高三数学二轮专题复习教案――数列

合集下载

高中数学数列概念教案

高中数学数列概念教案

高中数学数列概念教案
教学内容:数列概念
教学目标:能够理解数列概念,掌握常见数列的性质及求解方法。

教学重点和难点:掌握数列的定义及常见数列的性质。

教学准备:教学课件、教学实验材料、小黑板、粉笔、教科书。

教学过程:
一、引入(5分钟)
通过渐进法引入数列的概念,并引导学生思考数列在生活中的实际应用,激发学生学习的
兴趣。

二、讲解(15分钟)
1. 数列的定义:依据顺序排列的一系列数构成的序列称为数列。

2. 数列的表示方法:通项公式及递推公式。

3. 常见数列及性质:等差数列、等比数列、斐波那契数列等。

三、实例讲解(20分钟)
通过实例演算,帮助学生掌握数列的性质及求解方法,巩固所学知识。

四、练习(15分钟)
设计一些与课堂内容相关的练习题,让学生在课堂上进行练习,检验他们的学习情况。

五、总结(5分钟)
对本节课所学内容进行总结,强调重点知识点,帮助学生将学到的知识点牢固记忆。

六、作业布置(5分钟)
布置相关的课外作业,加深学生对数列的理解。

教学反思:
此教案通过引入、讲解、演算、练习、总结和作业布置等方式,全面系统地向学生介绍了
数列的概念及性质,帮助学生掌握了数列的基本知识,同时激发了学生对数学的学习兴趣。

在今后的教学中,应注重巩固学生的基础知识,引导学生灵活运用所学知识解决实际问题,提高学生的数学素养和解题能力。

高考数学二轮复习第一篇专题四数列第2讲数列求和及简单应用课件理

高考数学二轮复习第一篇专题四数列第2讲数列求和及简单应用课件理

+2an+1=4S
n+1+3.
可得
a2 n 1
-
an2
+2(an+1- an)=4an+1,即
2(an+1+an)=
a2 n 1
-
an2
= (an+1+an)(an+1-an).
由于 an>0,可得 an+1-an=2.
又 a12 +2a1=4a1+3, 解得 a1=-1(舍去)或 a1=3.
所以{an}是首项为 3,公差为 2 的等差数列,通项公式为 an=2n+1.
第二个使用累积的方法、第三个可以使用待定系数法化为等比数列(设 an+1+λ =p(an+λ),展开比较系数得出λ);(3)周期数列,通过验证或者推理得出数列的 周期性后得出其通项公式.
热点训练 1:(1)(2018·湖南长沙雅礼中学、河南省实验中学联考)在数列{an}
中,a1=2, an1 = an +ln(1+ 1 ),则 an 等于( )
n
所以
1 =2(1- 1 + 1 - 1 +…+ 1 -
1

S k 1 k
223
n n1
=2(1- 1 ) n 1
= 2n . n 1
答案: 2n n 1
3.(2015·全国Ⅱ卷,理16)设Sn是数列{an}的前n项和,且a1=-1,an+1=SnSn+1,则
Sn=
.
解析:因为 an+1=S n+1-Sn,所以 Sn+1-Sn=Sn+1Sn,

高三数学数列教案5篇

高三数学数列教案5篇

高三数学数列教案5篇高三数学数列教案1等差数列(一)教学目标:明确等差数列的定义,掌握等差数列的通项公式,会解决知道an,a1,d,n中的三个,求另外一个的问题;培养学生观察能力,进一步提高学生推理、归纳能力,培养学生的'应用意识.教学重点: 1.等差数列的概念的理解与掌握. 2.等差数列的通项公式的推导及应用. 教学难点:等差数列“等差”特点的理解、把握和应用. 教学过程:Ⅰ.复习回顾上两节课我们共同学习了数列的定义及给出数列的两种方法——通项公式和递推公式.这两个公式从不同的角度反映数列的特点,下面我们看这样一些例子Ⅱ.讲授新课 10,8,6,4,2,; 21,21,22,22,23,23,24,24,25 2,2,2,2,2,首先,请同学们仔细观察这些数列有什么共同的特点?是否可以写出这些数列的通项公式?(引导学生积极思考,努力寻求各数列通项公式,并找出其共同特点) 它们的共同特点是:从第2项起,每一项与它的前一项的“差”都等于同一个常数. 也就是说,这些数列均具有相邻两项之差“相等”的特点.具有这种特点的数列,我们把它叫做等差数列.1.定义等差数列:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示.2.等差数列的通项公式等差数列定义是由一数列相邻两项之间关系而得.若一等差数列{an}的首项是a1,公差是d,则据其定义可得: (n-1)个等式若将这n-1个等式左右两边分别相加,则可得:an-a1=(n-1)d 即:an=a1+(n-1)d 当n=1时,等式两边均为a1,即上述等式均成立,则对于一切n∈N-时上述公式都成立,所以它可作为数列{an}的通项公式. 看来,若已知一数列为等差数列,则只要知其首项a1和公差d,便可求得其通项. 由通项公式可类推得:am=a1+(m-1)d,即:a1=am-(m-1)d,则: an=a1+(n-1)d=am-(m-1)d+(n-1)d=am+(n-m)d. 如:a5=a4+d=a3+2d=a2+3d=a1+4d请同学们来思考这样一个问题. 如果在a与b中间插入一个数A,使a、A、b 成等差数列,那么A应满足什么条件? 由等差数列定义及a、A、b成等差数列可得:A-a=b-A,即:a=. 反之,若A=,则2A=a+b,A-a=b-A,即a、A、b成等差数列. 总之,A= a,A,b成等差数列. 如果a、A、b成等差数列,那么a叫做a与b 的等差中项. 例题讲解 [例1]在等差数列{an}中,已知a5=10,a15=25,求a25.思路一:根据等差数列的已知两项,可求出a1和d,然后可得出该数列的通项公式,便可求出a25.思路二:若注意到已知项为a5与a15,所求项为a25,则可直接利用关系式an=am+(n-m)d.这样可简化运算. 思路三:若注意到在等差数列{an}中,a5,a15,a25也成等差数列,则利用等差中项关系式,便可直接求出a25的值.[例2](1)求等差数列8,5,2的第20项. 分析:由给出的三项先找到首项a1,求出公差d,写出通项公式,然后求出所要项答案:这个数列的第20项为-49. (2)-401是不是等差数列-5,-9,-13的项?如果是,是第几项? 分析:要想判断-401是否为这数列的一项,关键要求出通项公式,看是否存在正整数n,可使得an=-401. ∴-401是这个数列的第100项.Ⅲ.课堂练习1.(1)求等差数列3,7,11,的'第4项与第10项.(2)求等差数列10,8,6,的第20项. (3)100是不是等差数列2,9,16,的项?如果是,是第几项?如果不是,说明理由. 2.在等差数列{an}中,(1)已知a4=10,a7=19,求a1与d;(2)已知a3=9,a9=3,求a12.Ⅳ.课时小结通过本节学习,首先要理解与掌握等差数列的定义及数学表达式:an-an-1=d(n≥2).其次,要会推导等差数列的通项公式:an=a1+(n-1)d(n≥1),并掌握其基本应用.最后,还要注意一重要关系式:an=am+(n-m)d的理解与应用以及等差中项。

