2023届高三物理二轮复习弹簧模型分类分析
高考物理含弹簧的物理模型专题分析

含弹簧的物理模型纵观历年的高考试题,和弹簧有关的物理试题占有相当的比重,高考命题者常以弹簧为载体设计出各类试题,这类试题涉及静力学问题、动力学问题、动量守恒和能量守恒问题、振动问题、功能问题等。
几乎贯穿整个力学的知识体系。
对于弹簧,从受力角度看,弹簧上的弹力是变力;从能量角度看,弹簧是个储能元件。
因此,弹簧问题能很好地考查学生的综合分析能力,故备受高考命题者的亲睐。
题目类型有:静力学中的弹簧问题,动力学中的弹簧问题,与动量和能量相关的弹簧问题。
1.静力学中的弹簧问题(1)胡克定律:F =kx ,ΔF =k ·Δx(2)对弹簧秤的两端施加(沿轴线方向)大小不同的拉力,弹簧秤的示数一定等于挂钩上的拉力。
例题1:一根轻质弹簧一端固定,用大小为F 1的力压弹簧的另一端,平衡时长度为l 1;改用大小为F 2的力拉弹簧,平衡时长度为l 2。
弹簧的拉伸或压缩均在弹性限度内,该弹簧的劲度系数为 C A .2121F F l l -- B .2121F F l l ++ C .2121F F l l +- D .2121F F l l -+例题2:如图所示,两木块A 、B 的质量分别为m 1和m 2,两轻质弹簧的劲度系数分别为k 1和k 2,两弹簧分别连接A 、B ,整个系统处于平衡状态。
现缓慢向上提木块A ,直到下面的弹簧对地面的压力恰好为零,在此过程中A 和B 的重力势能共增加了A .212221)(k k g m m ++B .)(2)(212221k k g m m ++C .)()(21212221k k k k g m m ++ D .22221)(k g m m ++12211)(k g m m m +解析:取A 、B 以及它们之间的弹簧组成的整体为研究对象,则当下面的弹簧对地面的压力为零时,向上提A 的力F 恰好为:F =(m 1+m 2)g设这一过程中上面和下面的弹簧分别伸长x 1、x 2,由胡克定律得:x 1=121)(k g m m +,x 2=221)(k gm m +故A 、B 增加的重力势能共为: ΔE P =m 1g (x 1+x 2)+m 2gx 2=22221)(k g m m ++12211)(k gm m m +答案:D【点评】计算上面弹簧的伸长量时,较多的同学会先计算原来的压缩量,然后计算后来的伸长量,再将两者相加,但不如上面解析中直接运用Δx =kF∆进行计算更快捷方便。
高中物理二轮专题——弹簧模型(解析版)

高中物理第二轮专题——弹簧模型高考分析:轻弹簧就就是一种理想化得物理模型,以轻质弹簧为载体,设置复杂得物理情景,考查力得概念,物体得平衡,牛顿定律得应用及能得转化与守恒,就就是高考命题得重点,此类命题几乎每年高考卷面均有所见、由于弹簧弹力就就是变力,学生往往对弹力大小与方向得变化过程缺乏清晰得认识,不能建立与之相关得物理模型并进行分类,导致解题思路不清、效率低下、错误率较高、在具体实际问题中,由于弹簧特性使得与其相连物体所组成系统得运动状态具有很强得综合性与隐蔽性,加之弹簧在伸缩过程中涉及力与加速度、功与能等多个物理概念与规律,所以弹簧类问题也就成为高考中得重、难、热点、我们应引起足够重视、弹簧类命题突破要点:1、弹簧得弹力就就是一种由形变而决定大小与方向得力、当题目中出现弹簧时,要注意弹力得大小与方向时刻要与当时得形变相对应、在题目中一般应从弹簧得形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x与物体空间位置变化得几何关系,分析形变所对应得弹力大小、方向,以此来分析计算物体运动状态得可能变化、2、因弹簧(尤其就就是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变、因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧得弹力不突变、3、在求弹簧得弹力做功时,因该