \Ð+Ð=°,OBE MBC \Ð=Ð,90CMB EOB Ð=Ð=°Q ,MB BO =Q ,()EOB CMB ASA \V V ≌,设EO d =,()0,E d ,5PH FC FM MC d \==+=+,Q 抛物线的解析式为:245y x x =-++,且与x 轴交于A ,B 两点,()1,0A \-.设直线AP 的解析式为:y mx n =+,则0n d m n =ìí-+=î,m d n d =ì\í=î,\直线AP 的解析式为:y dx d =+.5PH d =+Q ,P 在直线AP 上,5d dx d \+=+,5x d\=,245x x dx d \-++=+,()()2450x d x d \+-+-=,()()1·50x x d éù\++-=ëû(十字相乘法),由5x d =,得:5d x=,()5150x x x æö++-=ç÷èø,()510,50x x x æö\+=+-=ç÷èø11x \=-,550x x+-=,即2550x x -+=,解得:2x =,3x =52x ³Q ,x \=P \点横坐标为:x=.【点睛】本题考查是二次函数的综合应用题,属于压轴题,解题的关键在于能否将面积问题和二次函数有效结合.的。
2023年湖南湘潭中考数学真题及答案

2023年湖南湘潭中考数学真题及答案考试时量:120分钟满分:120分考生注意:本试卷分试题卷和答题卡两部分,全卷共四道大题,26道小题.请考生将解答过程全部填(涂)写在答题卡上,写在试题卷上无效,考试结束后,将试题卷和答题卡一并上交.一、选择题(本大题共8个小题,每小题3分,共24分.在每小题给出的4个选项中,只有一项符合题目要求,请将正确答案的选项代号涂在答题卡相应的位置上)1.中国的汉字既象形又表意,不但其形美观,而且寓意深刻,观察下列汉字,其中是轴对称图形的是()A .爱B.我C.中D.华2.在实数范围内有意义,则x 的取值范围是()A.x <1B.x ≤1C.x >1D.x ≥13.下列计算正确的是()A.824a a a÷= B.23a a a+= C.()325a a = D.235a a a ⋅=4.某校组织青年教师教学竞赛活动,包含教学设计和现场教学展示两个方面.其中教学设计占20%,现场展示占80%.某参赛教师的教学设计90分,现场展示95分,则她的最后得分为()A .95分B.94分C.92.5分D.91分5.如图,菱形ABCD 中,连接AC BD ,,若120∠=︒,则2∠的度数为()A.20︒B.60︒C.70︒D.80︒6.如图,平面直角坐标系中,O 是坐标原点,点A 是反比例函数()0ky k x=≠图像上的一点,过点A 分别作AM x ⊥轴于点M ,AN y ⊥轴于直N ,若四边形AMON 的面积为2.则k 的值是()A.2B.2-C.1D.1-7.如图,圆锥底面圆的半径为4,则这个圆锥的侧面展开图中 AA '的长为()A.4πB.6πC.8πD.16π8.某校组织九年级学生赴韶山开展研学活动,已知学校离韶山50千米,师生乘大巴车前往,某老师因有事情,推迟了10分钟出发,自驾小车以大巴车速度的1.2倍前往,结果同时到达.设大巴车的平均速度为x 千米/时,则可列方程为()A.505011.26x x =+ B.505010 1.2x x+= C.5050101.2x x=+ D.501506 1.2x x+=二、选择题(本题共4小题,每小题3分,共12分.在每小题给出的4个选项中,有多项符合题目要求,全部选对的得3分,部分选对的得2分,有选错的得0分,请将正确答案的选项代号涂在答题卡相应的位置上)9.下列选项中正确的是()A.081= B.88-= C.()88--= D.=±10.2023年湘潭中考体育考查了投掷实心球的项目,为了解某校九年级男生投掷实心球水平.随机抽取了若干名男生的成绩(单位:米),列出了如下所示的频数分布表并绘制了扇形图:类别ABCDE成绩67x ≤<78x ≤<89x ≤<910x ≤<1011x ≤<频数2625125则下列说法正确的是()A.样本容量为50B.成绩在910x ≤<米的人数最多C.扇形图中C 类对应的圆心角为180︒D.成绩在78x ≤<米的频率为0.111.如图,AC 是O 的直径,CD 为弦,过点A 的切线与CD 延长线相交于点B ,若AB AC =,则下列说法正确的是()A.AD BC ⊥B.90CAB ∠=︒C.DB AB =D.12AD BC =12.如图,抛物线2y ax bx c =++与x 轴交于点()3,0,则下列结论中正确的是()A.0a >B.0c > C.240b ac -< D.930a b c ++=三、填空题(本题共4个小题,每小题3分,共12分.请将答案写在答题卡相应的位置上)13.5的点所表示的整数有__________.(写出一个即可)14.已知实数a ,b 满足()2210a b -++=,则b a =_________.15.如图,在Rt ABC △中,90C ∠=︒,按以下步骤作图:①以点A 为圆心,以小于AC 长为半径作弧,分别交,AC AB 于点M ,N ;②分别以M ,N 为圆心,以大于12MN 的长为半径作弧,在BAC ∠内两弧交于点O ;③作射线AO ,交BC 于点D .若点D 到AB 的距离为1,则CD 的长为__________.16.七巧板是我国民间广为流传的一种益智玩具,某同学用边长为4dm 的正方形纸板制作了一副七巧板(如图),由5个等腰直角三角形,1个正方形和1个平行四边形组成.则图中阴影部分的面积为__________3dm .四、解答题(本大题共10个小题,共72分.解答应写出文字说明、证明过程或演算步骤.请将解答过程写在答题卡相应位置上)17.解不等式组:()7140234x x x -≤⎧⎪⎨+>+⎪⎩①②,并把它的解集在数轴上表示出来.18.先化简,再求值:222119x x x x +⎛⎫+⋅ ⎪+-⎝⎭,其中6x =.19.在Rt ABC △中,90BAC AD ∠=︒,是斜边BC上的高.(1)证明:C ABD BA ∽△△;(2)若610AB BC ==,,求BD 的长.20.为落实“双减”政策要求,丰富学生课余生活,某校七年级根据学生需求,组建了四个社团供学生选择:A(合唱社团)、B(硬笔书法社团)、C(街舞社团)、D(面点社团).学生从中任意选择两个社团参加活动.(1)小明对这4个社团都很感兴趣,如果他随机选择两个社团,请列举出所有的可能结果;(2)小宇和小江在选择过程中,首先都选了社团C(街舞社团),第二个社团他俩决定随机选择,请用列表法或树状图求他俩选到相同社团的概率.21.教育部正式印发《义务教育劳动课程标准(2022年版)》,劳动课成为中小学的一门独立课程,湘潭市中小学已经将劳动教育融入学生的日常学习和生活中,某校倡导同学们从帮助父母做一些力所能及的家务做起,培养劳动意识,提高劳动技能.小明随机调查了该校10名学生某周在家做家务的总时间,并对数据进行统计分析,过程如下:收集数据:在家做家务时间:(单位:小时)1541a 32b 34整理数据:时间段03x ≤<36x <≤69x ≤<人数36m分析数据:统计量平均数中位数众数数据3.43.54请结合以上信息回答下列问题:(1)m =__________,并补全频数直方图;(2)数据统计完成后,小明发现有两个数据不小心丢失了.