高中数学《数列复习课》公开课优秀教学设计整理

高中数学《数列复习课》公开课优秀教学设计整理


一般特殊
一般特殊
《数列》复习课的点评
在高三的数学复习课上最容易出现的就是“油水分离”式的复习模式,即先对知识点进行梳理,再进行相应的题目训练。

至于这种模式下知识梳理的效果以及相应题目训练是否直指学生学习的困惑或难点,不易得知。

王老师这节复习课的亮点可以用三个字来概括,即“新,准,实”。

一、新
“新”在形式上。

基于教师对学生认知的了解,明确了高三的复习课必须规避“油水分离”式的复习模式,针对怎样才能做到有针对性的复习,王玲老师的这节课给了我们很好的启发。

为了了解学生的情况,王玲老师在本单元复习之前做了章前测,在复习完等差数列后又做了相关的学生调查问卷。

这种新的教学形式正是基于教师对学生的学情分析,有调查问卷提炼出的学生学习难点,有通过课堂前测统计出的解答的正答统计数据和解题过程反馈,教师正是据此确定了本节课的定位并设计了课堂上相关的学生活动。

二、准
“准”在定位上。

正是基于教师对学生的学情分析,有调查问卷提炼出的学生学习难点的聚焦,有通过课堂前测统计出的解答的正答统计数据和解题过程反馈,教师据此确定了本节课的定位并制定了相关的教学目标和重、难点。

使本节课有了很强的指向性。

三、实
“实”在效果上。

王老师这节课真正做到了把课堂还给学生,在学生的自主评价和相互评价中,对知识建构和多角度解读条件的必要性有了感性认识,并且可以比较灵活地应用。

高三数学第二轮复习专题 数列数列通项的求法(教案及测试;含详解答案)

高三数学第二轮复习专题 数列数列通项的求法(教案及测试;含详解答案)