变力为线性变化,可以先求平均力,再用功得定义进行计算,也可据动能定理与功能关系:能量转化与守恒定律求解、同时要注意弹力做功得特点:W=-(kx22-kx12),弹力得功等于弹性势能增量得负值或弹力得功等于弹性势能得减少、弹性势k能得公式Ep=kx2,高考不作定量要求,该公式通常不能直接用来求弹簧得弹性势能,只可作定性讨论、因此,在求弹力得功或弹性势能得改变时,一般以能量得转化与守恒得角度来求解、一、“轻弹簧”类问题在中学阶段,凡涉及得弹簧都不考虑其质量,称之为“轻弹簧”,就就是一种常见得理想化物理模型、由于“轻弹簧”质量不计,选取任意小段弹簧,其两端所受张力一定平衡,否则,这小段弹簧得加速度会无限大、故簧轻弹簧中各部分间得张力处处相等,均等于弹簧两端得受力、弹一端受力为,另一端受力一定也为。
弹簧模型中的力与能---2024年高考物理二轮热点模型及参考答案

弹簧模型中的力与能目录【模型一】静力学中的弹簧模型【模型二】动力学中的弹簧模型【模型三】与动量、能量有关的弹簧模型【模型一】静力学中的弹簧模型静力学中的弹簧模型一般指与弹簧相连的物体在弹簧弹力和其他力的共同作用下处于平衡状态的问题,涉及的知识主要有胡克定律、物体的平衡条件等,难度中等偏下。
1(2024·全国·高三专题练习)如图所示,倾角为θ的斜面固定在水平地面上,两个质量均为m 的物块a 、b 用劲度系数为k 的轻质弹簧连接,两物块均恰好能静止在斜面上。
已知物块a 与斜面间的动摩擦因数是物块b 与斜面间的动摩擦因数的两倍,可认为最大静摩擦力等于滑动摩擦力,重力加速度大小为g ,弹簧始终在弹性限度内。
则弹簧的长度与原长相比()A.可能伸长了mg sin θ3k B.可能伸长了2mg sin θ3k C.可能缩短了mg sin θ3k D.可能缩短了2mg sin θ3k 2(2023上·黑龙江哈尔滨·高三校联考期末)如图所示,倾角为θ且表面光滑的斜面固定在水平地面上,轻绳跨过光滑定滑轮,一端连接物体c ,另一端连接物体b ,b 与物体a 用轻弹簧连接,c 与地面接触且a 、b 、c 均静止。
已知a 、b 的质量均为m ,重力加速度大小为g 。
则()A.c 的质量一定等于2m sin θB.剪断竖直绳瞬间,b 的加速度大小为g sin θC.剪断竖直绳之后,a、b将保持相对静止并沿斜面下滑D.剪断弹簧瞬间,绳上的张力大小为mg sinθ3如图所示,一质量为m的木块与劲度系数为k的轻质弹簧相连,弹簧的另一端固定在斜面顶端。
木块放在斜面上能处于静止状态。
已知斜面倾角θ=37°,木块与斜面间的动摩擦因数μ=0.5。
弹簧在弹性限度内,最大静摩擦力等于滑动摩擦力,重力加速度为g,sin37°=0.6,cos37°=0.8。
则()A.弹簧可能处于压缩状态B.弹簧的最大形变量为3mg 5kC.木块受到的摩擦力可能为零D.木块受到的摩擦力方向一定沿斜面向上【规律方法】(1)弹簧的最大形变量对应弹簧弹力的最大值。
高中物理弹簧问题分类全解析

高中物理弹簧问题分类全解析一、有关弹簧题目类型 1、平衡类问题 2、突变类问题3、简谐运动型弹簧问题4、功能关系型弹簧问题5、碰撞型弹簧问题6、综合类弹簧问题 二、分类解析 1、平衡类问题例1.如图示,两木块的质量分别为m1和m2,两轻质弹簧的劲度系数分别为k 1和k 2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧.在这过程中下面木块移动的距离为( )A.m1g/k 1B.m2g/k 2C.m1g/k 2D.m2g/k 2解析:我们把看成一个系统,当整个系统处于平衡状态时,整个系统受重力和弹力,即当上面木块离开弹簧时,受重力和弹力,则【例2】、14、如图所示,与水平面夹角为30°的固定斜面上有一质量m=1.0kg 的物体。
细绳的一端摩擦不计的定滑轮与固定的弹簧秤相连。
物体静止在斜面上,弹簧秤的示数为4.9N 。