请根据图表信息找回这两个数据.若a b <,则=a __________,b =__________;(3)根据调查结果,请估计该校2000名学生在这一周劳动时间不少于3小时的人数.22.我国航天事业发展迅速,2023年5月30日9时31分,神舟十六号载人飞船成功发射,某玩具店抓住商机,先购进了1000件相关航天模型玩具进行试销,进价为50元/件.(1)设每件玩具售价为x 元,全部售完的利润为y 元.求利润y (元)关于售价x (元/件)的函数表达式;(2)当售价定为60元/件时,该玩具销售火爆,该店继续购进一批该种航天模型玩具,并从中拿出这两批玩具销售利润的20%用于支持某航模兴趣组开展活动,在成功销售完毕后,资助经费恰好10000元,请问该商店继续购进了多少件航天模型玩具?23.如图,点A 的坐标是()3,0-,点B 的坐标是(0,4),点C 为OB 中点,将ABC 绕着点B 逆时针旋转90︒得到A BC ''△.(1)反比例函数ky x=的图像经过点C ',求该反比例函数的表达式;(2)一次函数图像经过A 、A '两点,求该一次函数的表达式.24.问题情境:筒车是我国古代发明的一种水利灌溉工具,既经济又环保,明朝科学家徐光启在《农政全书》中用图画描绘了筒车的工作原理(如图①).假定在水流量稳定的情况下,筒车上的每一个盛水筒都按逆时针做匀速圆周运动,每旋转一周用时120秒.问题设置:把筒车抽象为一个半径为r 的O .如图②,OM 始终垂直于水平面,设筒车半径为2米.当0=t 时,某盛水筒恰好位于水面A 处,此时30AOM ∠=︒,经过95秒后该盛水筒运动到点B 处. 1.414 1.732≈≈)问题解决:(1)求该盛水筒从A 处逆时针旋转到B 处时,BOM ∠的度数;(2)求该盛水筒旋转至B 处时,它到水面的距离.(结果精确到0.1米)25.问题情境:小红同学在学习了正方形的知识后,进一步进行以下探究活动:在正方形ABCD 的边BC 上任意取一点G ,以BG 为边长向外作正方形BEFG ,将正方形BEFG 绕点B 顺时针旋转.特例感知:(1)当BG 在BC 上时,连接DF AC ,相交于点P ,小红发现点P 恰为DF 的中点,如图①.针对小红发现的结论,请给出证明;(2)小红继续连接EG ,并延长与DF 相交,发现交点恰好也是DF 中点P ,如图②,根据小红发现的结论,请判断APE V 的形状,并说明理由;规律探究:(3)如图③,将正方形BEFG 绕点B 顺时针旋转α,连接DF ,点P 是DF 中点,连接AP ,EP ,AE ,APE V 的形状是否发生改变?请说明理由.26.如图,二次函数2y x bx c =++的图象与x 轴交于A ,B 两点,与y 轴交于C 点,其中()10B ,,()0,3C .(1)求这个二次函数的表达式;(2)在二次函数图象上是否存在点P ,使得PAC ABC S S =△△?若存在,请求出P 点坐标;若不存在,请说明理由;(3)点Q 是对称轴l 上一点,且点Q 的纵坐标为a ,当QAC △是锐角三角形时,求a 的取值范围.参考答案一、选择题(本大题共8个小题,每小题3分,共24分.在每小题给出的4个选项中,只有一项符合题目要求,请将正确答案的选项代号涂在答题卡相应的位置上)1.C3.D4.B5.C6.A7.C8.A二、选择题(本题共4小题,每小题3分,共12分.在每小题给出的4个选项中,有多项符合题目要求,全部选对的得3分,部分选对的得2分,有选错的得0分,请将正确答案的选项代号涂在答题卡相应的位置上)9.ABC 10.AC 11.ABD 12.BD三、填空题(本题共4个小题,每小题3分,共12分.请将答案写在答题卡相应的位置上)13.2(答案不唯一)【详解】解:设所求数为a ,则a <,且为整数,则a <<,<<,即23<<,∴a 可以是2±或1±或0.故答案为:2(答案不唯一).14.12【详解】解:∵()2210a b -++=,∴20a -=且10b +=,解得:2a =,1b =-;∴1122ba -==;故答案为:12.【详解】解:如图所示,过点D 作DE AB ⊥于点E ,依题意1DE =,根据作图可知AD 为CAB ∠的角平分线,∵,DC AC DE AB ⊥⊥∴1CD DE ==,故答案为:1.16.2【详解】解:如图所示,依题意,22OD AD ==12OE OD ==∴图中阴影部分的面积为222OE ==故答案为:2.四、解答题(本大题共10个小题,共72分.解答应写出文字说明、证明过程或演算步骤.请将解答过程写在答题卡相应位置上)17.解不等式组:()7140234x x x -≤⎧⎪⎨+>+⎪⎩①②,并把它的解集在数轴上表示出来.【答案】不等式组的解集为:22x -<≤.画图见解析【详解】解:()7140234x x x -≤⎧⎪⎨+>+⎪⎩①②,由①得:2x ≤,由②得:26>4x x ++,∴>2x -,在数轴上表示其解集如下:∴不等式组的解集为:22x -<≤.18.先化简,再求值:222119x x x x +⎛⎫+⋅ ⎪+-⎝⎭,其中6x =.【答案】3x x -;2【详解】解:222119x x x x +⎛⎫+⋅ ⎪+-⎝⎭2212119x x x x x x ++⎛⎫=+⋅ ⎪++-⎝⎭,()()()33131x x x x x x ++=++-⋅,3x x =-,当6x =时,原式2=.19.在Rt ABC △中,90BAC AD ∠=︒,是斜边BC上的高.(1)证明:C ABD BA ∽△△;(2)若610AB BC ==,,求BD 的长.【答案】(1)见解析(2)185BD =【小问1详解】证明:∵90BAC AD ∠=︒,是斜边BC 上的高.∴90ADB ∠=︒,90B C ∠+∠=︒∴90B BAD ∠+∠=︒,∴BAD C∠=∠又∵B B∠=∠∴C ABD BA ∽△△,【小问2详解】∵C ABD BA∽△△∴AB BD CB AB=,又610AB BC ==,∴23618105AB BD CB ===.20.为落实“双减”政策要求,丰富学生课余生活,某校七年级根据学生需求,组建了四个社团供学生选择:A(合唱社团)、B(硬笔书法社团)、C(街舞社团)、D(面点社团).学生从中任意选择两个社团参加活动.(1)小明对这4个社团都很感兴趣,如果他随机选择两个社团,请列举出所有的可能结果;(2)小宇和小江在选择过程中,首先都选了社团C(街舞社团),第二个社团他俩决定随机选择,请用列表法或树状图求他俩选到相同社团的概率.【答案】(1),,,,,AB AC AD BC BD CD (2)13【小问1详解】解:依题意,他随机选择两个社团,所有的可能结果为,,,,,AB AC AD BC BD CD ;【小问2详解】解:列表如下,AB D AAA AB AD B BA BB BDD DA DB DD共有9种等可能结果,其中符合题意的有3种,∴他俩选到相同社团的概率为3193=.21.教育部正式印发《义务教育劳动课程标准(2022年版)》,劳动课成为中小学的一门独立课程,湘潭市中小学已经将劳动教育融入学生的日常学习和生活中,某校倡导同学们从帮助父母做一些力所能及的家务做起,培养劳动意识,提高劳动技能.