城东蜊市阳光实验学校数列通项的求法考纲要求:1. 理解数列的概念和几种简单的表示方法〔列表、图像、通项公式〕;2. 可以根据数列的前几项归纳出其通项公式;3. 会应用递推公式求数列中的项或者者.通项;4. 掌握n n s a 求的一般方法和步骤.考点回忆:回忆近几年高考,对数列概念以及通项一般很少单独考察,往往与等差、等比数列或者者者与数列其它知识综合考察.一般作为考察其他知识的铺垫知识,因此,假设这一部分掌握不好,对解决其他问题也是非常不利的. 根底知识过关: 数列的概念1.按照一定排列的一列数称为数列,数列中的每一个数叫做这个数列的,数列中的每一项都和他的有关.排在第一位的数称为这个数列的第一项〔通常也叫做〕.往后的各项依次叫做这个数列的第2项,……第n 项……,数列的一般形式可以写成12,n a a a …………,其中是数列的第n 项,我们把上面数列简记为. 数列的分类:1.根据数列的项数,数列可分为数列、数列.2.根据数列的每一项随序号变化的情况,数列可分为数列、数列、数列、 数列.数列的通项公式:1.假设数列{}n a 的可以用一个公式来表示,那么这个公式叫做这个数列的通项公式,通项公式可以看成数列的函数. 递推公式; 1.假设数列{}n a 的首项〔或者者者前几项〕,且任意一项1n n a a -与〔或者者其前面的项〕之间的关系可以,那么这个公式就做数列的递推公式.它是数列的一种表示法. 数列与函数的关系:1.从函数的观点看,数列可以看成以为定义域的函数()na f n =,当自变量按照从小到大的顺序依次取值时,所对应的一列函数值,反过来,对于函数y=f(x),假设f(i)(i=1,2,3,……)有意义,那么我们可以得到一个数列f(1),f(2),f(3)……f(n)…… 答案: 数列的概念 1.顺序项序号首项n a {}n a数列的分类 1.有限无限 2.递增递减常摆动 数列的通项公式1.第n 项与它的序号n 之间的关系n a =f(n)解析式 递推公式1. 可以用一个公式来表示数列与函数的关系1. 正整数集N*〔或者者它的有限子集{}1,2,3,n ……〕高考题型归纳:题型1.观察法求通项观察法是求数列通项公式的最根本的方法,其本质就是通过观察数列的特征,找出各项一一共同的构成规律,横向看各项之间的关系构造,纵向看各项与项数之间的关系,从而确定出数列的通项.例1.数列12,14,58-,1316,2932-,6164,….写出数列的一个通项公式.分析:通过观察可以发现这个数列的各项由以下三部分组成的特征:符号、分子、分母,所以应逐个考察其规律.解析:先看符号,第一项有点违犯规律,需改写为12--,由此整体考虑得数列的符号规律是{(1)}n-;再看分母,都是偶数,且呈现的数列规律是{2}n;最后看分子,其规律是每个分子的数比分母都小3,即{23}n -. 所以数列的通项公式为23(1)2n nn n a -=-. 点评:观察法一般适用于给出了数列的前几项,根据这些项来写出数列的通项公式,一般的,所给的数列的前几项规律性特别强,并且规律也特别明显,要么能直接看出,要么只需略作变形即可. 题型2.定义法求通项直接利用等差数列或者者等比数列的定义求通项的方法叫定义法,这种方法适应于数列类型的题目.例2.等差数列{}n a 是递增数列,前n 项和为n S ,且931,,a a a 成等比数列,255a S =.求数列{}n a 的通项公式.分析:对于数列{}n a ,是等差数列,所以要求其通项公式,只需要求出首项与公差即可.解析:设数列{}n a 公差为)0(>d d∵931,,a a a 成等比数列,∴9123a a a =,即)8()2(1121d a a d a +=+d a d 12=⇒ ∵0≠d,∴d a =1………………………………①∵255aS =∴211)4(2455d a d a +=⋅⨯+…………②由①②得:531=a ,53=d∴n n a n 5353)1(53=⨯-+=点评:利用定义法求数列通项时要注意不要用错定义,设法求出首项与公差〔公比〕后再写出通项.题型3.应用nS 与na 的关系求通项有些数列给出{na }的前n 项和nS 与na 的关系式n S =()n f a ,利用该式写出11()n n S f a ++=,两式做差,再利用11n n na S S ++=-导出1n a +与na 的递推式,从而求出na 。

高三数学二轮复习数列[1]

高三数学二轮复习数列[1]

高三数学二轮复习教学案——等差数列与等比数列一、【填空】1.已知各项均为实数的数列{a n }为等比数列,且满足a 1+a 2=12,a 2a 4=1,则a 1=_______.2. 在等差数列{a n }中,若a 1,a 2 011为方程x 2-10x +16=0的两根,则a 2+a 1 006+a 2 010=__________________.3.若数列{a n }的通项公式是a n =(-1)n(3n -2),则a 1+a 2+…+a 10=______________. 4.已知{a n }为等差数列,其公差为-2,且a 7是a 3与a 9的等比中项,S n 为{a n }的前n 项和,n ∈N *,则S 10的值为---------------5.等差数列{a n }前9项的和等于前4项的和.若a 1=1,a k +a 4=0,则k =____________.6. 已知等比数列{}n a 中,214S ,23a 33==,则1a =_____________________. 二、【解答】7. 成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{b n }中的b 3、b 4、b 5.(1)求数列{b n }的通项公式;(2)数列{b n }的前n 项和为S n ,求证:数列⎩⎨⎧⎭⎬⎫S n +54是等比数列.8.设{}n a 数列为等比数列,{}n b 数列为等差数列,且10b =,n n n c a b =+,若{}n c 是1,1,2,, 求{}n c 的前10项和.9. 等比数列{a n}中,a1,a2,a3分别是下表第一、二、三行中的某一个数,且a1,a2,a3中的任何两个数不在下表的同一列.(1)求数列{a n}的通项公式;(2)若数列{b n}满足:b n=a n+(-1)n ln a n,求数列{b n}的前n项和S n.10. 已知数列{a n}满足如下图所示的程序框图.(1)写出数列{a n}的一个递推关系式;(2)证明:{a n+1-3a n}是等比数列,并求{a n}的通项公式;(3)求数列{n(a n+3n-1)}的前n项和T n.。

