动量和能量中的几种重要模型
高三总复习物理课件 动量守恒中的三类典型模型

01
着眼“四翼” 探考点
题型·规律·方法
பைடு நூலகம்
02
聚焦“素养” 提能力
巧学·妙解·应用
01
着眼“四翼” 探考点
题型·规律·方法
模型一 “滑块—弹簧”模型
模型 图示
模型 特点
(1)两个或两个以上的物体与弹簧相互作用的过程中,若系统所受外力的 矢量和为零,则系统动量守恒。 (2)在能量方面,若系统所受的外力和除弹簧弹力以外的内力不做功,系 统机械能守恒。 (3)弹簧处于最长(最短)状态时两物体速度相等,弹性势能最大,系统动 能通常最小(完全非弹性碰撞拓展模型)。 (4)弹簧恢复原长时,弹性势能为零,系统动能最大(完全弹性碰撞拓展模 型,相当于碰撞结束时)
[例 1] 如图甲所示,物块 A、B 的质量分别是 mA=4.0 kg 和 mB=3.0 kg。用轻弹 簧拴接,放在光滑的水平地面上,物块 B 右侧与竖直墙相接触。另有一物块 C 从 t=0 时以一定速度向右运动,在 t=4 s 时与物块 A 相碰,并立即与 A 粘在一起不再分开, 物块 C 的 v-t 图像如图乙所示。求:
()
A.13mv02 C.112mv02
B.15mv02 D.145mv02
解析:当 C 与 A 发生弹性正碰时,根据动量守恒定律和能量守恒定律有 mv0=mv1+ 2mv2,12mv02=12mv12+12(2m)v22,联立解得 v2=23v0,当 A、B 速度相等时,弹簧的弹 性势能最大,设共同速度为 v,以 A 的初速度方向为正方向,则由动量守恒定律得 2mv2 =(2m+3m)v,由机械能守恒定律可知,Ep+12(5m)v2=12(2m)v22,解得 Ep=145mv02; 当 C 与 A 发生完全非弹性正碰时,根据动量守恒定律有 mv0=3mv1′,当 A、B、C 速度相等时弹簧的弹性势能最大,设共同速度为 v′,则由动量守恒定律得 3mv1′= 6mv′,由机械能守恒定律可知,Ep′=12(3m)v1′2-12(6m)v′2,解得 Ep′=112mv02,由 此可知,碰后弹簧的最大弹性势能范围是112mv02≤Ep≤145mv02,故选 A。 答案:A
涉及动量能量的经典模型与应用

涉及动量能量的 经典模型与应用
知识框架 三个经典模型 1、子弹打木块模型 、 2、小球碰撞模型 、 3、弹簧连接体模型 、
变式1 变式 练习 变式2 变式
知识框架 两条定理: 两条定理: 往往以一个物体为研究对象
(1)动量定理: 动量定理: 动量定理
F合 ⋅ t = ∆p
(2)动能定理: 动能定理: 动能定理
R O A A B O
R
B
R O A A B O
R
B
如图所示,三个质量均为m的弹性小球用两根长均为L的轻 绳连成一条直线而静止在光滑水平面上.现给中间的小球B 一个水平初速度v0,方向与绳垂直.小球相互碰撞时无机械 能损失,轻绳不可伸长.求: (1)当小球A、C第一次相碰时,小球B的速度. (2)当三个小球再次处在同一直线上时,小球B的速度. (3)运动过程中小球A的最大动能EKA和此时两根绳的夹角θ. (4)当三个小球处在同一直线上时,绳中的拉力F的大小.1、Fra bibliotek弹打木块模型 、
的木块静止在光滑水平面上, 质量为 M 的木块静止在光滑水平面上,一质量为 m 速度 的子弹水平射入木块中, 为 v0 的子弹水平射入木块中 ,如果子弹所受阻力的大小恒为
f
子弹没有穿出木块, ,子弹没有穿出木块,木块和子弹的最终速度为 v共 ,在这
个过程中木块相对地面的位移为 s木 ,子弹相对与地面的位移 为 s子 ,子弹相对与木块的位移为 ∆s 。
