滑块传送带模型分析带答案精编WORD版

合集下载

2021届高考一轮复习基础练习:牛顿运动定律运用之传送带模型 (word版)(有答案)

2021届高考一轮复习基础练习:牛顿运动定律运用之传送带模型 (word版)(有答案)

2021届高考一轮复习基础练习:牛顿运动定律运用之传送带模型一、单选题(下列题目中只有一个选项是满足题意的)1.如图所示,足够长的水平传送带以v0=2 m/s的速率顺时针匀速运行.t=0时,在最左端轻放一个小滑块,t=2 s 时,传送带突然制动停下.已知滑块与传送带之间的动摩擦因数为μ=0.2,取g=10 m/s2.下列关于滑块相对地面运动的v-t图象正确的是()A.B.C.D.2.如图所示为粮袋的传送装置,已知AB间长度为L,传送带与水平方向的夹角为θ,工作时其运行速度为v,粮袋与传送带间的动摩擦因数为μ,正常工作时工人在A点将粮袋放到运行中的传送带上,关于粮袋从A到B的运动,以下说法正确的是(设最大静摩擦力等于滑动摩擦力) ()1 / 9A.粮袋到达B点的速度与v比较,可能大,也可能相等或小B.粮袋开始运动的加速度为g(sin θ-μcos θ),若L足够大,则以后将一定以速度v做匀速运动C.若μ≥tan θ,则粮袋从A到B一定是一直做加速运动D.不论μ大小如何,粮袋从A到B一直做匀加速运动,且a>g sinθ3.如图所示,传送带保持v0=1 m/s的速度运动,现将一质量m=0.5 kg的物体从传送带左端放上,设物体与传送带间动摩擦因数μ=0.1,传送带两端水平距离x=2.5 m,则运动时间为()A.1sB.2sC.3sD.4s4.如图甲,MN是倾角θ=37°传送带的两个端点,一个质量m=5kg的物块(可看作质点),以4m/s的初速度自M点沿传送带向下运动。

物块运动过程的v-t图像如图乙所示,取g=10m/s2,下列说法正确的是()A.物块最终从N点离开传送带3 / 9B .物块与传送带间的动摩擦因数为0.6C .物块在第6s 时回到M 点D .传送带的速度v =2m/s ,方向沿斜面向下5.如图,MN 是一段倾角为θ=30°的传送带,一个可以看作质点,质量为m =1kg 的物块,以沿传动带向下的速度04v =m/s 从M 点开始沿传送带运动。

“传送带”模型问题专题分析

“传送带”模型问题专题分析

“传送带”模型问题专题分析一.模型特点:1.水平传送带情景一物块可能运动情况:(1)可能一直加速(2)可能先加速后匀速情景二(1)v0>v时,可能一直减速,也可能先减速再匀速(2)v0<v时,可能一直加速,也可能先加速再匀速情景三(1)传送带较短时,滑块一直减速达到左端(2)传送带较长时,滑块还要被传送带传回右端。

其中v0>v返回时速度为v,当v0<v返回时速度为v02倾斜传送带。

情景一(1)可能一直加速(2)可能先加速后匀速情景二(1)可能一直加速(2)可能先加速后匀速(3)可能先以a1加速后以a2加速二.思路方法:(1)水平传送带问题:求解关键在于对物体所受摩擦力进行正确的分析判断。

进一步分析物体的运动情况,物体的速度与传送带速度相等的时刻摩擦力发生突变。

(2)倾斜传送带问题:求解关键在于认真分析物体与传送带的相对运动情况。

进一步分析物体所受摩擦力的情况及运动情况。

当物体速度与传送带速度相等时,物体所受摩擦力可能发生突变。

例1.如图所示,水平传送带以5m/s的恒定速度运动,传送带长l=2.5m,今在其左端A处将一工件轻轻放在上面,工件被带动,传送到右端B处,已知工件与传送带间的动摩擦因数μ=0.5,试求:工件经多少时间由传送带左端A 运动到右端B?(g取10m/s2)答案:1s2.(多选)(2017·锦州模拟)如图所示,水平传送带A、B两端相距s=3.5m,物体与传送带间的动摩擦因数μ=0.1,物体滑上传送带A端的瞬时速度vA=4m/s,到达B端的瞬时速度设为vB。