小明随机调查了该校10名学生某周在家做家务的总时间,并对数据进行统计分析,过程如下:收集数据:在家做家务时间:(单位:小时)1541a 32b 34整理数据:时间段03x ≤<36x <≤69x ≤<人数36m分析数据:统计量平均数中位数众数数据 3.4 3.54请结合以上信息回答下列问题:(1)m =__________,并补全频数直方图;(2)数据统计完成后,小明发现有两个数据不小心丢失了.请根据图表信息找回这两个数据.若a b <,则=a __________,b =__________;(3)根据调查结果,请估计该校2000名学生在这一周劳动时间不少于3小时的人数.【答案】(1)1;频数直方图见解析(2)4;7(3)1400人【小问1详解】解:根据题意,可得10361m =--=,故答案为:1,补全频数直方图,如图所示:【小问2详解】解: 在家做家务时间段为69x ≤<有1人,且a b <,6b ∴≥,观察数据,可得在家做家务时间段为36x <≤的是3,3,4,4,5,有5人,比表格中的数据少一人,故36a ≤<,众数为4,在已知数据中在家做家务时间为4和3的各有2人,4a ∴=,根据平均数,可得方程()15414323410 3.4b +++++++++÷=,解得7b =,故答案为:4;7;【小问3详解】解:612000140010+⨯=(人),答:该校2000名学生在这一周劳动时间不少于3小时的人数约为1400人.22.我国航天事业发展迅速,2023年5月30日9时31分,神舟十六号载人飞船成功发射,某玩具店抓住商机,先购进了1000件相关航天模型玩具进行试销,进价为50元/件.(1)设每件玩具售价为x 元,全部售完的利润为y 元.求利润y (元)关于售价x (元/件)的函数表达式;(2)当售价定为60元/件时,该玩具销售火爆,该店继续购进一批该种航天模型玩具,并从中拿出这两批玩具销售利润的20%用于支持某航模兴趣组开展活动,在成功销售完毕后,资助经费恰好10000元,请问该商店继续购进了多少件航天模型玩具?【答案】(1)100050000y x =-;(2)该商店继续购进了4000件航天模型玩具.【小问1详解】解:因每件玩具售价为x 元,依题意得()100050100050000y x x =-=-;【小问2详解】解:设商店继续购进了m 件航天模型玩具,则总共有()1000m +件航天模型玩具,依题意得:()()1000605020%10000m +-⨯=,解得4000m =,答:该商店继续购进了4000件航天模型玩具.23.如图,点A 的坐标是()3,0-,点B 的坐标是(0,4),点C 为OB 中点,将ABC 绕着点B 逆时针旋转90︒得到A BC ''△.(1)反比例函数k y x=的图像经过点C ',求该反比例函数的表达式;(2)一次函数图像经过A 、A '两点,求该一次函数的表达式.【答案】(1)8y x=(2)1377y x =+【小问1详解】解:∵点B 的坐标是(0,4),点C 为OB 中点,∴()0,2C ,2OC BC ==,由旋转可得:2BC BC '==,90CBC '∠=︒,∴()2,4C ',∴248k =⨯=,∴反比例函数的表达式为8y x=;【小问2详解】如图,过A '作A H BC '⊥于H ,则90AOB A HB '∠=∠=︒,而90ABA '∠=︒,AB A B '=,∴90ABO BAO ABO A BO '∠+∠=︒=∠+∠,∴BAO A BH ¢Ð=Ð,∴ABO BA H ' ≌,∴3AO BH ==,4OB A H '==,∴431OH =-=,∴()4,1A ',设直线AA '为y mx n =+,∴3041m n m n -+=⎧⎨+=⎩,解得:1737m n ⎧=⎪⎪⎨⎪=⎪⎩,∴直线AA '为1377y x =+.24.问题情境:筒车是我国古代发明的一种水利灌溉工具,既经济又环保,明朝科学家徐光启在《农政全书》中用图画描绘了筒车的工作原理(如图①).假定在水流量稳定的情况下,筒车上的每一个盛水筒都按逆时针做匀速圆周运动,每旋转一周用时120秒.问题设置:把筒车抽象为一个半径为r 的O .如图②,OM 始终垂直于水平面,设筒车半径为2米.当0=t 时,某盛水筒恰好位于水面A 处,此时30AOM ∠=︒,经过95秒后该盛水筒运动到点B 处. 1.414 1.732≈≈)问题解决:(1)求该盛水筒从A 处逆时针旋转到B 处时,BOM ∠的度数;(2)求该盛水筒旋转至B 处时,它到水面的距离.(结果精确到0.1米)【答案】(1)45BOM ∠=︒;(2)该盛水筒旋转至B 处时,它到水面的距离为0.3米.【小问1详解】解:∵旋转一周用时120秒,∴每秒旋转3603120=︒︒,当经过95秒后该盛水筒运动到点B 处时,36039575AOB ∠=︒-︒⨯=︒,∵30AOM ∠=︒,∴753045BOM ∠=︒-︒=︒;【小问2详解】解:作BC OM ⊥于点C ,设OM 与水平面交于点D ,则OD AD ⊥,在Rt OAD △中,30AOD ∠=︒,2OA =,∴112AD OA ==,22213OD =-=,在Rt OBC △中,45BOC ∠=︒,2OB =,∴222BC OC ===,∴320.3CD OD OC =-=≈(米),答:该盛水筒旋转至B 处时,它到水面的距离为0.3米.25.问题情境:小红同学在学习了正方形的知识后,进一步进行以下探究活动:在正方形ABCD 的边BC 上任意取一点G ,以BG 为边长向外作正方形BEFG ,将正方形BEFG 绕点B 顺时针旋转.特例感知:(1)当BG 在BC 上时,连接DF AC ,相交于点P ,小红发现点P 恰为DF 的中点,如图①.针对小红发现的结论,请给出证明;(2)小红继续连接EG ,并延长与DF 相交,发现交点恰好也是DF 中点P ,如图②,根据小红发现的结论,请判断APE V 的形状,并说明理由;规律探究:(3)如图③,将正方形BEFG 绕点B 顺时针旋转α,连接DF ,点P 是DF 中点,连接AP ,EP ,AE ,APE V 的形状是否发生改变?请说明理由.【答案】(1)见解析;(2)APE V 是等腰直角三角形,理由见解析;(3)APE V 的形状不改变,见解析【详解】(1)证明:连接BD ,BF ,BP ,如图,∵四边形ABCD ,BEFG 都是正方形,∴45CBD FBG ∠=︒=∠,∴90DBF ∠=︒,∵四边形ABCD 是正方形,∴45DAC BAC ∠=∠=︒,又∵AP AP =,∴()SAS APD APB ≌,∴BP DP =,∴PDB PBD ∠=∠,∵90PDB PFB PBD PBF ∠+∠=︒=∠+∠,∴PBF PFB ∠=∠,∴PB PF =,∴PD PF =,即点P 恰为DF 的中点;(2)APE V 是等腰直角三角形,理由如下:∵四边形ABCD ,BEFG 都是正方形,∴45CAE PEA ∠=∠=︒∴,90AP EP APE =∠=︒,∴APE V 是等腰直角三角形;(3)APE V 的形状不改变,延长EP 至点M ,使PM EP =,连接,MA MD ,∵四边形ABCD 、四边形BEFG 都是正方形,∴90AB AD BAD ABC EBG BE EF =∠=∠=∠=︒=,,,BG EF ∥,∵点P 为DF 的中点,∴PD PF =,∵DPM EPF ∠=∠,∴()SAS E MPD PF ≌,∴,DM EF DMP PEF =∠=∠,∴BE DM =,DM EF ∥,∴BG DM ∥,设DF 交BC 于点H ,交BG 于点N ,∴MDN DNB ∠=∠,∵AD BC ∥,∴ADN BHN ∠=∠,∵180BHN BNH HBN ∠+∠+∠=︒,∴180ADM ADN MDN BHN BNH HBN ∠=∠+∠=∠+∠=︒-∠,∵360180ABE ABC EBG HBN HBN ∠=︒-∠-∠-∠=︒-∠,∴ADM ABE ∠=∠,又∵AD AB =,∴()SAS A ADM BE ≌,∴AM AE =,DAM BAE ∠=∠,∵PM EP =,∴AP ME ⊥,即90APE ∠=︒,∵90DAM MAB ∠+∠=︒,∴90BAE MAB ∠+∠=︒,即90MAE ∠=︒,∴45MAP PAE ∠=∠=︒,∴45PEA PAE ∠=︒=∠,∴AP EP =,∴APE V 是等腰直角三角形.26.