高考数学二轮复习 第一部分 专题三 数列 第一讲 等差数列、等比数列教案-人教版高三全册数学教案

高考数学二轮复习 第一部分 专题三 数列 第一讲 等差数列、等比数列教案-人教版高三全册数学教案

第一讲 等差数列、等比数列[考情分析]等差数列、等比数列的判定及其通项公式在考查基本运算、基本概念的同时,也注重对函数与方程、等价转化、分类讨论等数学思想的考查;对等差数列、等比数列的性质考查主要是求解数列的等差中项、等比中项、通项公式和前n 项和的最大、最小值等问题,主要是中低档题;等差数列、等比数列的前n 项和是高考考查的重点.年份 卷别 考查角度及命题位置 2017Ⅰ卷 等差、等比数列的综合应用·T 172015Ⅰ卷等差数列的通项公式及前n 项和公式·T 7等比数列的概念及前n 项和公式·T 13Ⅱ卷等差数列的通项公式、性质及前n 项和公式·T 5等比数列的通项公式及性质·T 9[真题自检]1.(2015·高考全国卷Ⅱ)设S n 是等差数列{a n }的前n 项和,若a 1+a 3+a 5=3,则S 5=( ) A .5 B .7 C .9D .11解析:法一:∵a 1+a 5=2a 3,∴a 1+a 3+a 5=3a 3=3,∴a 3=1,∴S 5=5a 1+a 52=5a 3=5.法二:∵a 1+a 3+a 5=a 1+(a 1+2d )+(a 1+4d )=3a 1+6d =3,∴a 1+2d =1, ∴S 5=5a 1+5×42d =5(a 1+2d )=5.解析:A2.(2015·高考全国卷Ⅰ)已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和,若S 8=4S 4,则a 10=( ) A.172 B.192C .10D .12解析:∵公差为1,∴S 8=8a 1+8×8-12×1=8a 1+28,S 4=4a 1+6.∵S 8=4S 4,∴8a 1+28=4(4a 1+6),解得a 1=12,∴a 10=a 1+9d =12+9=192.答案:B3.(2015·高考全国卷Ⅰ改编)在数列{a n }中,a 1=2,a n +1=2a n ,S n 为{a n }的前n 项和.若S n =126,求n 的值.解析:∵a 1=2,a n +1=2a n ,∴数列{a n }是首项为2,公比为2的等比数列. 又∵S n =126,∴21-2n1-2=126,∴n =6.等差数列、等比数列的基本运算[方法结论]1.两组求和公式 (1)等差数列:S n =n a 1+a n2=na 1+n n -12d ;(2)等比数列:S n =a 11-q n 1-q =a 1-a n q1-q(q ≠1).2.在进行等差(比)数列项与和的运算时,若条件和结论间的联系不明显,则均可化成关于a 1和d (q )的方程组求解,但要注意消元法及整体计算,以减少计算量.[题组突破]1.(2017·贵阳模拟)等差数列{a n }的前n 项和为S n ,且a 3+a 9=16,则S 11=( ) A .88 B .48 C .96D .176解析:依题意得S 11=11a 1+a 112=11a 3+a 92=11×162=88,选A. 优解:依题意,可考虑将题目中的等差数列特殊化为常数列(注意慎用此方法),即a n =8,因此S 11=88,选A. 答案:A2.(2017·海口模拟)已知数列{a n },a n >0, 它的前n 项和为S n ,且2a 2是4a 1与a 3的等差中项.若{a n }为等比数列,a 1=1,则S 7=________.解析:设数列{a n }的公比为q ,依题意有a 1=1,4a 2=4a 1+a 3,即4q =4+q 2,故q =2,则S 7=1-271-2=127. 答案:1273.(2017·长沙模拟)已知数列{a n }为等差数列,其中a 2+a 3=8,a 5=3a 2.(1)求数列{a n }的通项公式;(2)数列{b n }中,b 1=1,b 2=2,从数列{a n }中取出第b n 项记为c n ,若{c n }是等比数列,求{b n }的前n 项和.解析:(1)设等差数列{a n }的公差为d ,依题意有⎩⎪⎨⎪⎧2a 1+3d =8a 1+4d =3a 1+3d,解得a 1=1,d =2,从而{a n }的通项公式为a n =2n -1,n ∈N *. (2)c 1=ab 1=a 1=1,c 2=ab 2=a 2=3, 从而等比数列{c n }的公比为3, 因此c n =1×3n -1=3n -1.另一方面,c n =a n b =2b n -1, 所以2b n -1=3n -1,因此b n =3n -1+12. 记{b n }的前n 项和为S n , 则S n =1+31+…+3n -1+n 2=3n+2n -14.[误区警示]在运用等比数列前n 项和公式时,一定要注意判断公比q 是否为1,切忌盲目套用公式导致失误.