下列说法中正确的是()A.若传送带不动,vB=3m/sB.若传送带逆时针匀速转动,vB一定等于3m/sC.若传送带顺时针匀速转动,vB一定等于3m/sD.若传送带顺时针匀速转动,vB有可能等于3m/s【解析】选A、B、D总结:(一)受力分析:传送带模型中要注意摩擦力的突变(发生在v物与v带相同的时刻),对于倾斜传送带模型要分析mgsinθ与f的大小与方向。

(完整版)高中物理传送带模型(解析版)

(完整版)高中物理传送带模型(解析版)

送带模型1.模型特征(1)水平传送带模型项目图示滑块可能的运动情况情景1(1)可能一直加速(2)可能先加速后匀速情景2(1)v0>v时,可能一直减速,也可能先减速再匀速(2)v0<v时,可能一直加速,也可能先加速再匀速情景3(1)传送带较短时,滑块一直减速达到左端(2)传送带较长时,滑块还要被传送带传回右端。

其中v0>v返回时速度为v,当v0<v返回时速度为v0(2)倾斜传送带模型项目图示滑块可能的运动情况情景1(1)可能一直加速(2)可能先加速后匀速情景2(1)可能一直加速(2)可能先加速后匀速(3)可能先以a1加速后以a2加速情景3(1)可能一直加速(2)可能一直匀速(3)可能先加速后匀速(4)可能先减速后匀速(5)可能先以a1加速后以a2加速(6)可能一直减速情景4(1)可能一直加速(2)可能一直匀速(3)可能先减速后反向加速(4)可能一直减速2. 注意事项(1)传送带模型中要注意摩擦力的突变①滑动摩擦力消失②滑动摩擦力突变为静摩擦力③滑动摩擦力改变方向(2)传送带与物体运动的牵制。

牛顿第二定律中a 是物体对地加速度,运动学公式中S 是物体对地的位移,这一点必须明确。

(3) 分析问题的思路:初始条件→相对运动→判断滑动摩擦力的大小和方向→分析出物体受的合外力和加速度大小和方向→由物体速度变化再分析相对运动来判断以后的受力及运动状态的改变。

【典例1】如图所示,传送带的水平部分长为L ,运动速率恒为v ,在其左端无初速放上木块,若木块与传送带间的动摩擦因数为μ,则木块从左到右的运动时间可能是( )A.L v +v 2μgB.L vC.2L μgD.2L v【答案】 ACD【典例2】如图所示,倾角为37°,长为l =16 m 的传送带,转动速度为v =10 m/s ,动摩擦因数μ=0.5,在传送带顶端A 处无初速度地释放一个质量为m =0.5 kg 的物体.已知sin 37°=0.6,cos 37°=0.8,g =10 m/s 2.求:(1)传送带顺时针转动时,物体从顶端A 滑到底端B 的时间; (2)传送带逆时针转动时,物体从顶端A 滑到底端B 的时间. 【答案】 (1)4 s (2)2 s【典例3】如图所示,与水平面成θ=30°的传送带正以v =3 m/s 的速度匀速运行,A 、B 两端相距l =13.5 m 。