如图,二次函数2y x bx c =++的图象与x 轴交于A ,B 两点,与y 轴交于C 点,其中()10B ,,()0,3C.(1)求这个二次函数的表达式;(2)在二次函数图象上是否存在点P ,使得PAC ABC S S =△△?若存在,请求出P 点坐标;若不存在,请说明理由;(3)点Q 是对称轴l 上一点,且点Q 的纵坐标为a ,当QAC △是锐角三角形时,求a 的取值范围.【答案】(1)243y x x =-+(2)()2,1P -或317717,22P ⎛ ⎝⎭+或317717,22P ⎛ ⎝⎭+-(3)31752a <<或31721a <--<.【小问1详解】解:将点()10B ,,()0,3C 代入2y x bx c =++,得103b c c ++=⎧⎨=⎩解得:43b c =-⎧⎨=⎩∴抛物线解析式为243y xx =-+;【小问2详解】∵243y x x =-+()221x =--,顶点坐标为()2,1,当0y =时,2430x x -+=解得:121,3x x ==∴()3,0A ,则3OA =∵()0,3C ,则3OC =∴AOC 是等腰直角三角形,∵PAC ABCS S =△△∴P 到AC 的距离等于B 到AC 的距离,∵()3,0A ,()0,3C ,设直线AC 的解析式为3y kx =+∴330k +=解得:1k =-∴直线AC 的解析式为3y x =-+,如图所示,过点B 作AC 的平行线,交抛物线于点P ,设BP 的解析式为y x d =-+,将点()10B ,代入得,10d -+=解得:1d =∴直线BP 的解析式为1y x =-+,2143y x y x x =-+⎧⎨=-+⎩解得:10x y =⎧⎨=⎩或21x y =⎧⎨=-⎩∴()2,1P -,∵()()22223212,2112,312PA PB AB =-+==-+=-=∴222PA PB AB +=∴ABP 是等腰直角三角形,且90APB ∠=︒,如图所示,延长PA 至D ,使得AD PA =,过点D 作AC 的平行线DE ,交x 轴于点E ,则DA PA =,则符合题意的点P 在直线DE 上,∵APB △是等腰直角三角形,,DE AC AC PD ⊥∥∴45DAE BAP ∠=∠=︒PD DE⊥∴ADE V 是等腰直角三角形,∴222AE AP ===∴()5,0E设直线DE 的解析式为y x e=-+∴50e -+=解得:5e =∴直线DE 的解析式为5y x =-+联立2543y x y x x =-+⎧⎨=-+⎩解得:31727172x y ⎧-=⎪⎪⎨⎪=⎪⎩或31727172x y ⎧+=⎪⎪⎨-⎪=⎪⎩∴37,22P ⎛ ⎝⎭-+或37,22P ⎛ ⎝⎭+-综上所述,()2,1P -或317717,22P ⎛ ⎝⎭-+或317717,22P ⎛ ⎝⎭+-;【小问3详解】①当0a >时,如图所示,过点C 作CG AC ⊥交2x =于点G ,当点Q 与点G 重合时,ACQ 是直角三角形,当90AQC ∠=︒时,ACQ是直角三角形,设AC 交2x =于点H ,∵直线AC 的解析式为3y x =-+,则()2,1H ,∴CH ==,∵45CHG OCH ∠=∠=︒,∴CHG △是等腰直角三角形,∴HG =4==∴()2,5G ,设()2,Q q ,则()22222221,23613AQ q CQ q q q =+=+-=-+∵2223318AC =+=∴222186131q q q =-+++解得:3172q -=(舍去)或3172q =∴32,2Q ⎛+ ⎝⎭∵QAC △是锐角三角形∴352a +<<;当a<0时,如图所示,同理可得222AQ QC AC +=即∴222186131q q q =-+++解得:32q -=或32q =(舍去)由(2)可得AM AC ⊥时,()2,1M -∴31721a <--<综上所述,当QAC △是锐角三角形时,31752a +<<或31721a <--<.。
湖南省湘潭市中考数学试卷及答案(Word解析版)

湖南省湘潭市中考数学试卷一、选择题(本大题共8个小题,每小题有且只有一个正确答案,请将正确答案的选项代号涂在答题卡相应的位置上,每小题3分,满分24分)1.(3分)(•湘潭)﹣5的相反数是()A.5B.C.﹣5 D.考点:相反数.专题:计算题.分析:只有符号不同的两个数叫做互为相反数,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等.解答:解:﹣5的相反数是5.故选A.点评:本题主要考查相反数的概念和意义:只有符号不同的两个数叫做互为相反数,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等.2.(3分)(•湘潭)一组数据1,2,2,3.下列说法正确的是()A.众数是3 B.中位数是2 C.极差是3 D.平均数是3考点:极差;算术平均数;中位数;众数.分析:根据极差、众数、中位数及平均数的定义,结合各选项进行判断即可.解答:解:A、众数为2,故本选项错误;B、中位数是2,故本选项正确;C、极差为2,故本选项错误;D、平均数为2,故本选项错误;故选B.点评:本题考查了极差、中位数、平均数、众数的知识,掌握基本定义即可解答本题,难度一般.3.(3分)(•湘潭)如图是由三个小方体叠成的一个立体图形,那么它的俯视图是()A.B.C.D.考点:简单组合体的三视图.分找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.析:解答:解:从上面看易得两个横向排列的正方形.故选B.点评:本题考查了三视图的知识,属于基础题,要求同学们掌握俯视图是从物体的上面看得到的视图.4.(3分)(•湘潭)下列图形中,是中心对称图形的是()A.平行四边形B.正五边形C.等腰梯形D.直角三角形考点:中心对称图形分析:根据中心对称的定义,结合所给图形即可作出判断.解答:解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,是轴对称图形,故本选项错误;C、不是中心对称图形,是轴对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选:A.点评:本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180°后能够重合.5.