关于物体受力的判断(取g=9.8m/s2),下列说法正确的是C A.斜面对物体的摩擦力大小为零B. 斜面对物体的摩擦力大小为4.9N ,方向沿斜面向上C. 斜面对物体的摩擦力大小为4.9N ,方向沿斜面向下D. 斜面对物体的摩擦力大小为4.9N ,方向垂直斜面向上练习1、(2010山东卷)17.如图所示,质量分别为1m 、2m 的两个物体通过轻弹簧连接,在力F 的作用下一起沿水平方向做匀速直线运动(1m 在地面,2m 在空中),力F 与水平方向成 角。
则1m 所受支持力N 和摩擦力f 正确的是ACA .12sin N m g m g F θ=+-B .12cos N m g m g F θ=+-C .cos f F θ=D .sin f F θ=2、在水平地面上放一个竖直轻弹簧,弹簧上端与一个质量为2.0kg 的木板相连。
若在木板上再作用一个竖直向下的力F 使木板缓慢向下移动0.1米,力F 作功2.5J,此时木板再次处于平衡,力F 的大小为50N ,如图所示,则木板下移0.1米的过程中,弹性势能增加了多少?解:由于木板压缩弹簧,木板克服弹力做了多少功,弹簧的弹性势能就增加了多少,即:(木板克服弹力做功,就是弹力对木块做负功),W 弹=-mgx -W F =-4.5J所以弹性势能增加4.5焦耳点评:弹力是变力,缓慢下移,F 也是变力,所以弹力功2、突变类问题例1、一个轻弹簧一端B 固定,另一端C 与细绳的一端共同拉住一个质量为m 的小球,绳的另一端A 也固定,如图所示,且AC 、BC 与竖直方向夹角分别为21θθ、、,求(1)烧断细绳瞬间,小球的加速度(2)在C处弹簧与小球脱开瞬间,小球的加速度解:(1)若烧断细绳的瞬间,小球的所受合力与原来AC 绳拉力TAC 方向等大、反向,即加速度a 1方向为AC 绳的反向,原来断绳前,把三个力画到一个三角形内部,由正弦定理知: mg/sin(180°-θ1-θ2)=T AC /sinθ2,解得T AC =mgsinθ2/sin(180°-θ1-θ2)=mgsinθ2/sin(θ1+θ2), 故由牛顿第二定律知:a 1=T AC /m=gsinθ2/sin(θ1+θ2) 或者: F AC ×cosθ1+F BC ×cosθ2=mg F AC ×sinθ1=F BC ×sinθ2 解之得F AC =mgsinθ2/sin(θ1+θ2)则瞬间加速度大小a 1=gsinθ2/sin(θ1+θ2),方向AC 延长线方向。
专题04 弹簧模型(解析版)

2023年高三物理二轮常见模型与方法强化专训专练专题04 弹簧模型一、高考真题1.(2022年江苏卷)如图所示,轻质弹簧一端固定,另一端与物块A 连接在一起,处于压缩状态,A 由静止释放后沿斜面向上运动到最大位移时,立即将物块B 轻放在A 右侧,A 、B 由静止开始一起沿斜面向下运动,下滑过程中A 、B 始终不分离,当A 回到初始位置时速度为零,A 、B 与斜面间的动摩擦因数相同、弹簧未超过弹性限度,则( )A .当上滑到最大位移的一半时,A 的加速度方向沿斜面向下B .A 上滑时、弹簧的弹力方向不发生变化C .下滑时,B 对A 的压力先减小后增大D .整个过程中A 、B 克服摩擦力所做的总功大于B 的重力势能减小量【答案】B【详解】B .由于A 、B 在下滑过程中不分离,设在最高点的弹力为F ,方向沿斜面向下为正方向,斜面倾角为θ,AB 之间的弹力为F AB ,摩擦因素为μ,刚下滑时根据牛顿第二定律对AB 有()()()A B A B A B sin cos F m m g m m g m m a θμθ++−+=+对B 有B B AB B sin cos m g m g F m a θμθ−−=联立可得AB A B BF F m m m =−+由于A 对B 的弹力F AB 方向沿斜面向上,故可知在最高点F 的方向沿斜面向上;由于在最开始弹簧弹力也是沿斜面向上的,弹簧一直处于压缩状态,所以A 上滑时、弹簧的弹力方向一直沿斜面向上,不发生变化,故B 正确;A .