生物质与煤混燃技术于现状

合集下载

生物质能源应用研究现状与发展前景

生物质能源应用研究现状与发展前景

生物质能源应用研究现状与发展前景一、本文概述随着全球能源需求的持续增长和环境保护压力的日益加大,生物质能源作为一种可再生、清洁、低碳的能源形式,正逐渐受到全球范围内的广泛关注。

本文旨在全面综述生物质能源应用研究的现状与发展前景,通过对生物质能源的来源、转化技术、应用领域以及面临的挑战进行深入分析,揭示生物质能源在全球能源体系中的重要地位及其未来发展潜力。

本文将首先概述生物质能源的基本概念、分类及其在全球能源结构中的地位,然后重点介绍生物质能源转化技术的最新研究进展,包括生物质发电、生物质燃料、生物质化学转化等方面。

随后,本文将分析生物质能源在农业、工业、交通等领域的应用现状,以及其在节能减排、环境保护等方面的重要作用。

在此基础上,本文将探讨生物质能源发展面临的挑战,如生物质资源的可持续利用、技术创新的瓶颈、市场接受度等问题。

本文将展望生物质能源的未来发展前景,提出促进生物质能源产业发展的政策建议和技术创新方向,以期为全球能源转型和可持续发展提供有益的参考。

二、生物质能源应用研究的现状随着全球对可再生能源需求的持续增长,生物质能源作为一种清洁、可持续的能源形式,其应用研究在全球范围内得到了广泛的关注。

目前,生物质能源的应用研究主要集中在生物质能转换技术、生物质能源利用模式和生物质能源的环境影响等方面。

在生物质能转换技术方面,生物质能源主要通过生物质燃烧、生物质气化、生物质液化和生物质生物化学转化等过程,将生物质转化为热能、电能或生物燃料。

目前,生物质发电和生物质燃料是生物质能源应用的主要形式。

生物质发电技术已经相对成熟,广泛应用于生物质直燃发电、生物质与煤混合燃烧发电等领域。

同时,生物质燃料如生物柴油、生物质乙醇等也在全球范围内得到了广泛的应用。

在生物质能源利用模式方面,生物质能源具有分布广泛、可再生性强、环境友好等特点,因此,其在农村、城市、工业等多个领域都有广泛的应用前景。

例如,在农村地区,生物质能源可以用于农业废弃物的利用,提高农业废弃物的资源化利用率;在城市地区,生物质能源可以用于城市垃圾的处理和能源化利用,减少城市垃圾对环境的污染。

燃煤与生物质气化耦合发电技术方案分析

燃煤与生物质气化耦合发电技术方案分析

燃煤与生物质气化耦合发电技术方案分析一、技术原理燃煤与生物质气化耦合发电技术是将燃煤气化和生物质气化技术结合起来,通过在气化反应器中对燃煤和生物质进行气化反应,产生合成气,再利用合成气进行发电。