(1)设小球A、C第一次相碰时,小球B的速度为,考虑到对称性及绳的不可伸 长特性,小球A、C沿小球B初速度方向的速度也为,由动量守恒定律,得 由此解得(2)当三个小球再次处在同一直线上时,则由动量守恒定律和机械 能守恒定律,得 解得 (三球再次处于同一直线) ,(初始状态,舍去) 所以,三个小球再次处在同一直线上时,小球B的速度为(负号表明与初速度反 向) (3)当小球A的动能最大时,小球B的速度为零。设此时小球A、C的速度大小 为,两根绳间的夹角为θ(如图),则仍由动量守恒定律和机械能守恒定律,得 另外,由此可解得,小球A的最大动能为,此时两根绳间夹角为(4)小球A、C 均以半径L绕小球B做圆周运动,当三个小球处在同一直线上时,以小球B为参考 系(小球B的加速度为0,为惯性参考系),小球A(C)相对于小球B的速度均 为所以,此时绳中拉力大小为:
物理学中的重要数学模型

物理学中的重要数学模型物理学是研究物质和能量以及它们之间相互作用的科学。
在物理学中,数学模型是解决问题和描述物理现象的重要工具。
物理学中的数学模型可以帮助我们理解自然界的规律和现象,并推导出各种重要的物理定律。
本文将介绍物理学中的几个重要的数学模型,并讨论它们在解决实际问题中的应用。
一、牛顿运动定律牛顿运动定律是经典力学的基础,描述了物体在外力作用下的运动规律。
它以数学方程的形式表达,其中最著名的就是牛顿第二定律:F=ma。
该方程说明了物体的加速度与其受到的力和质量的关系。
通过牛顿运动定律,我们能够计算出运动物体的位置、速度和加速度等参数,从而预测物体的运动轨迹和行为。
二、电磁场理论电磁场理论是描述电磁现象的基本理论,由马克斯韦尔方程组构成。
这些方程组包含了电场和磁场之间的相互关系,以及它们与电荷和电流的关系。
通过求解马克斯韦尔方程组,我们可以得到电磁波的传播速度、电磁感应的规律等重要结论。
电磁场理论的数学模型在电磁学、光学和电子学等领域具有广泛的应用。
三、量子力学量子力学是描述微观世界中粒子行为的理论,其核心是薛定谔方程。
薛定谔方程描述了量子系统的波函数演化规律,通过对波函数的求解,我们可以计算出粒子的能量、位置和动量等性质。
量子力学的数学模型为我们理解原子、分子和量子力学系统提供了重要的工具,对于研究材料科学、原子物理学和量子计算等领域具有关键的意义。
四、热力学热力学是研究热现象和能量传递的学科,基于宏观系统的平衡态和不可逆过程。
热力学的核心是热力学定律,其中最基本的是热力学第一定律和热力学第二定律。
热力学模型通过数学方程描述了能量的转移和转换过程,帮助我们理解热力学系统的特性和行为。
热力学的数学模型应用广泛,例如在热机效率计算、热传导问题和相变等方面。
五、流体力学流体力学研究流体的运动和力学性质,涵盖了气体和液体的运动行为。
流体力学的数学模型基于连续介质假设,通过质量守恒方程、动量守恒方程和能量守恒方程等方程描述了流体的运动规律和流动特性。
动量守恒定律10个模型

动量守恒定律10个模型简介动量守恒定律是物理学中的一个重要定律,它描述了在一个孤立系统中,系统的总动量在时间上是守恒的。
根据动量守恒定律,我们可以推导出许多有趣的模型和应用。
本文将介绍10个与动量守恒定律相关的模型,帮助读者更好地理解和应用这一定律。
1. 碰撞模型碰撞是动量守恒定律最常见的应用之一。
当两个物体碰撞时,它们之间的动量可以发生变化,但它们的总动量必须保持不变。
根据碰撞模型,我们可以计算出碰撞前后物体的速度和动量的变化。
2. 均质质点模型在动量守恒定律中,我们通常将物体看作是均质质点,即物体的质量分布均匀。
这样做的好处是简化计算,使得动量守恒定律更易于应用。
3. 爆炸模型爆炸是动量守恒定律另一个重要的应用场景。
当一个物体爆炸成多个碎片时,每个碎片的动量之和必须等于爆炸前物体的总动量。
通过爆炸模型,我们可以计算出碎片的速度和动量。
4. 转动惯量模型动量守恒定律不仅适用于质点,还适用于旋转物体。
当一个旋转物体发生转动时,它的动量也必须守恒。
转动惯量模型帮助我们计算旋转物体的动量和角速度的变化。
5. 弹性碰撞模型弹性碰撞是碰撞模型的一个特殊情况,它要求碰撞前后物体的动能守恒。
在弹性碰撞模型中,我们可以计算出碰撞后物体的速度和动量,以及碰撞过程中的能量转化情况。
6. 非弹性碰撞模型非弹性碰撞是碰撞模型的另一个特殊情况,它要求碰撞过程中有能量损失。
