求矩阵的秩的方法
矩阵的秩及其求法-求秩的技巧

第五节:矩阵的秩及其求法之五兆芳芳创作一、矩阵秩的概念 1. k 阶子式 定义1 设 在A 中任取k 行k 列穿插处元素按原相对位置组成的阶行列式,称为A 的一个k 阶子式.例如共有个二阶子式,有 个三阶子式矩阵 A 的第一、三行,第二、四列相交处的元素所组成的二阶子式为 而为 A 的一个三阶子式.显然, 矩阵 A 共有 个k 阶子式.2. 矩阵的秩 定义2 设 有r 阶子式不为0,任何r +1阶子式(如果存在的话)全为0 ,称r 为矩阵A 的秩,记作R (A )或秩(A ).规则: 零矩阵的秩为 0 .注意:(1) 如 R ( A ) = r ,则 A 中至少有一个 r 阶子式所有 r + 1 阶子式为 0,且更高阶子式均为 0,r 是 A 中不为零的子式的最高阶数,是唯一的 .(2) 有行列式的性质,(3) R(A ) ≤m , R (A ) ≤n , 0 ≤R (A ) ≤min { m , n } .(4) 如果An ×n , 且 则 R ( A ) = n .反之,如 R()nm ij a A ⨯={}),min 1(n m k k ≤≤43334=C C 1015643213-=D nm ⨯()nm ij a A ⨯=0,r D ≠()().T R A R A =0,A ≠0.A ≠( A ) = n ,则因此,方阵 A 可逆的充分需要条件是 R ( A ) = n . 二、矩阵秩的求法 1、子式判别法(定义).例1 设 为阶梯形矩阵,求R (B ). 解 由于 存在一个二阶子式不为0,而任何三阶子式全为0,则R (B ) = 2.结论:阶梯形矩阵的秩=台阶数.例如 一般地,行阶梯形矩阵的秩等于其“台阶数”——非零行的行数. 例2 设 如果 求a .解 或例3则 2、用初等变换法求矩阵的秩定理2矩阵初等变换不改动矩阵的秩. 即则注: 只改动子行列式的符号. 是 A 中对应子式的k 倍.2021≠⎪⎪⎪⎭⎫ ⎝⎛=010*********A ⎪⎪⎪⎭⎫ ⎝⎛=001021B ⎪⎪⎪⎭⎫ ⎝⎛=100010011C 125034000D ⎛⎫ ⎪= ⎪ ⎪⎝⎭21235081530007200000E ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭⎪⎪⎪⎭⎫ ⎝⎛=a a a A 111111(),3<A R ()3<A R 1=∴a 2-=a ()3=A R =K 3-BA →)()(B R A R =ji r r ↔.1irk .2是行列式运算的性质.求矩阵A 的秩办法:1)利用初等行变换化矩阵A 为阶梯形矩阵B 2)数阶梯形矩阵B 非零行的行数即为矩阵A 的秩. 例4求 解R(A ) = 2例5三、满秩矩阵定义3A 为n 阶方阵时,称 A 是满秩阵,(非奇异矩阵) 称 A 是降秩阵,(奇异矩阵) 可见:对于满秩方阵A 施行初等行变换可以化为单位阵E ,又按照初等阵的作用:每对A 施行一次初等行变换,相当于用一个对应的初等阵左乘A,由此得到下面的定理. 定理3设A 是满秩方阵,则存在初等方阵 使得对于满秩矩阵A ,它的行最简形是n 阶单位阵 E . 例如A 为满秩方阵.关于矩阵的秩的一些重要结论:ji krr +.3().A R μλμλ,2,6352132111,求)(且设=⎪⎪⎪⎭⎫⎝⎛--=A R A (),n A R =(),n A R <()0≠⇔=A nA R EA P P P P s s =-121,定理5R (AB )R (A ),R (AB )R (B ),即R (AB )min{R (A ),R (B )}设A 是 矩阵,B 是 矩阵, 性质1性质2 如果 A B = 0 则性质3 如果 R (A )= n, 如果A B = 0 则 B = 0. 性质4 设A,B 均为矩阵,则例8 设A 为n 阶矩阵,证明R (A+E )+R (A-E )≥n 证: ∵ (A+E )+(E-A )=2E∴R (A+E )+ R ( E-A )≥ R (2E )=n而 R ( E-A )=R ( A-E ) ∴ R (A+E )+R (A-E )≥n≤nm ⨯tn ⨯).()()(AB R n B R A R ≤-+.)()(n B R A R ≤+nm ⨯).()()(B R A R B A R +≤±。
矩阵求秩方法