燃煤气化和生物质气化是两种不同的气化技术,燃煤气化主要产生一氧化碳和氢气,而生物质气化主要产生一氧化碳、氢气、甲烷和二氧化碳。

将这两种气化技术结合起来,能够充分利用燃煤和生物质的资源,提高能源利用效率,减少对大气环境的污染。

二、技术优势1. 资源充足:燃煤是目前世界上使用最为广泛的化石能源之一,储量丰富。

生物质是可再生资源,具有广泛的来源,如木材、秸秆、农作物废弃物等,资源充沛。

2. 清洁高效:通过燃煤与生物质气化耦合发电技术,可以将煤炭转化为清洁的合成气,大大降低了煤炭燃烧产生的污染物排放。

生物质气化产生的气体也比燃煤气化更为清洁,减少了对环境的负面影响。

3. 降低成本:生物质气化技术相对成熟,且生物质气化设备相对燃煤气化设备成本更低,通过耦合发电技术,可以降低发电成本。

4. 提高能源利用效率:通过耦合燃煤与生物质气化技术,可以充分利用两种资源,提高能源利用效率,同时减少对资源的消耗。

三、技术挑战1. 气化反应器设计:燃煤气化和生物质气化的气化反应器设计具有一定的复杂性,需要充分考虑燃煤和生物质气化特性的差异,以及两者之间的相互影响。

2. 气化气清洁:合成气中的污染物含量较高,需要通过一系列的气体净化工艺进行清洁处理,以满足发电机组的要求。

3. 运行稳定性:燃煤与生物质气化耦合发电技术需要保持良好的运行稳定性,确保长期稳定的发电产能。

四、技术应用燃煤与生物质气化耦合发电技术已经在一些实际工程中有所应用,尤其在一些燃煤发电厂进行生物质混燃或者替代部分煤炭,以减少煤炭的使用和环境污染。

在一些生物质能源发电项目中,也可以考虑采用燃煤与生物质气化耦合发电技术,以提高能源利用效率和降低成本。

五、技术展望燃煤与生物质气化耦合发电技术具有明显的优势和发展潜力,但在实际应用中仍面临一些挑战。

生物质与煤混合燃烧技术

生物质与煤混合燃烧技术

生物质与煤混合燃烧技术摘要:生物质与煤混合燃烧技术是一种低成本、低风险可再生能源利用方式。

依据给料方式的不同,混燃可以分为直接混燃和间接混燃两种方式。

受生物质特性的影响,混燃会对原有的锅炉系统产生一定的影响。

系统介绍了混燃过程对系统燃烧特性的影响、对SO2、NOx等污染物排放的影响、以及混燃对锅炉系统的积灰、结焦及腐蚀的影响;并在此基础上对混燃的经济性进行了评价,最后给出了目前的混燃研究中存在的问题以及发展的方向。

生物质能是太阳能以化学能形式贮存在生物质中的能量形式,生物质具有高挥发分,低N、S含量、低灰份的特性。

其燃烧过程具有CO2零排放的特点,这对于缓解日益严重的“温室效应”有着特殊的意义。

我国是一个农业资源大国,具有丰富的生物质资源,研究生物质资源的充分利用具有十分重要的意义。

常规的生物质直燃发电技术受原料收集储运等条件的限制,存在着投资运行成本高和效率低等缺点。

生物质与煤混燃技术不仅对生物质进行了资源化利用,同时减少了常规污染物和温室气体的排放,是一种低成本、低风险的可再生能源利用方式。

国外从20世纪90年代开始进行生物质和煤混燃技术的相关研究及测试,迄今为止已经在多种炉型上进行了尝试,机组的规模从50MW一直到500MW以上。

荷兰Gelderland电厂635MW煤粉炉是欧洲大容量锅炉混燃技术的示范项目之一,以废木材为燃料,其燃烧系统独立于燃煤系统,对锅炉运行状态没有影响。

系统于1995年投入运行,每年平均消耗约60000t 木材(干重),相当于锅炉热量输入的3%~4%,年替代燃煤约45000t。

芬兰Fortum公司于1999年在电厂的一台315MW四角切圆煤粉炉上进行了为期3个月的混燃测试,煤和锯末在煤场进行混合后送入磨煤机,采用含水率50%~65%(收到基)的松树锯末,锯末混合比例为9%~25%的质量比(体积混合比为25%~50%)。

系统基本上运行良好,但是磨煤机系统出现一些问题。

生物质与煤混燃

生物质与煤混燃

水电0902 许鑫学号:10914202311 生物质混燃的定义生物质混燃技术是指用生物质燃料和化石燃料(多数是煤)共同作为锅炉燃料的应用技术。

最初,生物质混燃技术主要应用于有大量生物质副产品的企业,如造纸厂、木材加工厂、糖厂等,使用生物质替代部分化石燃料,其产生的热量和电量可以自用,也可以输出到电网,经济性较好。