(3分)(•湘潭)一元二次方程x2+x﹣2=0的解为x1、x2,则x1•x2=()A.1B.﹣1 C.2D.﹣2考点:根与系数的关系.专题:计算题.分析:直接根据根与系数的关系求解.解答:解:根据题意得x1•x2==﹣2.故选D.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2=﹣,x1•x2=.6.(3分)(•湘潭)下列命题正确的是()A.三角形的中位线平行且等于第三边B.对角线相等的四边形是等腰梯形C.四条边都相等的四边形是菱形D.相等的角是对顶角考点:命题与定理分析:利用三角形中位线的性质,等腰梯形、菱形、对顶角的性质分别进行判断,即可得出答案.解答:解:A、三角形的中位线平行于三角形的第三边并且等于第三边的一半,故本选项错误;B、正方形,矩形对角线均相等,故本选项错误;C、四条边都相等的四边形是菱形,故本选项正确;D、相等的角不一定是对顶角,故本选项错误;故选C.点评:此题考查了命题与定理,熟练掌握各特殊四边形的判定和性质是解答此类问题的关键.7.(3分)(•湘潭)如图,点P(﹣3,2)是反比例函数(k≠0)的图象上一点,则反比例函数的解析式()A.B.C.D.考点:待定系数法求反比例函数解析式.分析:把P点坐标代入反比例函数解析式即可算出k的值,进而得到答案.解答:解:∵点P(﹣3,2)是反比例函数(k≠0)的图象上一点,∴k=﹣3×2=﹣6,∴反比例函数的解析式为y=,故选:D.点评:此题主要考查了待定系数法求反比例函数解析式,关键是掌握凡是反比例函数图象经过的点必能满足解析式.8.(3分)(•湘潭)如图,在△ABC中,AB=AC,点D、E在BC上,连接AD、AE,如果只添加一个条件使∠DAB=∠EAC,则添加的条件不能为()A.B D=CE B.A D=AE C.D A=DE D.B E=CD考点:等腰三角形的性质分析:根据全等三角形的判定与性质,等边对等角的性质对各选项分析判断后利用排除法求解.解答:解:A、添加BD=CE,可以利用“边角边”证明△ABD和△ACE全等,再根据全等三角形对应角相等得到∠DAB=∠EAC,故本选项错误;B、添加AD=AE,根据等边对等角可得∠ADE=∠AED,然后利用三角形的一个外角等于与它不相邻的两个内角的和求出∠DAB=∠EAC,故本选项错误;C、添加DA=DE无法求出∠DAB=∠EAC,故本选项正确;D、添加BE=CD可以利用“边角边”证明△ABE和△ACD全等,再根据全等三角形对应角相等得到∠DAB=∠EAC,故本选项错误.故选C.点评:本题考查了等腰三角形等边对等角的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,全等三角形的判定与性质,小综合题,熟练掌握全等三角形的判定与性质是解题的关键.二、填空题(本大题共8个小题,请将答案写在答题卡的相应位置上,每小题3分,满分24分)9.(3分)(•湘潭)|﹣3|=3.考点:绝对值分析:根据负数的绝对值等于这个数的相反数,即可得出答案.解答:解:|﹣3|=3.故答案为:3.点评:此题主要考查了绝对值的性质,正确记忆绝对值的性质是解决问题的关键.10.(3分)(•湘潭)如右图,已知:AB∥CD,∠C=25°,∠E=30°,则∠A=55°.考点:平行线的性质专题:计算题.分析:由AB与CD平行,利用两直线平行得到一对同位角相等,求出∠EFD的度数,而∠EFD为三角形ECF的外角,利用外角性质即可求出∠EFD的度数,即为∠A的度数.解答:解:∵∠EFD为△ECF的外角,∴∠EFD=∠C+∠E=55°,∵CD∥AB,∴∠A=∠EFD=55°.故答案为:55°点评:此题考查了平行线的性质,以及三角形的外角性质,熟练掌握平行线的性质是解本题的关键.11.(3分)(•湘潭)到底,湘潭地区总人口约为3020000人,用科学记数法表示这一数为 3.02×106.考点:科学记数法—表示较大的数分科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,析:要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将3020000用科学记数法表示为3.02×106.故答案为:3.02×106.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3分)(•湘潭)湖园中学学生志愿服务小组在“三月学雷锋”活动中,购买了一批牛奶到敬老院慰问老人,如果送给每位老人2盒牛奶,那么剩下16盒;如果送给每位老人3盒牛奶,则正好送完.设敬老院有x位老人,依题意可列方程为2x+16=3x.考点:由实际问题抽象出一元一次方程分析:根据“送给每位老人2盒牛奶,那么剩下16盒;如果送给每位老人3盒牛奶,则正好送完”表示出牛奶的总盒数,进而得出答案.解答:解:设敬老院有x位老人,依题意可列方程:2x+16=3x,故答案为:2x+16=3x.点评:此题主要考查了由实际问题抽象出一元一次方程,根据已知表示出牛奶的总盒数是解题关键.13.(3分)(•湘潭)“五一”假期,科科随父母在韶山旅游时购买了10张韶山风景明信片(除图案外,形状大小、质地等都相同),其中4张印有主席故居图案,3张印有主席铜像图案,3张印有滴水洞风景图案,他从中任意抽取1张寄给外地工作的姑姑,则恰好抽中印有主席故居图案明信片的概率是.考点:概率公式分析:由在韶山旅游时购买了10张韶山风景明信片(除图案外,形状大小、质地等都相同),其中4张印有主席故居图案,3张印有主席铜像图案,3张印有滴水洞风景图案,直接利用概率公式求解即可求得答案.解答:解:∵在韶山旅游时购买了10张韶山风景明信片(除图案外,形状大小、质地等都相同),其中4张印有主席故居图案,3张印有主席铜像图案,3张印有滴水洞风景图案,∴恰好抽中印有主席故居图案明信片的概率是:=.故答案为:.点评:此题考查了概率公式的应用.注意概率=所求情况数与总情况数之比.14.(3分)(•湘潭)函数:中,自变量x的取值范围是x≠﹣1.考点:函数自变量的取值范围专计算题.题:分析:根据分式有意义的条件是分母不为0;分析原函数式可得关系式x+1≠0,解可得答案.解答:解:根据题意可得x+1≠0;解可得x≠﹣1;故答案为x≠﹣1.点评:求解析法表示的函数的自变量取值范围时:当函数表达式是分式时,要注意考虑分式的分母不能为0.15.(3分)(•湘潭)计算:=2.考点:实数的运算;零指数幂;特殊角的三角函数值.专题:计算题.分析:本题涉及零指数幂、特殊角的三角函数值、二次根式化简等考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=×+1=1+1=2.故答案为2.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握零指数幂、特殊角的三角函数值、二次根式化简等考点的运算.16.(3分)(•湘潭)如图,根据所示程序计算,若输入x=,则输出结果为2.考点:函数值;估算无理数的大小专题:图表型.分析:根据>1选择左边的函数关系式进行计算即可得解.解答:解:∵x=>1,∴y=2﹣1=3﹣1=2.故答案为:2.点评:本题考查了函数值的计算,比较简单,准确选择函数关系式是解题的关键.