在非弹性碰撞模型中,我们可以计算出碰撞后物体的速度和动量,以及碰撞过程中的能量转化情况。
7. 线性动量守恒模型线性动量守恒模型是动量守恒定律的一个基本应用。
它适用于直线运动的物体,通过计算物体的质量和速度,我们可以得到物体的动量和动量守恒的结果。
8. 角动量守恒模型角动量守恒模型是动量守恒定律在旋转物体中的应用。
通过计算物体的转动惯量和角速度,我们可以得到物体的角动量和角动量守恒的结果。
9. 动量守恒实验模型动量守恒实验模型是利用实验验证动量守恒定律的方法。
高中物理动量十个模型笔记

高中物理动量十个模型笔记
1、连接体模型:指运动中几个物体叠放在一起、或并排在一起、或用细绳、细杆联系在一起的物体组。
解决这类问题的基本方法是整体法和隔离法。
2、斜面模型:用于搞清物体对斜面压力为零的临界条件。
斜面固定,物体在斜面上情况由倾角和摩擦因素决定物体沿斜面匀速下滑或静止。
3、轻绳、杆模型:绳只能受拉力,杆能沿杆方向的拉、压、横向及任意方向的力。
杆对球的作用力由运动情况决定。
4、超重失重模型:系统的重心在竖直方向上有向上或向下的加速度(或此方向的分量ay);向上超重(加速向上或减速向下)F=m(g+a);向下失重(加速向下或减速上升)F=m(g-a)。
5、碰撞模型:动量守恒;碰后的动能不可能比碰前大;对追及碰撞,碰后后面物体的速度不可能大于前面物体的速度。
6、人船模型:一个原来处于静止状态的系统,在系统内发生相对运动的过程中,在此方向遵从动量守恒。
7、弹簧振子模型:F=-Kx(X、F、a、V、A、T、f、E、E:等量的变化规律)水平型和竖直型。
8、单摆模型:T=2T(类单摆),利用单摆测重力加速度。
9、波动模型:传播的是振动形式和能量.介质中各质点只在平衡位置附近振动并不随波迁移。
10、"质心"模型:质心(多种体育运动),集中典型运动规律,力能角度。
2020版高考一轮物理复习数字课件第6章专题七 动量观点和能量观点综合应用的“四个模型”

模型一 “子弹打木块”模型
解析:(1)第一颗子弹射入木块的过程,系统动量守恒,即 mv0=(m+M)v1 系统由 O 到 C 的运动过程中机械能守恒,即12(m+M)v21=(m+M)gR m+M 联立以上两式解得 v0= m 2gR=31 m/s。 (2)由动量守恒定律可知,第 2 颗子弹射入木块后,木块的速度为 0 当第 3 颗子弹射入木块时,由动量守恒定律得 mv0=(3m+M)v3 解得 v3=3mm+v0M=2.4 m/s。
设长木板 B 的质量为 M,对长木板 B, 由牛顿第二定律,μmg=Ma2,解得 M
积,即为 ΔE=μmgL=0.1×2×10×1 J =2 J,选项 D 错误。
=2 kg,选项 B 正确;根据 v -t 图线与 答案: AB 横轴所围的面积等于位移可知,木块 A
模型二 滑块——木板模型问题
[多维练透] 2.如图所示,质量为 m=245 g 的物块(可视为质点)放在质量为 M=0.5 kg 的木板左 端,足够长的木板静止在光滑水平面上,物块与木板间的动摩擦因数为 μ=0.4。质 量为 m0=5 g的子弹以速度 v0=300 m/s 沿水平方向射入物块并留在其中(时间极短), g 取 10 m/s2。子弹射入后,求: (1)物块相对木板滑行的时间。 (2)物块相对木板滑行的位移。
模型一 “子弹打木块”模型
(2019·福建龙岩质检)(多选)如图所示,两个质量和速度均相同的子弹分别水平射入 静止在光滑水平地面上质量相同、材料不同的两矩形滑块 A、B 中,射入 A 中的深度是射 入 B 中深度的两倍。上述两种射入过程相比较( ) A.射入滑块 A 的子弹速度变化大 B.整个射入过程中两滑块受到的冲量一样大 C.两个过程中系统产生的热量相同 D.射入滑块 A 中时阻力对子弹做功是射入滑块 B 中时的两倍
高三物理(人教)一轮复习课件:专题六 动量、能量观点综合应用中常考的“三个模型”

即 mxm=MxM⑤ 又 xm+xM=2L⑥
⑤⑥联立代入数据求解得:xm=23 m.