随着技术的日渐成熟,生物质混燃技术已经越来越多地用于大型高效的电厂锅炉。

生物质混燃的方式有:燃前混台法事先把生物质与煤按比例进行混合,再投入锅炉燃烧。

直接混燃法不经过与煤混合,生物质与煤通过各自的入口直接进入锅炉,在锅炉内与煤混燃。

问接混燃法先把生物质气化为清洁的可燃气体,再通入燃煤炉。

用这种方法可燃用难于粉碎的或杂质含量高的生物质,大大扩大了混燃的范围。

并行燃烧生物质直燃锅炉和化石燃料锅炉同时使用。

2 生物质混燃发电的发展现状很多国家已经有了生物质混燃技术的开发经验。

根据国际能源机构2006年发布的研究报告,全球有154个生物质混燃发电项目,生物质混燃应用领先的国家有美国、德国、荷兰、英国、瑞典、澳大利亚和荷兰等。

大部分混燃案例采用的是直接混燃技术,也有一些间接混燃、并行燃烧的案例。

国际经验显示,多数电厂开始时仅安装一些非常基础的设施,大部分配套设施采用临时装置以进行试验性的混燃发电。

只有在确信政府对生物质混燃发电的支持以及保证了混燃生物质原料的稳定供应和项目的经济性后,电厂才可能对运输、储存及处理等配套设施进行长期的投资。

2006年以来,我国的生物质发电项目取得了巨大进展,但多数项目是生物质直燃项目。

生物质混燃项目非常少,目前仅有山东枣庄的华电国际十里泉电厂、以及上海协鑫(集团)控股有限公司下属的7个热电厂实施了生物质混燃发电。

国际和国内的经验均表明,生物质混燃发电在技术上是可性的,与生物质直燃发电相比,发电具有投资小、建设周期对原料价格控制能力强、技单等优势。

当生物质燃料的小于20%时,只须增加生燃料处理和上料系统,无须对锅炉系统做大的调整,简单易行。

生物质燃料技术的现状和前景

生物质燃料技术的现状和前景

生物质燃料技术的现状和前景能源问题一直是人类面临的难题,尤其是在当今社会,全球能源需求不断上升,而且环境问题也越来越引起人们的关注。

为此,许多国家开始在生物质燃料技术方面加大投入,寻求对人类未来能源的可持续发展。

一、生物质燃料技术现状生物质燃料技术是利用植物、生物废弃物等生物质资源燃烧而获得的清洁能源。

目前,全球已经开始对生物质燃料技术进行研究和开发,并取得了相当的进展。

生物质燃料技术主要分为液体生物质燃料(如生物柴油、生物乙醇等)、固体生物质燃料(如木材颗粒、生物质炭等)和气体生物质燃料(如沼气、生物气体等)等。

其中,生物柴油和生物乙醇是目前应用最为广泛的液体生物质燃料。

生物柴油是从油料植物中提取的轻质油脂经过酯化反应,形成的一种清洁燃料。

而生物乙醇则是用淀粉类和糖类物质发酵后获得的一种可替代汽油的清洁燃料。

固体生物质燃料主要指的是作为燃料的木材、秸秆等颗粒和生物质炭。

它们不仅具有高能量密度、低成本,而且还可以减少燃煤污染等环境问题。

气体生物质燃料包括沼气、生物气体等。

在农村地区,生物气体一般是通过饲料废弃物和污水等废弃物质经过厌氧发酵产生的,利用人和动物排泄物和农业废弃物等物料可获取大量沼气,以其为燃料,也可节省传统能源,防止污染。

二、生物质燃料技术前景1.生物质燃料可替代石化燃料,达到环保减排的目的生物质燃料作为清洁燃料,不仅能够缓解全球石化资源的短缺问题,而且可以有效减轻排放的温室气体,达到环保减排的目的。

在生产过程中,生物质燃料的集成利用,可有效地化解农业枯余物,减少热害病虫害、降低土壤糜烂度和肥料损失,同时减少农田通气阻断、提升土壤性质。

此外,生物质燃料是一种可再生资源,想要保护我们的星球,就必须使用可再生资源。

2.生物质燃料具有广泛应用的前景与传统化石燃料相比,生物质燃料具备资源广泛、特性多样、生产可控、入手门槛低等优势,应用场景也越来越多,目前主要用于发电、汽车、烧烤等领域。