等差数列、等比数列的性质[方法结论]1.等差数列、等比数列常用性质:等差数列等比数列性质 (1)若m ,n ,p ,q ∈N *,且m +n =p +q ,则a m +a n =a p +a q ;(2)a n =a m +(n -m )d ;(3)S m ,S 2m -S m ,S 3m -S 2m ,…仍成等差数列(1)若m ,n ,p ,q ∈N *,且m +n =p +q ,则a m ·a n =a p ·a q ; (2)a n =a m qn -m ;(3)S m ,S 2m -S m ,S 3m -S 2m ,…仍成等比数列(S m ≠0)(1)若n 为奇数,则S n =na 12n+.(2)若n 为偶数,则S n =n2(a 2n +a 12n +).3.在等差数列中,当项数为偶数2n 时,有S 偶-S 奇=nd ,S 偶S 奇=a n +1a n;当项数为奇数2n -1时,有S 奇-S 偶=a n ,S 偶S 奇=n -1n. 4.在等比数列中,当项数为偶数2n 时,S 偶S 奇=q . [题组突破]1.(2017·洛阳模拟)等差数列{a n }为递增数列,若a 21+a 210=101,a 5+a 6=11,则数列{a n }的公差d 等于( ) A .1 B .2 C .9D .10解析:依题意得(a 1+a 10)2-2a 1a 10=(a 5+a 6)2-2a 1a 10=121-2a 1a 10=101,∴a 1a 10=10, 又a 1+a 10=a 5+a 6=11,a 1<a 10,∴a 1=1,a 10=10,d =a 10-a 110-1=1,选A.答案:A2.(2017·江西红色七校联考)等比数列{a n }满足a n >0,q >1,a 3+a 5=20,a 2a 6=64,则公比q 为( )A.14B.12 C .2D .4解析:通解:由已知可得a 21q 6=64,即a 1q 3=8,得a 4=8,所以8q+8q =20,化简得2q 2-5q+2=0,解得q =2或q =12(舍去),故q =2,选C.优解:由已知可得⎩⎪⎨⎪⎧a 3+a 5=20a 3a 5=64,解得⎩⎪⎨⎪⎧a 3=4a 5=16或⎩⎪⎨⎪⎧a 3=16a 5=4(舍去),故a 5a 3=164=4=q 2,故q =2,选C. 答案:C3.(2017·江西高安中学等九校联考)已知数列{a n }是等比数列,数列{b n }是等差数列,若a 1·a 6·a 11=33,b 1+b 6+b 11=7π,则tanb 3+b 91-a 4·a 8的值是( )A .1B.22C .-22D .- 3解析:{a n }是等比数列,{b n }是等差数列,且a 1·a 6·a 11=33,b 1+b 6+b 11=7π,∴a 36=(3)3,3b 6=7π,∴a 6=3,b 6=7π3,∴tan b 3+b 91-a 4·a 8=tan 2b 61-a 26=tan2×7π31-32=tan(-7π3)=tan(-2π-π3)=-tan π3=- 3. 答案:D [误区警示]在等比数列中,S m ,S 2m -S m ,S 3m -S 2m …仍成等比数列的前提是S m ≠0,易忽视这一条件.等差数列、等比数列的判定与证明[方法结论]1.证明数列{a n }是等差数列的两种基本方法: (1)利用定义,证明a n +1-a n (n ∈N *)为一常数; (2)利用等差中项性质,即证明2a n =a n -1+a n +1(n ≥2). 2.证明{a n }是等比数列的两种基本方法: (1)利用定义,证明a n +1a n(n ∈N *)为一常数; (2)利用等比中项性质,即证明a 2n =a n -1a n +1(n ≥2,a n ≠0). [典例] (2017·高考全国卷Ⅰ)记S n 为等比数列{a n }的前n 项和. 已知S 2=2,S 3=-6. (1)求{a n }的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列. 解析:(1)设{a n }的公比为q .由题设可得⎩⎪⎨⎪⎧a 11+q =2,a 11+q +q2=-6.解得q =-2,a 1=-2.故{a n }的通项公式为a n =(-2)n.(2)由(1)可得S n =a 11-q n 1-q =-23+(-1)n 2n +13.由于S n +2+S n +1=-43+(-1)n 2n +3-2n +23=2[-23+(-1)n 2n +13]=2S n ,故S n +1,S n ,S n +2成等差数列. [类题通法]等价转化思想在解决a n 与S n 关系问题中的应用在已知a n 与S n 的关系问题中,通常利用a n 与S n 的关系转化为{a n }中a n 与a n -1或a n +1与a n 的关系,然后求解其他问题.