[答案]
(1)2 N
竖直向上
(2)2 m/s
2 (3)3 m
[变式训练 3] 如图所示,一辆质量 M=3 kg 的小车 A 静止 在光滑的水平面上,小车上有一质量 m=1 kg 的光滑小球 B,将 一轻质弹簧压缩并锁定,此时弹簧的弹性势能为 Ep=6 J,小球 与小车右壁距离为 L,解除锁定,小球脱离弹簧后与小车右壁的 油灰阻挡层碰撞并被粘住,求:
mv1=mv3+Mv4,12mv21=12mv23+12Mv24 整理可得 v3=mm-+MMv1,v4=m2+mMv1
由于 m<M,所以 A 还会向右运动,根据要求不发生第二次 碰撞,需要满足 v3≤v2
即m2+mMv0≥Mm+-Mmv1=mm-+MM2v0 整理可得 m2+4Mm≥M2 解方程可得 m≥( 5-2)M 所以使 A 只与 B、C 各发生一次碰撞,须满足 ( 5-2)M≤m<M [答案] ( 5-2)M≤m<M
(1)小球脱离弹簧时小球和小车各自的速度大小. (2)在整个过程中,小车移动的距离.
解析:(1)水平面光滑,由小车、弹簧和小球组成的系统在
从弹簧解锁到小球脱离弹簧的过程中,满足动量守恒和能量守
恒,即
பைடு நூலகம்
mv1-Mv2=0,12mv21+12Mv22=Ep
联立两式并代入数据解得:
v1=3 m/s,v2=1 m/s (2)在整个过程中,系统动量守恒,所以有
(1)此过程中系统损失的机械能; (2)此后物块落地点离桌面边缘 的水平距离.
解析:(1)设子弹穿过物块后的速度为 v,由动量守恒定律得
mv0=mv20+Mv①,解①式得 v=m2Mv0②
高中物理经典解题模型归纳

高中物理经典解题模型归纳高中物理24个经典模型1、"皮带"模型:摩擦力.牛顿运动定律.功能及摩擦生热等问题.2、"斜面"模型:运动规律.三大定律.数理问题.3、"运动关联"模型:一物体运动的同时性.独立性.等效性.多物体参与的独立性和时空联系.4、"人船"模型:动量守恒定律.能量守恒定律.数理问题.5、"子弹打木块"模型:三大定律.摩擦生热.临界问题.数理问题.6、"爆炸"模型:动量守恒定律.能量守恒定律.7、"单摆"模型:简谐运动.圆周运动中的力和能问题.对称法.图象法.8.电磁场中的"双电源"模型:顺接与反接.力学中的三大定律.闭合电路的欧姆定律.电磁感应定律.9.交流电有效值相关模型:图像法.焦耳定律.闭合电路的欧姆定律.能量问题.10、"平抛"模型:运动的合成与分解.牛顿运动定律.动能定理(类平抛运动).11、"行星"模型:向心力(各种力).相关物理量.功能问题.数理问题(圆心.半径.临界问题).12、"全过程"模型:匀变速运动的整体性.保守力与耗散力.动量守恒定律.动能定理.全过程整体法.13、"质心"模型:质心(多种体育运动).集中典型运动规律.力能角度.14、"绳件.弹簧.杆件"三件模型:三件的异同点,直线与圆周运动中的动力学问题和功能问题.15、"挂件"模型:平衡问题.死结与活结问题,采用正交分解法,图解法,三角形法则和极值法.16、"追碰"模型:运动规律.碰撞规律.临界问题.数学法(函数极值法.图像法等)和物理方法(参照物变换法.守恒法)等.17."能级"模型:能级图.跃迁规律.光电效应等光的本质综合问题.18.远距离输电升压降压的变压器模型.19、"限流与分压器"模型:电路设计.串并联电路规律及闭合电路的欧姆定律.电能.电功率.实际应用.20、"电路的动态变化"模型:闭合电路的欧姆定律.判断方法和变压器的三个制约问题.21、"磁流发电机"模型:平衡与偏转.力和能问题.22、"回旋加速器"模型:加速模型(力能规律).回旋模型(圆周运动).数理问题.23、"对称"模型:简谐运动(波动).电场.磁场.光学问题中的对称性.多解性.对称性.24、电磁场中的单杆模型:棒与电阻.棒与电容.棒与电感.棒与弹簧组合.平面导轨.竖直导轨等,处理角度为力电角度.电学角度.力能角度.高中物理11种基本模型题型1:直线运动问题题型概述:直线运动问题是高考的热点,可以单独考查,也可以与其他知识综合考查。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动量和能量中的几种重要模型一、弹簧模型:1、如图13所示,一轻质弹簧竖直固定在地面上,自然长度为1m ,上面连接一个质量为m 1=1kg 的物体,平衡时物体离地面0.9m 。