北京2019版高考物理复习:第三章牛顿运动定律第讲传送带模型滑块_滑板模型 含答案

北京2019版高考物理复习:第三章牛顿运动定律第讲传送带模型滑块_滑板模型 含答案

第4讲传送带模型、滑块—滑板模型基础巩固1.(多选)如图甲为应用于机场和火车站的安全检查仪,用于对旅客的行李进行安全检查。

其传送装置可简化为如图乙的模型,紧绷的传送带始终保持v=1 m/s的恒定速率运行。

旅客把行李无初速度地放在A处,设行李与传送带之间的动摩擦因数μ=0.1,A、B间的距离为2 m,g 取10 m/s2。

若乘客把行李放到传送带的同时也以v=1 m/s的恒定速率平行于传送带运动到B处取行李,则( )A.乘客与行李同时到达B处B.乘客提前0.5 s到达B处C.行李提前0.5 s到达B处D.若传送带速度足够大,行李最快也要2 s才能到达B处2.(多选)如图所示,一质量m=0.2 kg的小煤块以v0=4 m/s的初速度从最左端水平滑上轴心间距L=6 m的水平传送带,传送带可由一电机驱使而转动。

已知小煤块与传送带间的动摩擦因数μ=0.1(取g=10 m/s2)( )A.若电机不开启,传送带不转动,小煤块滑离传送带右端的速度大小为2 m/sB.若电机不开启,传送带不转动,小煤块在传送带上运动的总时间为4 sC.若开启电机,传送带以5 m/s的速率顺时针转动,则小煤块在传送带上留下的一段黑色痕迹的长度为0.5 mD.若开启电机,小煤块在传送带上运动时间最短,则传送带至少需以2m/s的速率顺时针转动3.如图所示,倾斜的传送带顺时针匀速转动,传送带的速率为v1。

一物块从传送带的上端A滑上传送带,滑上时速率为v2,且v1>v2,物块与传送带间的动摩擦因数恒定,不计空气阻力,关于物块离开传送带时可能的速率v和位置,下面说法中一定错误..的是( )A.从下端B离开,v>v2B.从下端B离开,v<v2C.从上端A离开,v=v2D.从上端A离开,v<v24.如图甲所示,静止在光滑水平面上的长木板B(长木板足够长)的左端放着小物块A。

某时刻,A受到水平向右的外力F作用,F随时间t的变化规律如图乙所示,即F=kt,其中k为已知常数。

传送带模型--2024年高三物理二轮常见模型含参考答案

传送带模型--2024年高三物理二轮常见模型含参考答案

2024年高三物理二轮常见模型专题传送带模型特训目标特训内容目标1水平传送带模型(1T -5T )目标2倾斜传送带模型(6T -10T )目标3电磁场中的传送带模型(11T -15T )【特训典例】一、水平传送带模型1如图所示,足够长的水平传送带以v 0=2m/s 的速度沿逆时针方向匀速转动,在传送带的左端连接有一光滑的弧形轨道,轨道的下端水平且与传送带在同一水平面上,滑块与传送带间的动摩擦因数为μ=0.4。

现将一质量为m =1kg 的滑块(可视为质点)从弧形轨道上高为h =0.8m 的地方由静止释放,重力加速度大小取g =10m/s 2,则()A.滑块刚滑上传送带左端时的速度大小为4m/sB.滑块在传送带上向右滑行的最远距离为2.5mC.滑块从开始滑上传送带到第一次回到传送带最左端所用的时间为2.5sD.滑块从开始滑上传送带到第一次回到传送带最左端的过程中,传动系统对传送带多做的功为12J 2如图甲所示,一足够长的水平传送带以某一恒定速度顺时针转动,一根轻弹簧一端与竖直墙面连接,另一端与工件不拴接。

工件将弹簧压缩一段距离后置于传送带最左端无初速度释放,工件向右运动受到的摩擦力F f 随位移x 变化的关系如图乙所示,x 0、F f 0为已知量,则下列说法正确的是(工件与传送带间的动摩擦因数处处相等)()A.工件在传送带上先做加速运动,后做减速运动B.工件向右运动2x 0后与弹簧分离C.弹簧的劲度系数为F f 0x 0D.整个运动过程中摩擦力对工件做功为0.75F f 0x 03如图所示,水平传送带AB 长L =10m ,以恒定速率v 1=2m/s 运行。