矩阵求秩方法
求矩阵的秩是线性代数中常见的问题,以下是关于矩阵求秩的10条方法及其详细描述:
1. 奇异值分解法:通过对矩阵进行奇异值分解,将矩阵变换为一个对角矩阵,其中非零元素的个数即为矩阵的秩。
2. 初等变换法:利用矩阵的初等行(列)变换,将矩阵化简为行简化阶梯型矩阵,其中非零行的个数即为矩阵的秩。
3. 极大线性无关组法:通过逐步选择矩阵中的列,构建一个极大线性无关组,其中向量的个数即为矩阵的秩。
4. 秩-零空间法:矩阵的秩与其零空间的维数之和为矩阵的列数。
可以通过计算矩阵的零空间 (null space) 的维数来求解矩阵的秩。
5. 行列式法:矩阵的行列式非零的最大子阵的阶数就是矩阵的秩。
6. 直接检验法:将矩阵转换为梯形矩阵或行阶梯矩阵,其中非零行的个数即为矩阵的秩。
7. 特征值法:矩阵的秩等于其特征值不为零的个数。
8. 与单位矩阵求秩法:通过将矩阵与单位矩阵进行连接,得到一个增广矩阵,进而将其化简为行简化阶梯型矩阵,其中非零行的个数即为矩阵的秩。
9. Gauss-Jordan消元法:通过高斯消元法和高斯约当消元法将矩阵化简为行简化阶梯型矩阵,其中非零行的个数即为矩阵的秩。
10. 极大线性无关组与生成组比较法:利用极大线性无关组与生成组的关系来求解矩阵的秩,其中生成组的个数等于矩阵的秩。
线性代数:矩阵秩的求法

6/44
定理 Ax=0 的解的情况:
1.Ax=0 有非零解 r(A)<n 只有零解 r(A)=n
2.若A是方阵,Ax 0有非零解 A 0 只有零解 A 0
3.Ax 0,若m n,则一定有非零解。 m :方程个数 n :未知量个数
k
2
1 2
0
3 2
1
.
其中k1
,
k
为任意常数。
2
12/44
定理 3 线性方程组 Ax=b 有解 r(A)=r(Ab)
定理 4 设线性方程组 Ax=b 有解。 若A为方阵,
如果 r(A)=n,则它有唯一解; A 0,唯一解
如果
r(A)<n,则它有无穷多解。
A
0,无穷解
13/44
x1 x2 a1
a4
x5 x1 a5
RA RB
5
ai 0
i 1
15/44
5
方程组有解的充要条件是 ai 0.
i 1
x1 x2 a1
由于原方程组等价于方程组
x2 x3
x3 x4
a2 a3
例4
证明方
程组
x2 x3
x3 x4
a2 a3
x4
x5
a4
x5 x1 a5
有解的充要条件
是a1 a2 a3 a4 a5 0.在有解的情况下,
求出它的一切解.
解证 对增广矩阵B进行初等变换, 方程组的增广矩阵为
14/44
1 1 0 0 0 a1
0 1 1 0 0 a2
第十-十一次
矩阵求秩方法(一)