三、解答题(本大题共10个小题,解答应写出文字说明、证明过程或演算步骤,请将解答过程写在答题卡相应的位置上,满分72分)17.(6分)(•湘潭)解不等式组..考点:解一元一次不等式组分析:首先分别计算出两个不等式的解集,再根据“大小小大中间找”找出公共解集即可.解答:解:,由①得:x≥2,由②得:x≤4,不等式组的解集为:2≤x≤4.点评:此题主要考查了一元一次不等式组的解法,关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.18.(6分)(•湘潭)先化简,再求值:,其中x=﹣2.考点:分式的化简求值.专题:计算题.分析:先根据分式混合运算的法则把原式进行化简,再把x=2代入进行计算即可.解答:解:原式=÷=×=,当x=﹣2时,原式=﹣=﹣1.点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.19.(6分)(•湘潭)如图,C岛位于我南海A港口北偏东60方向,距A港口60海里处,我海监船从A港口出发,自西向东航行至B处时,接上级命令赶赴C岛执行任务,此时C岛在B处北偏西45°方向上,海监船立刻改变航向以每小时60海里的速度沿BC行进,则从B处到达C岛需要多少小时?考点:解直角三角形的应用-方向角问题分析:分别在Rt△ACD与Rt△BCD中,利用三角函数的性质,即可求得BC的长,继而求得答案.解答:解:∵在Rt△ACD中,∠CAD=30°,∴CD=×60=30海里,∵在Rt△BCD中,∠CBD=45°,∴BC=30×=60海里,60÷60=1(小时).答:从B处到达C岛需要1小时.点评:此题考查了方向角问题.此题难度适中,解此题的关键是将方向角问题转化为解直角三角形的知识,利用三角函数的知识求解.20.(6分)(•湘潭)4月20日8时,四川省芦山县发生7.0级地震,某市派出抢险救灾工程队赶芦山支援,工程队承担了2400米道路抢修任务,为了让救灾人员和物资尽快运抵灾区,实际施工速度比原计划每小时多修40米,结果提前2小时完成,求原计划每小时抢修道路多少米?考点:分式方程的应用分析:首先设原计划每小时抢修道路x米,则实际施工速度为每小时抢修道路(x+40)米,根据题意可得等量关系:原计划修2400米道路所用时间﹣实际修2400米道路所用时间=2小时,根据等量关系,列出方程即可.解答:解:设原计划每小时抢修道路x米,由题意得:﹣=2,解得:x1=200,x2=﹣240,经检验:x1=200,x2=﹣240,都是原分式方程的解,x=﹣240不合题意,舍去,答:原计划每小时抢修道路200米.点评:此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程,注意解出分式方程后要进行检验.21.(6分)(•湘潭)6月5日是世界环境日,今年“世界环境日”中国的主题为“同呼吸,共奋斗”,旨在释放和传递:建设美丽中国,人人共享、人人有责的信息,小文积极学习与宣传,并从四个方面A:空气污染,B:淡水资源危机,C:土地荒漠化,D:全球变暖,对全校同学进行了随机抽样调查,了解他们在这四个方面中最关注的问题(每人限选一项).以下是他收集数据后,绘制的不完整的统计图表:关注问题频数频率A 24 0.4B 12 0.2C n 0.1D 18 m合计 a1请你根据图表中提供的信息解答以下问题:(1)根据图表信息,可得a=60;(2)请你将条形图补充完整;(3)如果小文所在的学校有1200名学生,那么你根据小文提供的信息估计该校关注“全球变暖”的学生大约有多少人?考点:条形统计图;用样本估计总体;频数(率)分布表.分析:(1)根据空气污染的频数除以对应的频率即可求出a的值;(2)由a的值,减去其它频数求出n的值,补全条形统计图即可;(3)求出表格中m的值,乘以1200即可得到结果.解答:解:(1)根据题意得:24÷0.4=60,即a=60;故答案为:60;(2)根据题意得:n=60﹣(24+12+18)=6,补全条形统计图,如图所示;(3)由表格得:m=0.3,根据题意得:该校关注“全球变暖”的学生大约有1200×0.3=360(人).点评:此题考查了条形统计图,频数(率)分布表,以及用样本估计总体,弄清题意是解本题的关键.22.(6分)(•湘潭)莲城超市以10元/件的价格调进一批商品,根据前期销售情况,每天销售量y(件)与该商品定价x(元)是一次函数关系,如图所示.(1)求销售量y与定价x之间的函数关系式;(2)如果超市将该商品的销售价定为13元/件,不考虑其它因素,求超市每天销售这种商品所获得的利润.考点:一次函数的应用分析:(1)由图象可知y与x是一次函数关系,又由函数图象过点(11,10)和(15,2),则用待定系数法即可求得y与x的函数关系式;(2)根据(1)求出的函数关系式,再求出每件该商品的利润,即可求得求超市每天销售这种商品所获得的利润.解答:解:(1)设y=kx+b(k≠0),由图象可知,,解得,故销售量y与定价x之间的函数关系式是:y=﹣2x+32;(2)超市每天销售这种商品所获得的利润是:W=(﹣2x+32)(13﹣10)=﹣6x+96.点评:此题考查了一次函数的应用问题,此题综合性较强,难度一般,解题的关键是理解题意,根据题意求得函数解析式,注意待定系数法的应用,注意数形结合思想的应用.23.(8分)(•湘潭)5月12日是母亲节,小明去花店买花送给母亲,挑中了象征温馨、母爱的康乃馨和象征高贵、尊敬的兰花两种花,已知康乃馨每支5元,兰花每支3元,小明只有30元,希望购买花的支数不少于7支,其中至少有一支是康乃馨.(1)小明一共有多少种可能的购买方案?列出所有方案;(2)如果小明先购买一张2元的祝福卡,再从(1)中任选一种方案购花,求他能实现购买愿望的概率.考点:一元一次不等式组的应用分析:(1)设购买康乃馨x支,购买兰花y支,根据条件建立不等式组,运用分类讨论思想求出其解即可.(2)当小明先购买一张2元的祝福卡,小明购花的钱就只有28元了,求出能够购花的方案,就可以求出实现愿望的概率.解答:解:(1)设购买康乃馨x支,购买兰花y支,由题意,得,∵x、y为正整数,当x=1时,y=6,7,8符合题意,当x=2时,y=5,6符合题意,当x=3时,y=4,5符合题意,当x=4时,y=3符合题意,当x=5时,y=1舍去,当x=6时,y=0舍去.共有8种购买方案,方案1:购买康乃馨1支,购买兰花6支;方案2:购买康乃馨1支,购买兰花7支;方案3:购买康乃馨1支,购买兰花8支;方案4:购买康乃馨2支,购买兰花5支;方案5:购买康乃馨2支,购买兰花6支;方案6:购买康乃馨3支,购买兰花4支;方案7:购买康乃馨3支,购买兰花5支;方案8:购买康乃馨4支,购买兰花3支;(2)由题意,得,,购花的方案有:方案1:购买康乃馨1支,购买兰花6支;方案2:购买康乃馨1支,购买兰花7支;方案4:购买康乃馨2支,购买兰花5支;方案5:购买康乃馨2支,购买兰花6支;∴小明实现购买方案的愿望有5种,而总共有8中购买方案,∴小明能实现购买愿望的概率为P=.点评:本题考查了列不等式组及运用分类讨论思想解答方案设计的运用,概率在实际问题中的运用,解答时根据不等式组及分类讨论思想求出购买方案是关键.24.(8分)(•湘潭)在数学活动课中,小辉将边长为和3的两个正方形放置在直线l 上,如图1,他连结AD、CF,经测量发现AD=CF.