初速度大小为v 2=4m/s 的小物块(可视为质点)从与传送带等高的光滑水平地面上经A 点滑上传送带。

小物块的质量m =1kg ,物块与传送带间的动摩擦因数μ=0.4,g取10m/s2,则()A.小物块离开传送带时的速度大小为2m/sB.小物体在传送带上的运动时间为2sC.小物块与传送带间的摩擦生热为16JD.小物块和传送带之间形成的划痕长为4.5m4如图甲所示,水平传送带在电机的作用下,t=0时刻由静止开始向右做匀加速直线运动,物块(视为质点)在t=0时刻以速度v0从左轮中心的正上方水平向右滑上传送带,t0时刻物块与传送带的速度相等均为0.4v0,物块和传送带运动的v-t图像如图乙所示,t0时刻前后物块的加速度大小变化量为53m/s2,物块从右轮中心正上方离开传送带时速度为0.8v0,整个过程中物块相对传送带的位移为1.5m。

(完整版)高中物理传送带模型(解析版)

(完整版)高中物理传送带模型(解析版)

送带模型1.模型特征(1)水平传送带模型项目图示滑块可能的运动情况情景1(1)可能一直加速(2)可能先加速后匀速情景2(1)v0>v时,可能一直减速,也可能先减速再匀速(2)v0<v时,可能一直加速,也可能先加速再匀速情景3(1)传送带较短时,滑块一直减速达到左端(2)传送带较长时,滑块还要被传送带传回右端。

其中v0>v返回时速度为v,当v0<v返回时速度为v0(2)倾斜传送带模型项目图示滑块可能的运动情况情景1(1)可能一直加速(2)可能先加速后匀速情景2(1)可能一直加速(2)可能先加速后匀速(3)可能先以a1加速后以a2加速情景3(1)可能一直加速(2)可能一直匀速(3)可能先加速后匀速(4)可能先减速后匀速(5)可能先以a1加速后以a2加速(6)可能一直减速情景4(1)可能一直加速(2)可能一直匀速(3)可能先减速后反向加速(4)可能一直减速2. 注意事项(1)传送带模型中要注意摩擦力的突变①滑动摩擦力消失②滑动摩擦力突变为静摩擦力③滑动摩擦力改变方向(2)传送带与物体运动的牵制。

牛顿第二定律中a 是物体对地加速度,运动学公式中S 是物体对地的位移,这一点必须明确。

(3) 分析问题的思路:初始条件→相对运动→判断滑动摩擦力的大小和方向→分析出物体受的合外力和加速度大小和方向→由物体速度变化再分析相对运动来判断以后的受力及运动状态的改变。

【典例1】如图所示,传送带的水平部分长为L ,运动速率恒为v ,在其左端无初速放上木块,若木块与传送带间的动摩擦因数为μ,则木块从左到右的运动时间可能是( )A.L v +v 2μgB.L vC.2L μgD.2L v【答案】 ACD【典例2】如图所示,倾角为37°,长为l =16 m 的传送带,转动速度为v =10 m/s ,动摩擦因数μ=0.5,在传送带顶端A 处无初速度地释放一个质量为m =0.5 kg 的物体.已知sin 37°=0.6,cos 37°=0.8,g =10 m/s 2.求:(1)传送带顺时针转动时,物体从顶端A 滑到底端B 的时间; (2)传送带逆时针转动时,物体从顶端A 滑到底端B 的时间. 【答案】 (1)4 s (2)2 s【典例3】如图所示,与水平面成θ=30°的传送带正以v =3 m/s 的速度匀速运行,A 、B 两端相距l =13.5 m 。