距物体m 1正上方高为0.3m 处有一个质量为m 2=1kg 的物体自由下落后与弹簧上物体m 1碰撞立即合为一体,一起在竖直面内做简谐振动。
当弹簧压缩量最大时,弹簧长为0.6m 。
求(g 取10m/s 2): (1)碰撞结束瞬间两物体的动能之和是多少? (2)两物体一起做简谐振动时振幅的大小? (3)弹簧长为0.6m 时弹簧的弹性势能大小?2、质量为m 的钢板与直立的轻弹簧的上端相连,弹簧下端固定在地上,平衡时弹簧的压缩量为x 0。
如图所示,一个物块从钢板正上方距离为3 x 0的A 处自由落下,打在钢板上并与钢板一起向下运动,但不粘连,它们到达最低点后又向上运动,已知物块质量也为m 时,它们恰能回到O 点;若物块的质量为2m 时,仍从A 处自由落下,它们到达最低点后又向上运动,在通过O 点时它们依然具有向上的速度(1)试分析质量为2m 物块与钢板在何处分离,它们分离时的速度分别是多大? (2)物块向上运动到达的最高点与O 的距离是多大?3、(爆炸和弹簧相结合)如图所示,在足够长的光滑水平轨道上静止三个小木块A ,B ,C ,质量分别为m A =1kg ,m B =1kg ,m C =2kg ,其中B 与C 用一个轻弹簧固定连接,开始时整个装置处于静止状态;A 和B 之间有少许塑胶炸药,A 的左边有一个弹性挡板(小木块和弹性挡板碰撞过程没有能量损失)。
现在引爆塑胶炸药,若炸药爆炸产生的能量有E=9J 转化为A 和B 沿轨道方向的动能,A 和B 分开后,A 恰好在BC 之间的弹簧第一次恢复到原长时追上B ,并且在碰撞后和B 粘到一起。
求: (1)在A 追上B 之前弹簧弹性势能的最大值; (2)A 与B 相碰以后弹簧弹性势能的最大值。
4.如图2-3-6所示,在水平光滑桌面上放一质量为M 的玩具小车。
在小车的平台(小车的一部分)上有一质量可忽略的弹簧,一端固定在平台上,另一端用质量为m 的小球将弹簧压缩一定距离后用细线捆住.用手将小车固定在桌面上,然后烧断细线,小球就被弹出,落在车上A 点.OA =s .如果小车不固定而烧断细线,球将落在车上何处?设小车足够长,球不致落在车外..二、动量守恒中多过程及临界状态5、如图16所示,一人站在一辆小车上,车上还有25个质量均为m的小球,人、球与小车图 2-3-6总质量为100m 。
人与车相对静止一起沿水平光滑轨道以v 0运动。
若人沿运动方向以相对地面5v 0的速度将球一个个相继抛出。
求: (1)抛出第n 个球后小车瞬时速度?(2)抛出若干球后,车能否变成反向滑行?若能则 求出刚开始反向滑行时小车的速度大小;若不能则求出 将球全部抛出后小车的速度大小。
三、子弹打木块及滑车模型6、如图所示,一木块静放在光滑的水平桌面上,一颗子弹以水平的初速度v 0向右射向木块,穿出木块时的速度为v 0/2,木块质量是子弹质量的两倍,设木块对子弹的阻力相同,若木块固定在一辆水平公路上以速度v 匀速向右运动的汽车顶上,子弹仍以v 0的水平初速度从同一方向水平射入该木块,汽车的速度v 在什么范围内木块不会被射穿?(子弹的质量远远小于汽车的质量,汽车车速可视作始终不变)7、如图所示为一个模拟货物传送的装置,A 是一个表面绝缘、质量M =l00kg 、电量q = + 6.0×10-2C 的传送小车,小车置于光滑的水平地面上。