未来,随着相关技术的不断发展和应用领域的不断扩展,生物质燃料的使用场景将更加广泛,为可再生能源的利用创造更多的机会。

生物质气化发电

生物质气化发电

一生物质气化合成气与煤混合燃烧发电技术间接混合燃烧是先把生物质气化为清洁的可燃气体,然后与煤粉混燃。

在欧洲,生物质与煤间接混合燃烧技术目前已进入商业化运行,技术上被认为是相当成熟。

例如,位于奥地利Styria的Zeltweg电厂,采用循环流化床技术,以空气为气化剂气化木柴,产生可燃气体输入锅炉的燃烧室和烟煤一起燃烧,超过5000t 的生物质被气化和燃烧,目前系统运行效果良好。

此外,芬兰的Lahti电站与荷兰的Amer电站的9号机组,均是生物质与煤间接混燃技术成功运用的案例。

目前国内已建的生物质电厂主要以生物质直接燃烧发电和并联燃烧发电为主。

气化混燃电厂大多还处在示范工程研究阶段。

在气化混燃电厂中,从气化炉中产出的生物质气是由N2、CO、CO2、CH4、C2H2-6、H2 和H2O 组成的混合气体,其中N2 占到50%。

生物质气的热值决定于给料的水分含量。

与其它混燃技术相比,生物质间接混燃具有生物质燃料适用范围广的优点,同时基于气化的混燃能够避免直燃过程中燃料处理、燃料输送等带来的问题、还可缓解锅炉结渣等问题。

另外,采用这种方法,使得煤灰和生物质灰分开了,煤灰成分不受影响。

生物质与煤间接混燃技术可以应用于现有不同容量的电站燃煤锅炉,并且对现有锅炉的改动很小,运行灵活性较高。

目前,我国的生物质储量巨大,国内许多小型火电厂效率低、污染严重,可以通过增加生物质气化系统实现生物质气与煤混合燃烧,既可以大规模地处理富余的生物质资源,又可以与我国现有的小型燃煤电站的改造结合起来,非常符合我国的国情。

二国内外生物质整体气化联合循环发电2.1国外生物质整体气化联合循环发电示范项目介绍2.1.1 美国Battelle美国在利用生物质能发电方面处于世界领先地位。

美国建立的Battelle生物质气化发电示范工程代表生物质能利用的世界先进水平,生产一种中热值气体,不需要制氧装置,此工艺使用两个实际上分开的反应器:①气化反应器,在其中生物质转化成中热值气体和残炭;②燃烧反应器,燃烧残炭并为气化反应供热。

生物质气化及生物质与煤共气化技术的研发与应用

生物质气化及生物质与煤共气化技术的研发与应用

生物质气化及生物质与煤共气化技术的研发与应用摘要:总结了生物质原料的特点及生物质单独气化的缺点;介绍了国内外生物质气化技术及生物质与煤共气化技术的研发与应用现状;分析了在此领域国内外的发展趋势与前景;概括了开展生物质与煤共气化技术研发的意义。

生物质包括植物、动物及其排泄物、垃圾及有机废水等几大类。

与煤炭相比,生物质原料具有如下特点:①挥发分高而固定碳含量低。

煤炭的固定碳一般为60%左右;而生物质原料特别是秸秆类原料的固定碳在20%以下,挥发分却高达70%左右,是适合热解和气化的原料。

②原料中氧含量高,灰分含量低。

③热值明显低于煤炭,一般只相当于煤炭的1/2~2/3。

④低污染性。

一般生物质硫含量、氮含量低,燃烧过程中产生的SO2、NOx较低。

⑤可再生性。

因生物质生长过程中可吸收大气中的CO2,其CO2净排放量近似于零,可有效减少温室气体的排放。

⑥广泛的分布性。

生物质气化是生物质利用的重要途径之一。

生物质气化技术已有一百多年的发展历史,特别是近年来,对生物质气化技术的研究日趋活跃。

但生物质单独气化存在一些缺点。

首先,生物质的产生存在季节性,不能稳定供给;其次,由于生物质处理后形成的颗粒具有不规则性,在流化床气化炉内不易形成稳定的料层,需要添加一定量的惰性重组分床料如河砂、石英砂等;第三,生物质单独气化时生成较多的焦油,不仅降低了生物质的气化效率,而且对气化过程的稳定运行造成不利影响。