[演练冲关]1.(2017·华南师大附中测试)在数列{a n }中,a 1=p ,a n +1=qa n +d (n ∈N *,p ,q ,d 是常数),则d =0是数列{a n }是等比数列的( ) A .必要不充分条件 B .充分不必要条件 C .充要条件D .既不充分也不必要条件解析:当d =0,p =0时,a n =0,数列{a n }不是等比数列,所以充分性不成立;当q =0,p =d ,d ≠0时,a n =d ,则数列{a n }为公比为1的等比数列,所以必要性不成立.综上所述,d =0是数列{a n }是等比数列的既不充分也不必要条件,故选D.答案:D2.(2017·临川一中模拟)已知数列{a n }满足:a 1=3,a n +1=n +1na n +2n +2. (1)证明:数列{a n n}是等差数列; (2)证明:1a 1+1a 2+1a 3+…+1a n<1.证明:(1)由a n +1=n +1n a n +2n +2得a n +1n +1=a n n +2,即a n +1n +1-a nn=2, ∴数列{a n n}是首项为3,公差为2的等差数列. (2)由(1)知,a n n=3+(n -1)×2=2n +1, ∴a n =n (2n +1), ∴1a n =1n2n +1<1n n +1=1n -1n +1,∴1a 1+1a 2+1a 3+…+1a n <(11-12)+(12-13)+(13-14)+…+(1n -1n +1)=11-1n +1<1, ∴1a 1+1a 2+1a 3+…+1a n<1.等差、等比数列与其他知识的交汇1.交汇点 数列与其他知识的交汇数列在中学教材中既有相对独立性,又有较强的综合性,很多数列问题一般转化为特殊数列求解,一些题目常与函数、向量、三角函数、解析几何等知识交汇结合,考查数列的基本运算与应用.[典例1] (2017·宜昌月考)已知等差数列{a n }的前n 项和为S n ,若OB →=a 1OA →+a 2 016OC →,且A ,B ,C 三点共线(该直线不过点O ),则S 2 016等于( )A .1 007B .1 008C .2 015D .2 016解析:∵A ,B ,C 三点共线,∴a 1+a 2 016=1,∴S 2 016=2 016a 1+a 2 0162=1 008,故选B.答案:B [类题通法]本题巧妙地将三点共线条件(PA →=xPB →+yPC →且A ,B ,C 三点共线⇔x +y =1)与等差数列的求和公式结合,解决的关键是抓住整体求值思想.[演练冲关]1.(2017·铜仁质检)在由正数组成的等比数列{a n }中,若a 3a 4a 5=3π,则sin(log 3a 1+log 3a 2+…+log 3a 7)的值为( ) A.12 B.32 C .1D .-32解析:因为a 3a 4a 5=3π=a 34,所以a 4=3π3,即log 3a 1+log 3a 2+…+log 3a 7=log 3(a 1a 2…a 7)=log 3a 74=7log 33π3=7π3,所以sin(log 3a 1+log 3a 2+…+log 3a 7)=32.答案:B2.创新点 新定义下数列的创新问题[典例2] 设S n 为数列{a n }的前n 项和,若S 2n S n(n ∈N *)是非零常数,则称该数列为“和等比数列”;若数列{c n }是首项为2,公差为d (d ≠0)的等差数列,且数列{c n }是“和等比数列”,则d =________.解析:由题意可知,数列{c n }的前n 项和为S n =n c 1+c n2,前2n 项和为S 2n =2nc 1+c 2n2,所以S 2nS n =2nc 1+c 2n2n c 1+c n2=2+2nd 4+nd -d =2+21+4-d nd.因为数列{c n }是“和等比数列”,即S 2nS n为非零常数,所以d =4. 答案:4 [类题通法]解决新定义下数列问题一般是直接扣定义进行求解.本例的关键是抓住S 2nS n为非零常数来确定参数值.[演练冲关]2.在数列{a n }中,n ∈N *,若a n +2-a n +1a n +1-a n=k (k 为常数),则称{a n }为“等差比数列”,下列是对“等差比数列”的判断: ①k 不可能为0;②等差数列一定是“等差比数列”; ③等比数列一定是“等差比数列”; ④“等差比数列”中可以有无数项为0.其中所有正确判断的序号是________.解析:由等差比数列的定义可知,k 不为0,所以①正确,当等差数列的公差为0,即等差数列为常数列时,等差数列不是等差比数列,所以②错误;当{a n }是等比数列,且公比q =1时,{a n }不是等差比数列,所以③错误;数列0,1,0,1,…是等差比数列,该数列中有无数多个0,所以④正确. 答案:①④。