矩阵求秩方法(一)矩阵求秩方法什么是矩阵求秩?矩阵求秩是一种数学运算,用于确定一个矩阵的秩(rank)。
矩阵的秩是指矩阵中线性独立的行或列的最大个数。
矩阵求秩在线性代数、计算机科学和工程学等领域中都有广泛的应用。
列主元高斯消元法列主元高斯消元法是一种常用的矩阵求秩方法。
它的基本思想是通过一系列基本行变换将矩阵转化为阶梯形矩阵,然后根据阶梯形矩阵中非零行的个数确定矩阵的秩。
具体步骤如下: 1. 选取第一个列向量中绝对值最大的元素作为主元,与第一列交换位置。
2. 用第一列的主元将后面各行第一元素消为零。
3. 选取第二个列向量中绝对值最大的元素作为主元,与第二列交换位置。
4. 用第二列的主元将后面各行第二元素消为零。
5. 重复上述步骤,直到矩阵变为阶梯形矩阵。
基本行变换法基本行变换法是另一种常见的矩阵求秩方法。
它的基本思想是通过一系列基本行变换将矩阵转化为行简化阶梯形矩阵,然后根据行简化阶梯形矩阵中非零行的个数确定矩阵的秩。
具体步骤如下: 1. 将矩阵化为行简化阶梯形矩阵,即确保每一行的主元(第一个非零元素)为1,且每一主元所在列的其余元素都为0。
2. 将行简化阶梯形矩阵中所有主元所在行上方的元素都消为零。
奇异值分解法奇异值分解法是一种较为复杂但有效的矩阵求秩方法。
它的基本思想是将矩阵分解为三个矩阵的乘积,然后利用特殊的奇异值矩阵来确定矩阵的秩。
具体步骤如下: 1. 计算矩阵的奇异值分解,得到三个矩阵:左奇异矩阵、奇异值矩阵和右奇异矩阵。
2. 统计奇异值矩阵中非零奇异值的个数,作为矩阵的秩。
其他方法除了上述提到的方法,还有其他一些矩阵求秩的方法: - 基于行列式的方法:计算矩阵的行列式,非零的子式的阶数即为矩阵的秩。
- 基于特征值的方法:计算矩阵的特征值,非零特征值的个数即为矩阵的秩。
总结矩阵求秩是一项重要的数学运算,常用于线性代数和计算机科学等领域。
列主元高斯消元法、基本行变换法和奇异值分解法是常见的矩阵求秩方法,而基于行列式和特征值的方法也有其独特的优势。
矩阵的秩求法

4 3 9 12
1 1 7 8
4 1 11 12
上页 下页
返回
1 0 0 0
6 4 12 16
4 3 9 12
1 1 7 8
4 1 11 12
1 r3 3r2 0 ~ 0 r4 4r2 0
6 4 0 0
4 3 0 0
1 1 4 4
4 1 8 8
上页 下页
返回
1 0 0 0 1 r4 3r3 0 ~ 0 0
6 4 0 0 6 4 0 0
4 3 0 0 4 3 0 0
1 1 4 4 1 1 4 0
2 0 0 1 3 0 3 2 24 0, 4
因此R(B)= 3 。
上页 下页 返回
从本例可知,由矩阵A 的秩的定义求秩,关键在 于找 A 中不等于 0 的子式的最高阶数。 一般当行数与列数都较高时,按定义求秩是很麻 烦的。 对于行阶梯形矩阵,显然它的秩就等于非零行的 行数。 因此自然想到用初等变换把矩阵化为行阶梯形矩 阵,但两个等价的矩阵的秩是否相等呢?
上页 下页 下页 返回 上页
矩阵的秩及其求法矩阵秩求法演示文稿