在传送途中,有一个水平电场,电场强度为E=4.0×l03V /m ,可以通过开关控制其有无。
现将质量,m =20kg 的货物B 放置在小车左端,让它们以υ=2m /s 的共同速度向右滑行,在货物和小车快到终点时,闭合开关产生一个水平向左的匀强电场,经过一段时间后关闭电场,当货物到达目的地时,小车和货物的速度恰好都为零。
已知货物与小车之间的动摩擦因素μ=0.1。
(1)试指出关闭电场的瞬间,货物和小车的速度方向。
(2)为了使货物不滑离小车的另一端,小车至少多长?(货物不带电且体积大小不计,g 取10m /s 2)四、反冲模型8、利用航天飞机,可将物资运送到空间站,也可以维修空间站出现的故障。
(1)若已知地球半径为R ,地球表面重力加速度为g 。
某次维修作业中,航天飞机的速度计显示飞机的速度为v ,则该空间站轨道半径r 为多大? (2)为完成某种空间探测任务,在空间站上发射的探测器通过向后喷气而获得反冲力使其启动。
已知探测器的质量为M ,每秒钟喷出的气体质量为m ,为了简化问题,设喷射时探测器对气体做功的功率为P ,在不长的时间t 内探测器的质量变化较小,可以忽略不计。
求喷气t 秒后探测器获得的动能是多少?9、美国航空航天局和欧洲航空航天局合作研究的“卡西尼”号土星探测器,在美国东部时间2004年6月30日(北京时间7月1日)抵达预定轨道,开始“拜访”土星及其卫星家族.质量为m 的“卡西尼”号探测器进入绕土星飞行的轨道,先在半径为R 的圆形轨道Ⅰ上绕土星飞行,运行速度大小为υ1.为了进一步探测土星表面的情况,当探测器运行到A 点时发动机向前喷出质量为△m 的气体,探测器速度大小减为υ2,进入一个椭圆轨道Ⅱ,运行到B 点时再一次改变速度,然后进入离土星更近的半径为r 的圆轨道Ⅲ,如图所示.设探测器仅受到土星的万有引力,不考虑土星的卫星对探测器的影响,探测器在A 点喷出的气体速度大小为u .求:(1)探测器在轨道Ⅲ上的运行速率υ3和加速度的大小. (2)探测器在A 点喷出的气体质量△m .五、弹性碰撞及圆周运动相结合10. 如图2-10所示,轻质细绳的一端系一质量m =0.01kg 的小球,另一端系一光滑小环套在水平轴O 上,O 到小球的距离d =0.1m ,小球跟水平面接触无相互作用力,在球的两侧距球等远处,分别竖立一固定挡板,两挡板相距L =2m .水平面上有一质量为M =0.01kg 的小滑块,与水平面间的动摩擦因数μ=0.25,开始时,滑块从左挡板处,以v 0= 10m /s 的初速度向小球方向运动,不计空气阻力,设所有碰撞均无能量损失,小球可视为质点,g=10m /s 2.则:(1)在滑块第一次与小球碰撞后的瞬间,悬线对小球的拉力多大? (2)试判断小球能否完成完整的圆周运动.如能完成,则在滑块最终停止前,小球能完成完整的圆周运动多少次?1、解:设m2与m1碰前瞬间速度为V0有:2/2022v m gh m =sm gh V /620==…………3分m2与m1碰撞瞬间竖直方向近似动量守恒,设共同速度为v1,有:11202)(v m m v m +=2/01v v = 3分Jv m m E k 5.12/)(2112=+= 2分(2)当弹簧压缩量最大时,振动物体的速度大小为0,此时物体向下离开平衡位置距离最大,设为A 即为所求振幅 11kx g m = k=100N/m …………2分212)(kx g m m =+ m x 2.02= A=L -x2-0.6=0.2m …………2分 (3)m2与m1碰后,系统机械能守恒。