生物质与煤共气化不仅可以很好地弥补生物质单独气化的上述缺陷,同时在碳反应性、焦油形成和减少污染物排放等方面可能会发生协同作用。

1国外的研究与应用情况(1)生物质气化发电生物质气化及发电技术在发达国家已受到广泛重视,如美国、奥地利、丹麦、芬兰、法国、挪威和瑞典等国家生物质能在总能源消耗中所占的比例增加相当迅速。

美国在利用生物质能发电方面处于世界领先地位,美国建立的Battelle生物质气化发电示范工程代表生物质能利用的世界先进水平。

燃煤耦合生物质发电

燃煤耦合生物质发电
机,减排CO2 0.826t/h
21
三、耦合发电优势
优势1:供电效率
燃煤—生物质耦合
纯烧生物质发电机组的容量一般都较小(≤50MW),相应地,锅炉蒸汽参数 也较低,一般为高压参数或更低,因此,纯烧生物质发电项目的供电效率 一般不高于30%。
燃煤生物质耦合发电,可采用300MW级亚临界机组或600MW及以上的 超临界或超超临界机组,供电效率可以达到40%以上。
17
二、技术路线
工程应用3
Straw 生物质
Gasification device 气化装置
Coal 煤
Boiler 锅炉
Turbine 汽轮机
国电荆门发电厂660MW机组
气化装置生物质处理量 8t/h,产气量约18000Nm3/h,气化 产 生 燃 气 的 热 值 约 为 3500kcal/kg,产 生 的 燃 气 发 电 量 10.8MW。
9
一、概述
燃煤耦合生物质发电-现状
中国可作为能源利用的农作物秸秆及农产品加工剩余物、林业剩余物和能源作物等生物质资 源总量每年约4.6亿吨标准煤
目前,中国生物质能利用量约3500万吨 标准煤/年,利用率仅为7.6%,因缺乏大规模、高值 化利用手段造成环境污染
生物质利用途径 1. 发电
1600 1200
45%
40%
35%
30%
25%
20%
纯生物质发电 生物质耦合发电
22
三、耦合发电优势
优势2:投资
燃煤—生物质耦合
生物质耦合发电技术可利用燃煤电厂现有的锅炉、汽轮机及辅助系统,而 仅需新增生物质燃料处理系统,并对锅炉燃烧器进行部分改动,因此初投 资更低。
12000 10000
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

========================================
生物质与煤混燃





赵明世
1081170426 热能0804
2010-10-24
======================================
生物质与煤混燃
1生物质利用意义及现状
①意义
生物质作为燃料时,由于生物质在生长时消耗的CO:量相当于它燃烧时排放的CO:量,因此CO:排放量近似为零。

生物质的硫含量极低,基本上无硫化物排放。

生物质作为替代能源,对改善环境、降低温室效应都有极大的好处。

我国目前有工业锅炉约50×104台,每年耗煤
量约为全国产煤总量的1/3。

推广各种节能技术,提高工业锅炉热效率的工作已取得较大成绩,且是能源工业者继续努力的方向。

但从矿物能源资源有限和因大量使用会造成环境恶化的战略观点出发,结合我国拥有丰富生物质资源的现实,逐步发展工业锅炉生物质燃烧技术,对节约常规能源、优化我国能源结构,将有积极意义。

燃煤锅炉混燃生物质将是我国降低CO:排放、减轻环境污染的有效措施,而且与煤混燃的生物质所含的碱性氧化物有助于脱除煤燃烧产生的SO:。

②现状
生物质资源是指以木质素或纤维素及其他有机质为主的陆生植物、水生植物及人畜禽粪便等。

我国有着丰富的生物质资源,据统计,全国秸秆年产量约5.7×108t/a,人畜粪便约3.8×108t/a,薪柴年产量(包括木材砍伐的废弃物)为1.7×108t/a,还有
工业排放的大量有机废料、废渣,每年生物质资源总量折合成标准煤约3×108t/a。