5 3 6
0
8
5
4
1 1 1 2
0 3 4 4 0 5 1 0
R(A) 2, 5 0, 1 0
5, 1
三、满秩矩阵 定义3 A 为 n 阶方阵时,
RA n, 称 A 是满秩阵,(非奇异矩阵)
RA n, 称 A 是降秩阵,(奇异矩阵) 可见:RA n A 0
RA n A ~ E
RA n A ~ En
例如 1 A 2 3
2 1 1
3 2 2
1 0 0
2 3 2
3 1 4 0 3 0
0 1 2
0 1 3
1 0 0
0 0
1 0 E 0 1
RA 3
A为满秩方阵。
关于矩阵的秩的一些重要结论:
定理5
R(AB) R(A), R(AB) R(B),即
对于满秩方阵A施行初等行变换可以化为单位阵E, 又根据初等阵的作用:每对A施行一次初等行变换, 相当于用一个对应的初等阵左乘A, 由此得到下面的 定理
定理3 设A是满秩方阵,则存在初等方阵
P1, P2,, Ps. 使得 Ps Ps1 , P2P1A E
对于满秩矩阵A,它的行最简形是 n 阶单位阵 E .
2 1 所构成的二阶子式为 D2 0 1
12 3 而 D3 4 6 5 为 A 的一个三阶子式。
1 0 1
显然, m n 矩阵 A 共有 cmk cnk 个 k 阶子式。
2. 矩阵的秩
定义2 设 A aij mn ,有r 阶子式不为0,任何r+1阶
子式(如果存在的话)全为0 , 称r为矩阵A的秩,
0 1
2 3
4 6
求 RA.
1 1 1 2
求矩阵的秩的步骤

矩阵秩的计算方法:将矩阵A按初等行数变换为梯形矩阵B,梯形矩阵B的非零行数即为矩阵A的秩。
在线性代数中,矩阵A的列秩是A的线性独立列数的最大值,类似地,行秩是A的线性独立的水平行数的最大值,一般说来,如果将矩阵看作行向量或列向量,则秩是这些行向量或列向量的秩,即包含在最大不相关群中的向量的个数。
矩阵秩的性质;
1.矩阵的行秩、列秩、秩均相等。
2.初等变换不改变矩阵的秩。
3.矩阵Rab<=min{Ra,Rb}乘积的秩。
4.如果p和q是可逆矩阵,则r(PA)=r(A)=r(AQ)=r(PAQ)。
5.当r(A)<=n-2时,最高阶非零子公式的阶数<=n-2,n-1阶子公式为零,而伴随矩阵中的每个元素都是n-1阶子公式加一个符号,所以伴随矩阵是零矩阵。
6.当r(A)<=n-1时,最高阶非零子公式的阶数为<=n-1,因此n-1
阶子公式可能不为零,因此伴随矩阵可能为非零(等号成立时伴随矩阵必须为非零)。
线性代数-矩阵的秩

设A
=
2 −2 3
−4 4 −6
8 −2 0
−036 , b
=
2 43
求矩阵A及矩阵B = ( A b)的秩. 解 分析:设 B 的行阶梯形矩阵为 B~ = ( A~,b~),
则 A~ 就是 A 的行阶梯形矩阵, 故从 B~ = ( A~,b~) 中可同时看出 R( A) 及 R(B).
1 − 2 2 − 1 1
故 R(AT A) = R(A).
又由于 B 也可经一次初等变换变为 A, 故也有 R(B) ≤ R( A).
因此 R( A) = R(B).
经一次初等行变换矩阵的秩不变,即可知经 有限次初等行变换矩阵的秩仍不变.
设A经初等列变换变为 B,也有R( A) = R(B).
设 A 经初等列变换变为 B, 则 AT 经初等行变换变为 BT , R( AT ) = R(BT ),
6 11
则这个子式便是A 的一个最高阶非零子式.
设 n 阶可逆矩阵 A, A ≠ 0, ∴ A 的最高阶非零子式为 A, R( A) = n, 故 A 的标准形为单位阵 E, A ~ E.
可逆矩阵的秩等于阶数 ,故称可逆矩阵 为满秩矩阵. 奇异矩阵为降秩矩阵 .
1 − 2 2 − 1 1
例5
− 2 0 1 5
解
13 02 −2 0
1 0
3 = 2 ≠ 0, 2
计算A的3阶子式,
−2
1 3 2 1 −2 2
− 1 = 0, 0 2 3 = 0, 0 − 1 3 = 0,
1
−2 0 5 −2 1 5
3 −2 2
2 − 1 3 = 0, ∴ R(A) = 2.
015
1 3 − 2 2 另解 对矩阵 A = 0 2 − 1 3 做初等变换,