(1)他将正方形ODEF绕O点逆时针旋转一定的角度,如图2,试判断AD与CF还相等吗?说明你的理由;(2)他将正方形ODEF绕O点逆时针旋转,使点E旋转至直线l上,如图3,请你求出CF的长.考点:正方形的性质;全等三角形的判定与性质.分析:(1)根据正方形的性质可得AO=CO,OD=OF,∠AOC=∠DOF=90°,然后求出∠AOD=∠COF,再利用“边角边”证明△AOD和△COF全等,根据全等三角形对应边相等即可得证;(2)与(1)同理求出CF=AD,连接DF交OE于G,根据正方形的对角线互相垂直平分可得DF⊥OE,DG=OG=OE,再求出AG,然后利用勾股定理列式计算即可求出AD.解答:解:(1)AD=CF.理由如下:在正方形ABCO和正方形ODEF中,AO=CO,OD=OF,∠AOC=∠DOF=90°,∴∠AOC+∠COD=∠DOF+∠COD,即∠AOD=∠COF,在△AOD和△COF中,,∴△AOD≌△COF(SAS),∴AD=CF;(2)与(1)同理求出CF=AD,如图,连接DF交OE于G,则DF⊥OE,DG=OG=OE,∵正方形ODEF的边长为,∴OE=×=2,∴DG=OG=OE=×2=1,∴AG=AO+OG=3+1=4,在Rt△ADG中,AD===,∴CF=AD=.点评:本题考查了正方形的性质,全等三角形的判定与性质,勾股定理的应用,熟练掌握正方形的四条边都相等,四个角都是直角,对角线相等且互相垂直平分是解题的关键,(2)作辅助线构造出直角三角形是解题的关键.25.(10分)(•湘潭)如图,在坐标系xOy中,已知D(﹣5,4),B(﹣3,0),过D 点分别作DA、DC垂直于x轴,y轴,垂足分别为A、C两点,动点P从O点出发,沿x 轴以每秒1个单位长度的速度向右运动,运动时间为t秒.(1)当t为何值时,PC∥DB;(2)当t为何值时,PC⊥BC;(3)以点P为圆心,PO的长为半径的⊙P随点P的运动而变化,当⊙P与△BCD的边(或边所在的直线)相切时,求t的值.考相似形综合题点:分析:(1)过D点分别作DA、DC垂直于x轴,y轴,垂足分别为A、C两点,求出DC=5,OC=4,OB=3,根据四边形DBPC是平行四边形求出DC=BP=5,求出OP=2即可;(2)证△PCO∽△CBO,得出=,求出OP=即可;(3)设⊙P的半径是R,分为三种情况:①当⊙P与直线DC相切时,过P作PM⊥DC交DC延长线于M,求出PM、OP的长即可;②当⊙P与BC相切时,根据△COB∽△PBM得出=,求出R=12即可;③当⊙P与DB相切时,证△ADB∽△MPB得出=,求出R即可.解答:解:(1)∵D(﹣5,4),B(﹣3,0),过D点分别作DA、DC垂直于x轴,y 轴,垂足分别为A、C两点,∴DC=5,OC=4,OB=3,∵DC⊥y轴,x轴⊥y轴,∴DC∥BP,∵PC∥DC,∴四边形DBPC是平行四边形,∴DC=BP=5,∴OP=5﹣3=2,2÷1=2,即当t为2秒时,PC∥BD;(2)∵PC⊥BC,x轴⊥y轴,∴∠COP=∠COB=∠BCP=90∴,∴∠PCO+∠BCO=90°,∠CPO+∠PCO=90°,∴∠CPO=∠BCO,∴△PCO∽△CBO,∴=,∴=,∴OP=,÷1=,即当t为秒时,PC⊥BC;(3)设⊙P的半径是R,分为三种情况:①当⊙P与直线DC相切时,如图1,过P作PM⊥DC交DC延长线于M,则PM=OC=4=OP,4÷1=4,即t=4;②如图2,当⊙P与BC相切时,∵∠BOC=90°,BO=3,OC=4,由勾股定理得:BC=5,∵∠PMB=∠COB=90°,∠CBO=∠PBM,∴△COB∽△PBM,∴=,∴=,R=12,12÷1=12,即t=12秒;③根据勾股定理得:BD==2,如图3,当⊙P与DB相切时,∵∠PMB=∠DAB=90°,∠ABD=∠PBM,∴△ADB∽△MPB,∴=,∴=,R=6+12;(6+12)÷1=6+12,即t=(6+12)秒.点评:本题考查了勾股定理,切线的性质和判定,相似三角形的性质和判定的应用,主要考查学生的计算和推理能力.26.(10分)(•湘潭)如图,在坐标系xOy中,△ABC是等腰直角三角形,∠BAC=90°,A(1,0),B(0,2),抛物线y=x2+bx﹣2的图象过C点.(1)求抛物线的解析式;(2)平移该抛物线的对称轴所在直线l.当l移动到何处时,恰好将△ABC的面积分为相等的两部分?(3)点P是抛物线上一动点,是否存在点P,使四边形PACB为平行四边形?若存在,求出P点坐标;若不存在,说明理由.考点:二次函数综合题.分析:如解答图所示:(1)首先构造全等三角形△AOB≌△CDA,求出点C的坐标;然后利用点C的坐标求出抛物线的解析式;(2)首先求出直线BC与AC的解析式,设直线l与BC、AC交于点E、F,则可求出EF的表达式;根据S△CEF=S△ABC,列出方程求出直线l的解析式;(3)首先作出▱PACB,然后证明点P在抛物线上即可.解答:解:(1)如答图1所示,过点C作CD⊥x轴于点D,则∠CAD+∠ACD=90°.∵∠OBA+∠OAB=90°,∠OAB+∠CAD=90°,∴∠OAB=∠ACD,∠OBA=∠CAD.∵在△AOB与△CDA中,∴△AOB≌△CDA(ASA).∴CD=OA=1,AD=OB=2,∴OD=OA+AD=3,∴C(3,1).∵点C(3,1)在抛物线y=x2+bx﹣2上,∴1=×9+3b﹣2,解得:b=﹣.∴抛物线的解析式为:y=x2﹣x﹣2.(2)在Rt△AOB中,OA=1,OB=2,由勾股定理得:AB=.∴S△ABC=AB2=.设直线BC的解析式为y=kx+b,∵B(0,2),C(3,1),∴,解得k=﹣,b=2,∴y=﹣x+2.同理求得直线AC的解析式为:y=x﹣.如答图1所示,设直线l与BC、AC分别交于点E、F,则EF=(﹣x+2)﹣(x﹣)=﹣x.△CEF中,CE边上的高h=OD﹣x=3﹣x.由题意得:S△CEF=S△ABC,即:EF•h=S△ABC,∴(﹣x)•(3﹣x)=×,整理得:(3﹣x)2=3,解得x=3﹣或x=3+(不合题意,舍去),∴当直线l解析式为x=3﹣时,恰好将△ABC的面积分为相等的两部分.(3)存在.如答图2所示,过点C作CG⊥y轴于点G,则CG=OD=3,OG=1,BG=OB﹣OG=1.过点A作AP∥BC,且AP=BC,连接BP,则四边形PACB为平行四边形.过点P作PH⊥x轴于点H,则易证△PAH≌△BCG,∴PH=BG=1,AH=CG=3,∴OH=AH﹣OA=2,∴P(﹣2,1).抛物线解析式为:y=x2﹣x﹣2,当x=﹣2时,y=1,即点P在抛物线上.∴存在符合条件的点P,点P的坐标为(﹣2,1).点评:本题是二次函数综合题型,考查了二次函数的图象与性质、一次函数的图象与性质、待定系数法、全等三角形、平行四边形、等腰直角三角形等知识点.试题难度不大,但需要仔细分析,认真计算.。
2024年湖南省中考数学试卷[含答案]
![2024年湖南省中考数学试卷[含答案]](https://img.taocdn.com/s3/m/72d03c8b81eb6294dd88d0d233d4b14e84243e4b.png)