我国一直以直接用生物质能为主,但利用效率极低,即使是目前农村已较普遍推广的省柴节煤灶,热效率也仅为20%左右。

近年来,在一些经济发达的城市周边地区,农民大量使用优质高效燃料,用于炊事、取暖,而将秸秆直接放在农田焚烧,不仅浪费了能源,还污染了环境。

我国生物质资源结构疏松,能量密度低,仅是标准煤的1/2,且不易储运。

20世纪80年代以来,我国生物质能利用技术有了很大的发展。

鉴于生物质资源分布区域广、适宜就地开发利用的特点,目前开发适用于工业锅炉的生物质燃烧技术,是生物质有效利用的重要途径。

2生物质与煤的混燃技术
2.1混燃技术分类
生物质与煤的混燃技术可分为直接燃烧利用和气化利用两种形式。

直接燃烧先对生物质进行预处理,然后直接输送至锅炉燃烧室燃烧。

有层燃、流化床和煤粉锅炉等燃烧形式,主要应用于工业、区域供热、发电以及热电联产等。

根据2001年对欧盟2l座生物质电厂燃烧设备的统计,采用以上3种燃烧形式的比例分别为47%、29%、14%,其余10%为气化利用¨o。

气化利用方式先将生物质在气化炉内气化产生低热值燃气,经净化处理后输送至锅炉与煤进行混合燃烧。

2.2直接燃烧技术
①层燃燃烧
生物质平铺在炉排上形成一定厚度的燃料层,进行干燥、干馏、燃烧及还原。

一次风从下部通过燃料层为燃料提供氧气,可燃气体与二次风在炉排上方
充分混合燃烧。

层燃锅炉包括固定床、移动炉排、旋转炉排和下饲式锅炉等。

移动炉排式锅炉具有操作简单、坚固耐用和运行可靠等特点,被广泛应用于生物质燃烧或垃圾焚烧中。

采用移动炉排以及合理的配风系统,可使燃料层在炉排上的传输较为平滑,从而保障一次风的均匀分布,降低由于空气分布不均匀造成的过度结渣、飞灰损失和空气系数增加等问题。

而且炉排系统可以采用水冷的方式,以减轻结渣现象
的出现,延长设备使用寿命。

如瑞典的Linkoping热电厂,就采用移动炉排式锅炉。

该热电厂的燃烧系统根据各种生物质特点采用3个不同的燃烧器,分别用于燃烧煤(或橡胶)、木材、油,其中烧煤和木材的层燃锅炉均采用移动炉排锅炉。

但是,包括移动炉排式锅炉在内的层燃锅炉普遍存在燃烧效率较低(一般都在70%以下)的问题。

另外,目前移动炉排式锅炉的控制系统大多以电气机械装置为基础,不足以使锅炉保持适当的空气量与煤量比,以达到最佳燃烧和排放性能,尤其是在负
②流化床燃烧
生物质含水率较高,如秸秆为35%一65%。