设弹簧原长在O 点,A 刚开始运动时距离O 点为x 1,A 运动到最高点时距离O 点为x 2;下滑过程AB 不分离,则弹簧一直处于压缩状态,上滑过程根据能量守恒定律可得()()22121211sin 22kx kx mg f x x θ=++− 化简得()122sin mg f k x x θ+=+当位移为最大位移的一半时有()121in =s +2F f x x k x mg θ−⎛⎫−− ⎪⎝⎭合带入k 值可知F 合=0,即此时加速度为0,故A 错误;C .根据B 的分析可知AB A B BF F m m m =−+再结合B 选项的结论可知下滑过程中F 向上且逐渐变大,则下滑过程F AB 逐渐变大,根据牛顿第三定律可知B 对A 的压力逐渐变大,故C 错误;D .整个过程中弹力做的功为0,A 重力做的功为0,当A 回到初始位置时速度为零,根据功能关系可知整个过程中A 、B 克服摩擦力所做的总功等于B 的重力势能减小量,故D 错误。
高中物理关于弹簧的8种模型

高中物理关于弹簧的8种模型
以下是关于弹簧的8种模型
1. 弹性线性模型(Hooke定律模型):弹簧的拉伸或压缩与弹力成正比。
2. 欧拉-伯努利悬链模型:将一条悬挂在两端支持点上的弹簧视为一个由无数小段组成的悬链,使该整体发生弹性形变。
3. 线圈弹簧模型:将弹簧看作一系列具有弹性的杆件相互连接而成的线圈。
4. 非线性弹簧模型(实验模型):弹簧长度非常短,增加弹簧的弹性,以进一步研究其弹性质量。
5. 结构弹簧模型:弹簧长度较长,由此建立的结构弹簧可以帮助研究建筑物和桥梁的耐力。
6. 重力弹簧模型:弹簧被用来模拟重力的作用。
7. 超弹性弹簧模型:这种弹簧的弹性大于普通弹簧,它被广泛应用于高精度测量、机器人学和其他高科技领域。
8. 线性簧模型:弹簧的材质、线径等是固定的,根据弹簧的特性建立模型,计算其应力、应变等力学参数。
高考物理弹簧类问题的几种模型及其处理方法归纳

弹簧类问题的几种模型及其处理方法学生对弹簧类问题感到头疼的主要原因有以下几个方面:首先,由于弹簧不断发生形变,导致物体的受力随之不断变化,加速度不断变化,从而使物体的运动状态和运动过程较复杂。
其次,这些复杂的运动过程中间所包含的隐含条件很难挖掘。
还有,学生们很难找到这些复杂的物理过程所对应的物理模型以及处理方法。
根据近几年高考的命题特点和知识的考查,笔者就弹簧类问题分为以下几种类型进行分析,供读者参考。
一、弹簧类命题突破要点1.弹簧的弹力是一种由形变而决定大小和方向的力。
当题目中出现弹簧时,首先要注意弹力的大小与方向时刻要与当时的形变相对应,在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置、现长位置、平衡位置等,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,结合物体受其他力的情况来分析物体运动状态。
2.因软质弹簧的形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变,因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变。
3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解。
同时要注意弹力做功的特点:弹力做功等于弹性势能增量的负值。
弹性势能的公式,高考不作定量要求,可作定性讨论,因此在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解。
二、弹簧类问题的几种模型1.平衡类问题例1.如图1所示,劲度系数为k1的轻质弹簧两端分别与质量为m1、m2的物块拴接,劲度系数为k2的轻质弹簧上端与物块m2拴接,下端压在桌面上(不拴接),整个系统处于平衡状态。
现施力将m1缓慢竖直上提,直到下面那个弹簧的下端刚脱离桌面。
在此过程中,m2的重力势能增加了______,m1的重力势能增加了________。
分析:上提m1之前,两物块处于静止的平衡状态,所以有:,,其中,、分别是弹簧k1、k2的压缩量。