2024年湖南省中考数学试卷一、选择题:本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.在日常生活中,若收入300元记作+300元,则支出180元应记作()A.+180元B.+300元C.﹣180元D.﹣480元2.据《光明日报》2024年3月14日报道:截至2023年末,我国境内有效发明专利量达到401.5万件,高价值发明专利占比超过四成,成为世界上首个境内有效发明专利数量突破400万件的国家.将4015000用科学记数法表示应为()A.0.4015×107B.4.015×106C.40.15×105D.4.015×1073.如图,该纸杯的主视图是()A.B.C.D.4.下列计算正确的是()A.3a2﹣2a2=1B.a3÷a2=a(a≠0)C.a2•a3=a6D.(2a)3=6a35.计算×的结果是()A.2B.7C.14D.6.下列命题中,正确的是()A.两点之间,线段最短B.菱形的对角线相等C.正五边形的外角和为720°D.直角三角形是轴对称图形7.如图,AB,AC为⊙O的两条弦,连接OB,OC,若∠A=45°,则∠BOC的度数为()A.60°B.75°C.90°D.135°8.某班的5名同学1分钟跳绳的成绩(单位:次)分别为:179,130,192,158,141.这组数据的中位数是()A.130B.158C.160D.1929.如图,在△ABC中,点D,E分别为边AB,AC的中点.下列结论中,错误的是()A.DE∥BC B.△ADE∽△ABC C.BC=2DE D.S△ADE=S△ABC10.在平面直角坐标系xOy中,对于点P(x,y),若x,y均为整数,则称点P为“整点”,特别地,当(其中xy≠0)的值为整数时,称“整点”P为“超整点”.已知点P(2a﹣4,a+3)在第二象限,下列说法正确的是()A.a<﹣3B.若点P为“整点”,则点P的个数为3个C.若点P为“超整点”,则点P的个数为1个D.若点P为“超整点”,则点P到两坐标轴的距离之和大于10二、填空题:本题共8小题,每小题3分,共24分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湖南省中考数学试题及答案
一、选择题
1. 设点$A(-2,1)$,过点$A$的直线与$y$轴交于点$B$,与$x$轴交
于点$C$,则$\angle ABC$为()。
A. $30^\circ$
B. $45^\circ$
C. $60^\circ$
D. $90^\circ$
2. 若$a>0$,$b>0$,且$\sqrt{ab}=1$,则
$\dfrac{a}{b}+\dfrac{b}{a}$的值为()。
A. $2$
B. $-2$
C. $1$
D. $-1$
3. 下列等式正确的是()。
A. $\dfrac{3x}{2}=\dfrac{6}{x}$
B. $\dfrac{2x}{3}=\dfrac{6}{x}$
C. $\dfrac{4x}{3}=\dfrac{6}{x}$
D. $\dfrac{2x}{5}=\dfrac{6}{x}$
4. 在$\bigtriangleup ABC$中,$\angle A=45^\circ$,$AB=a$,
$AC=c$,则对应边的关系是()。
A. $AB>AC$
B. $AB<AC$
C. $AB=AC$
D. 不确定
5. 已知$4x-3y=7$,则该方程的一般解是()。
A. $x=\dfrac{7}{4}$,$y=0$
B. $x=0$,$y=\dfrac{7}{3}$
C.
$x=\dfrac{7}{3}$,$y=0$ D. $x=0$,$y=\dfrac{7}{4}$
二、填空题
1. 在圆$O$中,$AB$是直径,$MN$过点$A$且与$AB$垂直,若$AM=5$,$MN=6$,则$NB=$\underline{\hspace{2em}}。
2. 若$\angle A=\angle B$,$\angle C=\angle D$,且$\angle A>\angle
C$,则四边形$ABCD$的特点是\underline{\hspace{4em}}。
3. 若$2+\sqrt{2x}=5$,则$x=$\underline{\hspace{2em}}。
4. 若$3x-2y=7$,$xy=6$,则
$\dfrac{y}{x}=$\underline{\hspace{2em}}。
5. 若$\log_a 5=2$,则$\log_{\sqrt{a}}5=$\underline{\hspace{2em}}。
三、解答题
1. 画一个平行四边形$ABCD$,其中$AB=5$ cm,$AE=3$ cm,$ED=2$ cm,求$AD$的长。
解:首先根据已知条件,我们可以得到如下的平行四边形$ABCD$。
接下来,我们可以使用平行四边形的性质,即对角线互相平分的性质,来求解$AD$的长度。
[图]
在平行四边形$ABCD$中,连接$AC$和$BD$,由于$AC$和$BD$互相平分,所以$AC$和$BD$的交点$O$是对角线的交点,且$AO=OC$,$BO=OD$。
根据题目中已知条件可知,三角形$ABE$和三角形$CDE$是全等三
角形,因为$AB=5$ cm,$AE=3$ cm,所以$CE=3$ cm,$ED=2$ cm。
由于$AC$和$BD$互相平分,所以$AO=OC$,$BO=OD$,所以$AO=OC=\dfrac{AC}{2}=\dfrac{AB+CE}{2}=\dfrac{5+3}{2}=4$ cm,$BO=OD=\dfrac{BD}{2}=\dfrac{BC+CD}{2}=\dfrac{5+2}{2}=\dfrac{7} {2}=3.5$ cm。
根据平行四边形的性质可知,$AD=2 \times AO=2 \times 4=8$ cm。
所以,$AD$的长为8 cm。
2. 若$x$满足不等式$2x-5>7$,则$x$的取值范围是多少?
解:首先我们可以对不等式进行变形,将其转化为$x$的形式。
$2x-5>7 \Rightarrow 2x>12 \Rightarrow x>6$
所以,$x$的取值范围是$x>6$。
3. 一条长200 m的直线上有3座电线杆,甲地离第一座电线杆
$a$米,而每相邻两座电线杆的间距相同,且离甲地的距离和为500 m,问第二座电线杆离甲地的距离是多少米?
解:设第二座电线杆离甲地的距离为$x$米,则第三座电线杆离甲
地的距离为$(500-x)$米。
根据题目中已知条件可得:
$a+(a+x)+(a+x+(500-x))=500$
解方程得:
$3a+500=500$
$3a=0$
$a=0$
所以,第二座电线杆离甲地的距离是0米。
四、解题步骤和答案解析
1. 解题步骤:首先根据已知条件,画出平行四边形$ABCD$。
接下来,根据对角线互相平分的性质,求解对角线交点$O$的坐标。
然后,
根据已知条件,求出各个线段的长度。
最后,根据平行四边形的性质,计算出$AD$的长度。
答案:$AD$的长为8 cm。
2. 解题步骤:首先将不等式进行变形,得到$x$的形式。
然后,根
据不等式得到$x$的取值范围。
答案:$x>6$
3. 解题步骤:设第二座电线杆离甲地的距离为$x$米。
根据题目中
已知条件,列方程,并解方程得出$x$的值。
答案:第二座电线杆离甲地的距离是0米。
本文为湖南省中考数学试题及答案,其中包括选择题、填空题和解
答题。
通过解题步骤和答案解析,读者可以学习到如何解答该试卷中
的数学题目。
每个问题都有详细的解答,以帮助读者理解解题思路和
方法。