因此,采用层燃方式难以保持稳定、充分的燃烧。

采用流化床技术,有利于生物质的完全燃烧,提高锅炉的热效率。

生物质流化床可以采用砂子、燃煤炉渣等作为流化介质,形成蓄热量大、温度高的密相床层,为高水分、低热值的生物质提供优越的着火条件。

依靠床层内剧烈的传热传质过程和燃料在床内较长的停留时间,使难以燃尽的生物质也能充分燃尽。

如在密相区上部稀相区供入二次风,组织两段燃烧,能
迸一步提高燃烧效率。

1991年,XX工业大学就与XX锅炉厂合作研制了多台生物质流化床锅炉,可适用于甘蔗、稻壳、碎木屑等多种生物质。

锅炉热功率高,低负荷运行稳定,热效率高达80%以上[2j。

流化床燃烧是基于气固流化态的一项技术,对燃料适应性好,有害气体排放量低,而且在流化床燃烧过程中加入脱硫剂可直接脱硫,可以大幅降低烟气中SO:的含量。

目前,发展比较迅速的循环流化床燃烧技术对燃料的适应性很好,能够同时燃烧几种不同特性的燃料,非常适合生物质与煤的混燃。

而且燃料的选择以及混燃的比例灵活,能够根据燃料的市场价格进行选择,确保燃料的经济性。

采用循环流化床技术的生物质与煤混燃,燃烧效率可达95%以上,能与煤粉锅炉媲美,由于采用分级燃烧,温度控制在830—850℃,NO。

的生成量很少。

目前,采用循环流化床技术的生物质与煤混燃也存在着一些问题。

虽然NO,排放总量有所减少,
但由于流化床燃烧温度较低,N:O的排放浓度一般比其他燃烧方式高。

为使飞灰再循环燃烧,常导致
一次风机压头要求高、耗电量较大等。

③煤粉锅炉燃烧
煤粉锅炉具有燃烧效率高、燃烧完全等优点,是目前最为常见的一种大型燃煤锅炉,采用现有煤粉锅炉混燃生物质,只需要对现有设备进行改造。

一方面,尽管采用煤粉锅炉混燃生物质和煤,可以适当减少污染,但是受到生物质混燃比例不能过大的限制,与流化床混燃相比,煤粉锅炉混燃的CO:和NO。

等气体排放物还是较多,在气体污染物的控制方面有待提高。

另一方面,煤粉锅炉对燃料的颗粒尺寸和含水率要求较为严格,一般粒径要求小于2mm,含
水率不能超过15%,因此生物质预处理系统就比较复杂,造价较高。

由于粒径较小,高燃烧强度还会导致炉墙表面温度较高,易损坏炉墙的耐火材料。

3气化利用技术
生物质气化是一种热化学处理技术。

将薪柴、秸秆等农业废弃物置于气化炉中通过热解反应转化成CO等混合可燃气体,以连续生产的工艺和工业生产的方式将生物质能转化为高效的锅炉燃料。

当以含水量为15%一40%、低热值为19~20MJ/t的生物质作为原料时,可产生低热值为5MJ/m3的可燃气体。

我国在20世纪80年代初已开始了生物质气化技术的研究,近几年已研制出可使用多种生物质的不同容量、不同用途的气化炉。

一般气化炉采用固定床,固定床对原料适应性强,基本上不需预处理,设备结构简单,但气化率较低。

中科院XX能源所研制的上吸式生物质气化炉气化强度为240ks/(n12・h)E3]。

流化床气化炉,特别是循环流化床气化炉由于具有床内混合均匀、传热传质强烈等优点,使生物质热解气化更充分,气化时生物质的份额不能太高。

生物质燃料引起的结渣和腐蚀生物质的灰熔点较低,燃烧过程中设备易结渣。

特别是燃用含氯较多的生物质,如秸秆和稻草等,当换热器表面温度超过400℃时,还会产生高温腐蚀。

④污染在气化利用中还会产生焦油、灰分、废水等二次污染物。

4结论
①我国有丰富的生物质资源,从环境保护和充分利用资源的角度出发,生物质与煤的混燃技术应得到国家的政策扶持和财政支持。

②我国生物质资源量大面广,种类多样。

对不同的资源种类和不同的用户对象,需要采用不同的技术路线和设备,才能更有效地加以利用。

因此,我国
应因地制宜地开发适合我国国情的生物质与煤的混燃技术。

在加强国际合作与交流,引进发达国家成熟的混燃技术和设备的同时,应加强生物质与煤混燃技术的基础研究,组织高校及科研单位对该效率可达75%一85%,气化强度可达2000ks/・h)且可燃气体的焦油含量低。

XX模压木制厂利用加工过程废弃的细木粉,采用循环流化床生物质气化装置转换成可燃气,用作锅炉燃料,每日节煤10t/d
③针对生物质存在经济收集半径的特点,我国应优先发展小容量生物质与煤的混燃设备,满足生物质产地的用能需要。

我国对小容量层燃和流化,取得了明显的经济效益M1。

生物质气化后床锅炉方面有丰富的技术积累,发展层燃和流化床的产品,还可用于发电或直接为居民提供燃气。

固定床气化技术以农业、林业废弃物为原料,可用于小规模气化发电系统,面向农村、林区及偏远地区,操作方便。

流化床气化发电系统适用于大中规模,可以农业和林业废弃物作为原料,面向工业企业,生产的电可供企业自身使用,也可并人电网。

3混燃存在的问题
①生物质原料的供应
在自然生态中,生物质分布广泛但不集中,并且生物质的能量密度较小,储运较困难。

因此,对于物质的利用存在一个经济收集半径,一般电站的规模取决于距其80~120km内可获取的生物质原料生物质与煤的混燃技术具有明显的技术优势。

相关文档
最新文档