等差、等比数列性质及其应用 教学设计 -2022届高三数学二轮专题复习

等差、等比数列性质及其应用  教学设计 -2022届高三数学二轮专题复习
1、等差(比)数列基本量和性质的运算;.
2、等差(比)数列的判断与证明的基本方法.
思想方法:函数思想,方程思想.
先让学生总结,教师在学生总结的基础上进行再概括,注意思想方法的归纳
对学习过程进行反思,对思想方法进行总结。
(七)教学反思
这节课是针对文科班的二轮复习开展的。由于是文科班,学生基础相对弱一点,可能会存在一些问题,题量相对有点多;课堂有可能会不够活跃。但相对来说,该节课设计是合理的,能达到学生对该知识的掌握,也能提高学生学习和掌握等差(比)数列在考试的应用能力及得分。
(四)、变式探究
变式训练:(学生赏学)
1、记 为等差数列 的前n项和,若 ;
2、若各项均为正数的等比数列 的前4项的和为15,且 求 ;
同类题型训练,学生动手独立完成
1、熟练掌握该题型
2、通过上述两个问题讨论归纳出等差、等比数列中一般性结论
(五)、研考题:典型题分析
题型之二:等差、等比数列的判定与证明
(一)课前自主学习(知识梳理)
(1)通项公式及前n项和公式:
(2)等差、等比数列的性质:
1、学生根据所学内容完成知识梳理;
2、观察学生的已有知识储备。
温故知新,从学生现有知识入手,让学生体会本节课所需要的应用基本公式和性质,为解决掌握本节课的重点知识作准备。
(二)、高考真题重现
1、数列 中 为 的前n项和,若 ,则
【例2】差数列;
(2)求数列 的通项公式。
1、观察学生的完成情况和解题过程存在的问题;
2、学生讨论,合作交流解决该问题。
1、通过该题,让学生掌握等差(比)数列的判断和证明方法;
2、使学生在学习与探究过程中体验科学探究的一般规律.
(六)归纳总结、布置作业
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三数学二轮专题复习教案――数列 一、本章知识结构:二、重点知识回顾1.数列的概念及表示方法(1)定义:按照一定顺序排列着的一列数.(2)表示方法:列表法、解析法(通项公式法和递推公式法)、图象法.(3)分类:按项数有限还是无限分为有穷数列和无穷数列;按项与项之间的大小关系可分为单调数列、摆动数列和常数列.(4)n a 与n S 的关系:11(1)(2)n n n S n a S S n -=⎧=⎨-⎩≥. 2.等差数列和等比数列的比较(1)定义:从第2项起每一项与它前一项的差等于同一常数的数列叫等差数列;从第2项起每一项与它前一项的比等于同一常数(不为0)的数列叫做等比数列.(2)递推公式:110n n n n a a d a a q q n *++-==≠∈N ,·,,. (3)通项公式:111(1)n n n a a n d a a q n -*=+-=∈N ,,.(4)性质等差数列的主要性质:①单调性:0d ≥时为递增数列,0d ≤时为递减数列,0d =时为常数列.②若m n p q +=+,则()m n p q a a a a m n p q *+=+∈N ,,,.特别地,当2m n p +=时,有2m n p a a a +=.③()()nm a a n m d m n *-=-∈N ,. ④232k k k k k S S S S S --,,,…成等差数列.等比数列的主要性质:①单调性:当1001a q <⎧⎨<<⎩,或101a q >⎧⎨>⎩时,为递增数列;当101a q <⎧⎨>⎩,,,或1001a q >⎧⎨<<⎩时,为递减数列;当0q <时,为摆动数列;当1q =时,为常数列.②若m n p q +=+,则()m n p q a a a a m n p q *=∈N ··,,,.特别地,若2m n p +=,则2m n p a a a =·. ③(0)n m nm a q m n q a -*=∈≠N ,,.④232k k k k k S S S S S --,,,…,当1q ≠-时为等比数列;当1q =-时,若k 为偶数,不是等比数列.若k 为奇数,是公比为1-的等比数列.三、考点剖析考点一:等差、等比数列的概念与性质例1. (2008深圳模拟)已知数列.12}{2n n S n a n n-=项和的前 (1)求数列}{n a 的通项公式; (2)求数列.|}{|n n T n a 项和的前解:(1)当111112,1211=-⨯===S a n 时;、当.213])1()1(12[)12(,2221n n n n n S S a n n n n -=-----=-=≥-时,.213111的形式也符合n a -=.213}{,n a a n n -=的通项公式为数列所以、 (2)令.6,,0213*≤∈≥-=n n n a n 解得又N 当2212112||||||,6n n S a a a a a a T n n n n n -==+++=+++=≤ 时;当||||||||||,67621n n a a a a a T n ++++++=> 时n a a a a a a ----+++= 87621.7212)12()6612(222226+-=---⨯⨯=-=n n n n S S n 综上,⎪⎩⎪⎨⎧>+-≤-=.6,7212,6,1222n n n n n n T n 点评:本题考查了数列的前n 项与数列的通项公式之间的关系,特别要注意n =1时情况,在解题时经常会忘记。

第二问要分情况讨论,体现了分类讨论的数学思想. 例2、(2008广东双合中学)已知等差数列}{n a 的前n 项和为n S ,且35a =,15225S =. 数列}{n b 是等比数列,32325,128b a a b b =+=(其中1,2,3,n =…).(I )求数列}{n a 和{}n b 的通项公式;(II )记,{}nn n n n c a b c n T =求数列前项和. 解:(I )公差为d ,则⎩⎨⎧=⨯+=+,22571515,5211d a d a 12,2,11-=⎩⎨⎧==∴n a d a n 故(1,2,3,n =)….设等比数列}{n b 的公比为q , ⎪⎩⎪⎨⎧=⋅=,128,82333q b q b b 则.2,83==∴q bn n n q b b 233=⋅=∴-(1,2,3,n =)….(II ),2)12(n n n c ⋅-=2323252(21)2,nn T n ∴=+⋅+⋅++-⋅.2)12(2)32(2523221432+⋅-+⋅-++⋅+⋅+=n n n n n T作差:115432)12(22222++⋅--+++++=-n n n n T3112(12)2(21)212n n n -+-=+--⋅-31122122(21)(21)222822n n n n n n n -++++=+---⋅=+--+162(23)n n +=---⋅1(23)26n n T n +∴=-⋅+(1,2,3,n =)…. 点评:本题考查了等差数列与等比数列的基本知识,第二问,求前n 项和的解法,要抓住它的结特征,一个等差数列与一个等比数列之积,乘以2后变成另外的一个式子,体现了数学的转化思想。

考点二:求数列的通项与求和例3.(2008江苏)将全体正整数排成一个三角形数阵:按照以上排列的规律,第n 行(3≥n )从左向右的第3个数为解:前n -1 行共有正整数1+2+…+(n -1)个,即22n n -个,因此第n 行第3 个数是全体正整数中第22n n-+3个,即为262n n -+.点评:本小题考查归纳推理和等差数列求和公式,难点在于求出数列的通项,解决此题需要一定的观察能力和逻辑推理能力。