(完整版)高中物理传送带模型

(完整版)高中物理传送带模型

一、水平传送带:情景图示滑块可能的运动情况情景1 ⑴可能一直加速⑵可能先加速后匀速情景2 ⑴vv=,一直匀速⑵vv>,一直减速或先减速后匀速⑶vv<,一直加速或先加速后匀速情景3 ⑴传送带较短,一直减速到左端⑵传送带足够长,滑块还要被传回右端:①vv>,返回时速度为v②vv<,返回时速度为v二、倾斜传送带:情景图示滑块可能的运动情况情景1 ⑴可能一直加速⑵可能先加速后匀速⑶可能从左端滑落情景21.可能一直加速⑵可能先加速后匀速⑶可能先以1a加速,后以2a加速情景31可能一直加速⑵可能一直匀速⑶可能先加速后匀速⑷可能先减速后匀速⑸可能先以1a加速,后以2a加速情景4 ⑴可能一直加速⑵可能一直减速⑶可能先减速到0,后反向加速1、如图所示为火车站使用的传送带示意图,绷紧的传送带水平部分长度L =4 m ,并以s m v /10=的速度向右匀速运动。

现将一个可视为质点的旅行包无初速度地轻放在传送带的左端,已知旅行包与传送带之间的动摩擦因数μ=0.2,取2/10s m g =。

(1)求旅行包经过多长时间到达传送带的右端。

(2)若要旅行包从左端运动到右端所用时间最短,传送带速度的大小应满足什么条件?2、如图所示,绷紧的传送带,始终以2 m/s 的速度匀速斜向上运行,传送带与水平方向间的夹角︒=30θ. 现把质量为10 kg 的工件轻轻地放在传送带底端P 处,由传送带传送至顶端Q 处.已知P 、Q 之间的距离为4 m ,工件与传送带间的动摩擦因数23=μ,取2/10s m g = (1)通过计算说明工件在传送带上做什么运动;(2)求工件从P 点运动到Q 点所用的时间.3、(讲逆时针)如图所示,倾角为37°、长为L=16m 的传送带,转动速度为s m v /10=,在传送带顶端A 处无初速地释放一个质量为kg m 5.0=的物体,已知物体与传送带间的动摩擦因数5.0=μ,取2/10s m g =。

滑块、传送带模型分析(带答案).docx

滑块、传送带模型分析(带答案).docx

1如图3— 3 — 13所示,在光滑水平面上有一质量为 m 的足够长的木板,其上叠放一质量为m的木块•假定木块和木板之间的最大静摩擦力和滑动摩擦力相等•现给木块 t 增大的水平力F = kt ( k 是常数),木板和木块加速度2•如图3 — 3 — 7所示,足够长的传送带与水平面夹角为 θ ,以速度V O 逆时针匀速转动.3•如图3— 3 — 8甲所示,绷紧的水平传送带始终以恒定速率V 1运行•初速度大小为 V 2的小物块从与传送带等高的光滑水平地面上的A 处滑上传送带•若从小物块滑上传送带开始计时,小物块在传送带上运动的 V — t 图像(以地面为参考系)如图3— 3— 21乙所示.已O 〜t 2时间内,小物块受到的摩擦力方向先向右后向左 O 〜t 3时间内,小物块始终受到大小不变的摩擦力作用4. 表面粗糙的传送带静止时,物块由顶端A 从静止开始滑到皮带底端 B 用的时间是t,则()A 当皮带向上运动时 B. 当皮带向上运动时 C 当皮带向下运动时 D.当皮带向下运动时5. 如图是一条足够长的浅色水平传送带在自左向右匀速运行。

现将一个木炭包无初速地放施加一随时间 的大小分别为 传送带的上端轻轻放置一个质量为m 的小木块,小木块与传送带间的动摩擦因数B . C. D. 物块由A 滑到B 的时间 物块由A 滑到B 的时间 定大于 定等于 tt 物块由A 滑到B 的时间 定等于 t 物块由A 滑到B 的时间定小于 ta ι和a 2.下列反映a ι和a 2变化的图线中正确的是OADθ ,则图中能客观地反映小木块的速度随时间变化关系的是Aμ V tan( )•V 2>V l ,贝yA .t 2时刻,小物块相对传送带滑动的距离达到最大在传送带的最左端,木炭包在传送带上将会留下一段黑色的径迹。