2023年高考物理总复习核心素养微专题(二)模型建构—— 弹簧模型

模型建构——弹簧模型弹簧问题综合性大,但弹簧问题往往是由几个基本的模型组合而成,掌握弹簧问题的基本模型,对于解决复杂的弹簧问题有很重要的意义。
处理复杂的弹簧模型,要应用基本的弹簧模型,应用力的观点、能的观点以及动量的观点解决问题。
类型图示规律分析瞬时性初始时,A 、B 紧挨在一起但A 、B 之间无压力。
剪断细绳的瞬间,弹簧的弹力不能突变,AB 系统受到的合外力等于B 的重力,用整体法求AB 的加速度,隔离法求A 、B 间的相互作用力对称性斜面光滑,物块B 紧靠挡板,物块A 被外力控制恰使弹簧处于原长状态。
撤去外力后,A 物块的运动具有对称性分离性撤去外力F ,AB 向上运动的过程中,A 、B 相互作用力为0的位置为A 、B 分离的位置不变性弹性势能与物体质量无关,相等的伸长量和缩短量弹性势能相等弹性势能不变模型光滑斜面上物块A 被平行斜面的轻质弹簧拉住静止于O 点,如图所示,现将A 沿斜面拉到B 点无初速度释放,物块在BC 范围内做简谐运动,则下列说法错误的是( )A.在运动过程中,物块A 和弹簧组成的系统机械能守恒B.从B 到C 的过程中,合外力对物块A 的冲量为零C.物块A 从B 点到O 点过程中,动能的增量等于弹性势能的减小量D.B 点时物块A 的机械能最小【解析】选C。
在运动过程中,物块A和弹簧组成的系统机械能守恒,故A正确;从B到C的过程中,根据冲量定理可知Ft=mv C-mv B,由于B、C两点的速度为零,故合外力对物块A的冲量为零,故B正确;从B点到O点的过程中,对物块A根据动能定理可知-mgh-W弹=12m v O2-0,故动能的增量等于弹性势能的减小量减去克服重力做的功,故C错误;物块A和弹簧系统机械能守恒;B 点时弹簧的弹性势能最大,故物块A的机械能最小,故D正确。
弹性势能对称模型(2022·湖北选择考)如图所示,质量分别为m和2m的小物块Р和Q,用轻质弹簧连接后放在水平地面上,Р通过一根水平轻绳连接到墙上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2023届高三物理二轮复习弹簧模型分类分析试题
弹簧模型
弹簧模型1:平衡态受力分析
1、在一粗糙水平面上有两个质量分别为m1和m2的木块1和2,中间用一原长为l、劲度系数为k的轻弹簧连接起来,木块与地面间的滑动摩擦因数为μ。
现用一水平力向右拉木块2,当两木块一起匀速运动时两木块之间的距离是()
A.B.
C.D.
2、如图,在竖直方向上,两根完全相同的轻质弹簧a ,b,一端与质量为m的物体相连接,
另一端分别固定,当物体平衡时,如果()
A.a被拉长,则b一定被拉长
B. a被压缩,则b—定被压缩
C. b被拉长,则a一定被拉长
D.b被压缩,则a—定被拉长
3、如图所示,物块 A 放在直角三角形斜面体 B 上面,B 放在弹簧上面并紧挨着竖直墙壁,初始时 A 、 B 静止,现用力 F 沿斜面向上推 A,但 A、B 仍未动.则施力 F 后,下列
说法正确的是
A.A 、 B 之间的摩擦力一定变大
B.弹簧弹力一定不变
C.B 与墙之间可能没有摩擦力
D.B 与墙面间的弹力可能不变
弹簧模型2 :加速态受力分析
4、在水平地面上运动的小车车厢底部有一质量为m1的木块,木块和车厢通过一根轻质弹簧相连接,弹簧的劲度系数为k。
在车厢的顶部用一根细线悬挂一质量为m2的小球.某段时间内发现细线与竖直方向的夹角为θ,在这段时间内木块与
车厢保持相对静止.不计木块与车厢底部的摩擦力,则
在弹簧的形变为
A.伸长量为B.压缩量为
C.伸长量为D.压缩量为
5、如图所示,在倾角为θ的光滑斜面上有两个用轻质弹簧相连接的物块A、B.它们的质量
分别为m
1和m
2
,弹簧的劲度系数为k,C为一固定挡板.系统处于静止状态.
(1)弹簧被压缩的长度是多少?
(2)现开始用一恒力F沿斜面方向拉物块A使之向上运动,求当物块B刚要离开C时物块A 的加速度a,已知重力加速度为g.