例4.(2008深圳模拟)图(1)、(2)、(3)、(4)分别包含1个、5个、13个、25个第二十九届北京奥运会吉祥物“福娃形包含()f n 个迎迎”,按同样的方式构造图形,设第n 个图“福娃迎迎”,则(5)f = ;()(1)f n f n --=____解:第1个图个数:1 第2个图个数:1+3+1第3个图个数:1+3+5+3+1第4个图个数:1+3+5+7+5+3+1第5个图个数:1+3+5+7+9+7+5+3+1=41, 所以,f (5)=41f(2)-f(1)=4 ,f(3)-f(2)=8,f(4)-f(3)=12,f(5)-f(4)=1612 34 5 67 8 9 1011 12 13 14 15………………()(1)f n f n --=4(1)n -点评:由特殊到一般,考查逻辑归纳能力,分析问题和解决问题的能力,本题的第二问是一个递推关系式,有时候求数列的通项公式,可以转化递推公式来求解,体现了转化与化归的数学思想。

考点三:数列与不等式的联系例5.(2009届高三湖南益阳)已知等比数列{}n a 的首项为311=a ,公比q 满足10≠>q q 且。

又已知1a ,35a ,59a 成等差数列。

(1)求数列{}n a 的通项(2)令na nb 13log =,求证:对于任意n N *∈,都有122311111 (1)2n n b b b b b b +≤+++(1)解:∵315259a a a ⋅=+ ∴24111109a q a a q =+ ∴4291010q q -+= ∵10≠>q q 且 ∴13q =∴113n nn a a q --==(2)证明:∵133log log 3na n nb n === , 11111(1)1n n b b n n n n +==-++∴12231111111111...1122311n n b b b b b b n n n ++++=-+-++-=-++ 122311111...12n n b b b b b b +∴≤+++点评:把复杂的问题转化成清晰的问题是数学中的重要思想,本题中的第(2)问,采用裂项相消法法,求出数列之和,由n 的范围证出不等式。

例6、(2008辽宁理) 在数列||n a ,||n b 中,a1=2,b1=4,且1n n na b a +,,成等差数列,11nn n b a b ++,,成等比数列(n ∈*N )(Ⅰ)求a2,a3,a4及b2,b3,b4,由此猜测||n a ,||n b 的通项公式,并证明你的结论;(Ⅱ)证明:1122111512n n a b a b a b +++<+++….解:(Ⅰ)由条件得21112n n n n n n b a a a b b +++=+=,由此可得 2233446912162025a b a b a b ======,,,,,.猜测2(1)(1)n n a n n b n =+=+,.用数学归纳法证明:①当n=1时,由上可得结论成立. ②假设当n=k 时,结论成立,即2(1)(1)k k a k k b k =+=+,,那么当n=k+1时,22221122(1)(1)(1)(2)(2)kk k k k ka ab a k k k k k b k b +++=-=+-+=++==+,.所以当n=k+1时,结论也成立.由①②,可知2(1)(1)n n a n n b n =++,对一切正整数都成立.(Ⅱ)11115612a b =<+.n ≥2时,由(Ⅰ)知(1)(21)2(1)n n a b n n n n +=++>+.故112211111111622334(1)n n a b a b a b n n ⎛⎫+++<++++ ⎪+++⨯⨯+⎝⎭…… 111111116223341n n ⎛⎫=+-+-++- ⎪+⎝⎭… 111111562216412n ⎛⎫=+-<+= ⎪+⎝⎭综上,原不等式成立.点评:本小题主要考查等差数列,等比数列,数学归纳法,不等式等基础知识,考查综合运用数学知识进行归纳、总结、推理、论证等能力.例7. (2008安徽理)设数列{}n a 满足3*010,1,,n n a a ca c c N c +==+-∈其中为实数 (Ⅰ)证明:[0,1]n a ∈对任意*n N ∈成立的充分必要条件是[0,1]c ∈;(Ⅱ)设103c <<,证明:1*1(3),n n a c n N -≥-∈;(Ⅲ)设103c <<,证明:222*1221,13n a a a n n N c ++>+-∈-解: (1) 必要性 :120,1a a c ==-∵∴ ,又2[0,1],011a c ∈≤-≤∵∴ ,即[0,1]c ∈充分性 :设 [0,1]c ∈,对*n N ∈用数学归纳法证明[0,1]na ∈当1n =时,10[0,1]a =∈.假设[0,1](1)k a k ∈≥则31111k k a ca c c c +=+-≤+-=,且31110k k a ca c c +=+-≥-=≥ 1[0,1]k a +∈∴,由数学归纳法知[0,1]n a ∈对所有*n N ∈成立(2) 设103c <<,当1n =时,10a =,结论成立当2n ≥ 时,3211111,1(1)(1)n n n n n n a ca c a c a a a ----=+--=-++∵∴ 103C <<∵,由(1)知1[0,1]n a -∈,所以 21113n n a a --++≤ 且 110n a --≥113(1)n n a c a --≤-∴21112113(1)(3)(1)(3)(1)(3)n n n n n a c a c a c a c -----≤-≤-≤≤-= ∴1*1(3)()n n a c n N -≥-∈∴ (3) 设103c <<,当1n =时,2120213a c =>--,结论成立当2n ≥时,由(2)知11(3)n n a c -≥-> 21212(1)1(1(3))12(3)(3)12(3)n n n n n a c c c c ----≥-=-+>-∴222222112212[3(3)(3)]n n n a a a a a n c c c -+++=++>--+++ ∴ 2(1(3))2111313n c n n c c -=+->+---点评:本题是数列、充要条件、数学归纳法的知识交汇题,属于难题,复习时应引起注意,加强训练。

相关文档
最新文档