A. 黑色的径迹将出现在木炭包的左侧 B. 木炭包的质量越大,径迹的长度越短 C. 传送带运动的速度越大,径迹的长度越短D 木炭包与传送带间动摩擦因数越大,径迹的长度越短 6•、如图所示,水平传送带上A B 两端点相距X = 4 m 传送带以V 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

滑块传送带模型分析带答案精编W O R D版 IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】1.如图3-3-13所示,在光滑水平面上有一质量为m1的足够长的木板,其上叠放一质量为m2的木块.假定木块和木板之间的最大静摩擦力和滑动摩擦力相等.现给木块施加一随时间t增大的水平力F=kt(k是常数),木板和木块加速度的大小分别为a1和a2.下列反映a1和a2变化的图线中正确的是( ).2.如图3-3-7所示,足够长的传送带与水平面夹角为θ,以速度v0逆时针匀速转动.在传送带的上端轻轻放置一个质量为m的小木块,小木块与传送带间的动摩擦因数μ<tan θ,则图中能客观地反映小木块的速度随时间变化关系的是 ( ).3.如图3-3-8甲所示,绷紧的水平传送带始终以恒定速率v1运行.初速度大小为v2的小物块从与传送带等高的光滑水平地面上的A处滑上传送带.若从小物块滑上传送带开始计时,小物块在传送带上运动的v-t图像(以地面为参考系)如图3-3-21乙所示.已知v2>v1,则( ).图3-3-8A.t2时刻,小物块离A处的距离达到最大B.t2时刻,小物块相对传送带滑动的距离达到最大C.0~t2时间内,小物块受到的摩擦力方向先向右后向左D.0~t3时间内,小物块始终受到大小不变的摩擦力作用4.表面粗糙的传送带静止时,物块由顶端A从静止开始滑到皮带底端B用的时间是t,则 ( )A.当皮带向上运动时,物块由A滑到B的时间一定大于tB.当皮带向上运动时,物块由A滑到B的时间一定等于tC.当皮带向下运动时,物块由A滑到B的时间一定等于tD.当皮带向下运动时,物块由A滑到B的时间一定小于t5. 如图是一条足够长的浅色水平传送带在自左向右匀速运行。