弹簧模型3:与分离问题相关的弹簧
6.如图所示,两个木块A、B叠放在一起,B与轻弹簧相连,弹簧下端固定在水平面上,用竖直向下的力F压A,使弹簧压缩量足够大后,停止压缩,系统保持静止。
这时,若突然撤去压力F,A、B将被弹出且分离。
下列判断正确的是()
A.木块A、B分离时,弹簧的长度恰等于原长
B.木块A.B分离时,弹簧处于压缩状态,弹力大小等于B的重力
C.木块A、B分离时,弹簧处于压缩状态,弹力大小等于A、B的总重力
D.木块A、B分离时,弹簧的长度可能大于原长
弹簧模型4:动态过程分析
7、如图所示,轻弹簧下端固定在水平面上,一个小球从弹簧正上方某一高度处由静止开始自由下落,接触弹簧后把弹簧压缩到一定程度后停止下落。
在小球下落的这一全过
程中,下列说法中正确的是()
A.小球刚接触弹簧瞬间速度最大
B.从小球接触弹簧起加速度变为竖直向上
C.从小球接触弹簧到到达最低点,小球的速度先增大后减小
D.从小球接触弹簧到到达最低点,小球的加速度先减小后增大
8、如图所示,弹簧左端固定,右端自由伸长到O点并系住物体m,现
将弹簧压缩到A点,然后释放,物体一直可以运动到B点,如果物体受
到的摩擦力恒定,则()
A.物体从A到O加速,从O到B减速
B.物体从A到O速度越来越小,从O到B加速度不变C.物体从A到O间先加速后减速,从O到B一直减速运动
D.物体运动到O点时所受合力为零
弹簧模型5:功能关系分析
9、如图所示,在倾角为θ的斜面上,轻质弹簧一端与斜面底端固定,另一端与质量为M的平板A连接,一个质量为m的物体B靠在平板的右侧,A、B与斜面的动摩擦因数均为μ。
开始时用手按住物体B使弹簧处于压缩状态,现放手,使A和B一起沿斜面向上运动距离L 时,A和B达到最大速度v。
则以下说法正确的是()
A.A和B达到最大速度v时,弹簧是自然长度
B.若运动过程中A和B能够分离,则A和B恰好分离时,二者加速度大小均为g(sin θ+μcos θ)
C.从释放到A和B达到最大速度v的过程中,弹簧对A所做的功等于1
2M v
2+MgL sin θ+
μMgL cos θ
D.从释放到A和B达到最大速度v的过程中,B受到的合力对它做的功等于1
2m v
2
10、如图所示,固定于地面、倾角为θ的光滑斜面上有一轻质弹簧,轻质弹簧一端与固定于斜面底端的挡板C连接,另一端与物块A连接,物块A上方放置有另一物块B,物块A、B 质量均为m且不粘连,整个系统在沿斜面向下的恒力F作用下而处于静止状态。
某一时刻将力F撤去,若在弹簧将A、B弹起过程中,A、B能够分离,则下列叙述正确的是() A.从力F撤去到A、B发生分离的过程中,弹簧及
A、B物块所构成的系统机械能守恒
B.A、B被弹起过程中,A、B即将分离时,两物块速度达到最大
C.A、B刚分离瞬间,A的加速度大小为g sin θ
D.若斜面为粗糙斜面,则从力F撤去到A、B发生分离的过程中,
弹簧减少的弹性势能一定大于A、B增加的机械能与系统摩擦生热之和
弹簧模型6:动量、能量分析
11、如图,轻弹簧的一端固定,另一端与滑块B相连,B静止在水平面上的O点,此时弹簧处于原长。
另一质量与B相同的滑块A从P点以初速度v
向B滑行,当A滑过距离l时,与B相碰。
碰撞时间极短,碰后A、B粘在一起运动。
设滑块A和B均可视为质点,与导轨的动摩擦因数均为μ,重力加速度为g,求:
(1)碰后瞬间,A、B共同的速度大小;
(2)若A、B压缩弹簧后恰能返回到O点并停止,求弹簧的最大压缩量。
12、如图18,两块相同平板P
1,P
2
置于光滑水平面上,质量均为m。
P
2
的右端固定一轻质弹
簧,左端A与弹簧的自由端B相距L。
物体P置于P
1的最右端,质量为2m,且可看作质点。
P
1
与P以共同速度v0向右运动,与静止的P2发生碰撞,碰撞时间极短。
碰撞后P1与P2粘连在一起。
P压缩弹簧后被弹回并停在A点(弹簧始终在弹性限度内)。
P与P
2
之间的动摩擦因数为μ。
求
(1)P
1、P
2
刚碰完时的共同速度v1和P的最终速度v2;
(2)此过程中弹簧的最大压缩量x和相应的弹性势能E p。