当弹簧恢复原长时,物体速度恰为零则: Ep=2mgA …………4分 Ep=8 J …………2分 2、物块与钢板碰撞时的速度06gx v =设v1表示质量为m 的物块与钢板碰撞后一起开始向下运动的速度,因碰撞时间极短,动量守恒,则102mv mv = 刚碰完弹簧的弹性势能为EP ,当它们一起回到O 点时,弹性势能为零,且此时物块与钢板速度恰好都为零,以钢板初始位置为重力势能零点,由机械能守恒,A图 2-10则212)2(21mgxv m E P =+设v2表示质量为2m 的物块与钢板碰撞后一起开始向下运动的速度, 则2032mv mv =此后物块与钢板碰撞后一起开始向下运动到最低点后,一起向上运动,直到O 点,钢板的加速度将比物块的加速度大,所以二者在此分离,分离瞬间它们具有相同的速度v由由机械能守恒,则222)3(213)3(21vm mgxv m E P +=+所以,gx v =物块向上运动的最高点与O 点的距离2202x gvL ==3、(1)塑胶炸药爆炸瞬间取A 和B 为研究对象,假设爆炸后瞬间AB 的速度大小分别为vA 、vB ,取向右为正方向 由动量守恒:-mAvA+mBmB=0爆炸产生的热量由9J 转化为AB 的动能:222121BB A A v m v m E +=带入数据解得:vA=vB=3m/s由于A 在炸药爆炸后再次追上B 的时候弹簧恰好第一次恢复到原长,则在A 追上B 之前弹簧已经有一次被压缩到最短,(即弹性势能最大)爆炸后取BC 和弹簧为研究系统,当弹簧第一次被压缩到最短时BC 达到共速vBC ,此时弹簧的弹性势能最大,设为Ep1 由动量守恒:mBvB=(mB+mC )vBC 由能量定恒定定律:PBc C B B B E v m m v m ++=22)(2121 带入数据得:EP1=3J(2)设BC 之间的弹簧第一次恢复到原长时B 、C 的速度大小分别为vB1和vC1,则由动量守恒和能量守恒:mBvB=mBvB1+mCvC121212212121C C B B B B v m v m v m +=带入数据解得:vB1=-1m/s vC1=2m/s (vB1=3m/s vC1=0m/s 不合题意,舍去。
) A 爆炸后先向左匀速运动,与弹性挡板碰撞以后速度大小不变,反向弹回。
当A 追上B , 发生碰撞瞬间达到共速vAB 由动量守恒:mAvA+mBvB1=(mA+mB )vAB ………………⑩解得:vAB=1m/s (11)当ABC 三者达到共同速度vABC 时,弹簧的弹性势能最大为EP2由动量守恒:(mA+mB )vAB+mCvC1=(mA+mB+mC )vABC (12)由能量守恒:22212)(2121)(21P ABC C B A C AB B A E v m m m v m v m m +++=++ (13)带入数据得:EP2=0.5J (14)4.设弹性势能为E ,固定时:E=221mv①,s=tv 0②,不固定时:E=2121mv+2221Mv③,0=mv1+Mv2④, x=(v1+v2)t ⑤,由①②③④⑤得x=sM mM +. 5、解:(1)系统合外力为零,水平动量守恒,设抛出第n 个小球的瞬间小车的速度为Vn 则有:100mV0=5V0nm+(100m -nm)Vn …………5分Vn=(100mV0-5V0nm)/(100m -nm)=(100-5n)V0/(100-n) …………2分(2)设初速度方向为正,当小车的速度Vn 小于零时,小车将反向运动,由上式可得: Vn=(100V0-5V0n)/(100-n)<0 n>20 …………3分 所以当抛出第21个小球时小车将反向 ………………2分 所以:V21=(100-21×5)V0/(100-21)=-5V0/79 …………2分6、木块固定前子弹与木块组成的系统动量守恒,设子弹质量为m ,木块被击穿后的速度为v2 mv0= 2mv2+ m 21v0 (1分) 解得v 2=v 0 /4 (l 分) 设木块长d ,木块固定在汽车上时,子弹穿过木块的过程木块的位移为L ,时间为t ,设子弹与木块的相互作用力为f ,太子弹刚能击穿木块,其相对木块的位移为d ,末速度与车速v 相等。