现将一个木炭包无初速地放在传送带的最左端,木炭包在传送带上将会留下一段黑色的径迹。

下列说法中正确的是()A.黑色的径迹将出现在木炭包的左侧B.木炭包的质量越大,径迹的长度越短C. 传送带运动的速度越大,径迹的长度越短D.木炭包与传送带间动摩擦因数越大,径迹的长度越短6.、如图所示,水平传送带上A、B两端点相距x=4 m,传送带以v0=2 m/s的速度(始终保持不变)顺时针运转.今将一小煤块(可视为质点)无初速度地轻放至A点处,已知小煤块与传送带间的动摩擦因数为0.4,g取10 m/s2.由于小煤块与传送带之间有相对滑动,会在传送带上留下划痕.在小煤块从A运动到B的过程中( )A .所用时间是 2 sB .所用时间是2.25 sC .划痕长度是4 mD .划痕长度是0.5 m7.如图所示,一粗糙的水平传送带以恒定的速度v 1沿顺时针方向运动,传送带的左、右两端皆有一与传送带等高的光滑水平面,一物体以恒定的速率v 2沿水平面分别从左、右两端滑上传送带,下列说法正确的是A. 物体从右端滑到左端所需的时间一定大于物体从左端滑到右端的时间B. 若v 2<v 1,物体从左端滑上传送带必然先做加速运动,再做匀速运动C. 若v 2<v 1,物体从右端滑上传送带,则物体可能到达左端D. 若v 2<v 1,物体可能从右端滑上传送带又回到右端,在此过程中物体先做减速运动再做加速运动8.如图所示,传送带的水平部分长为L ,运动速率恒为v ,在其左端放上一无初速的小木块,若木块与传送带间的动摩擦因数为μ,则木块从左到右的运动时间不可能为( )A .L vB .2L vC .2L v v gμ+ 9.如图(甲)所示,静止在光滑水平面上的长木板B (长木板足够长)的左端静止放着小物块A .某时刻,A 受到水平向右的外力F 作用,F 随时间t 的变化规律如图(乙)所示,即F =kt ,其中k 为已知常数.设物体A 、B 之间的滑动摩擦力大小等于最大静摩擦力f ,且A 、B 的质量相等,则下列可以定性描述长木板速度时间图象的是( )10.如图甲所示,光滑水平面上,木板m ,向左匀速运动.t =0时刻,木块从木板的左端向右以与木板相同大小的速度滑上木板,t 1时刻,木块和木板相对静止,共同向左匀速运动.以v 1和a 1表示木板的速度和加速度,以v 2和a 2表示木块的速度和加速度,以向左为正方向,则图乙中正确的是( )11、如图所示为上、下两端相距 L=5 m 、倾角α=30°、始终以v=3 m/s 的速率顺时针转动的传送带(传送带始终绷紧).将一物体放在传送带的上端由静止释放滑下,经过t=2 s 到达下端,重力加速度g 取10 m/s 2,求:(1)传送带与物体间的动摩擦因数多大?(2)如果将传送带逆时针转动,速率至少多大时,物体从传送带上端由静止释放能最快地到达下端?12.地面高为h=1.25m ,在水平面上向右做直线运动,A 、B 是其左右两个端点.某时刻小车速度为v0=7.2m/s ,在此时刻对平板车施加一个方向水平向左的恒力F=50N ,与此同时,将一个质量m=1kg 的小球轻放在平板车上的P 点(小球可视为质点,放在P 点时相对于地面的速度为零),3LPB ,经过一段时间,小球脱离平板车落到地面.车与地面的动摩擦因数为0.2,其他摩擦均不计.取g=10m/s2.求:(1)小球从离开平板车开始至落到地面所用的时间;(2)小球从轻放到平板车开始至离开平板车所用的时间;(3)从小球轻放上平板车到落地瞬间,平板车的位移大小.1、如图所示,质量为m 的木块在质量为M 的长木板上向右滑行,木块受到向右的拉力F 的作用,长木板处于静止状态,已知木块与长木板间的动摩擦因数为μ1,长木板与地面间的动摩擦因数为μ2,则( )A .长木板受到地面的摩擦力的大小一定是μ1mgB .长木板受到地面的摩擦力的大小一定是μ2(m +M )gC .当F >μ2(m +M )g 时,长木板便会开始运动D .无论怎样改变F 的大小,长木板都不可能运动 解析:木块受到的滑动摩擦力大小为μ1mg ,由牛顿第三定律,长木板受到m 对它的摩擦力大小也是μ1mg ,对长木板使用平衡条件得地面对长木板的静摩擦力为μ2mg ,A 正确.改变F 的大小,木块m 受到的滑动摩擦力不会发生变化,长木板受力不变,D 正确.答案:AD2、如图18所示,某工厂用水平传送带传送零件,设两轮子圆心的距离为S ,传送带与零件间的动摩擦因数为μ,传送带的速度恒为V ,在P 点轻放一质量为m 的零件,并使被传送到右边的Q 处。

设零FP AB v0P Q V件运动的后一段与传送带之间无滑动,则传送所需时间为 ,摩擦力对零件做功为 .分析与解:刚放在传送带上的零件,起初有个靠滑动摩擦力加速的过程,当速度增加到与传送带速度相同时,物体与传送带间无相对运动,摩擦力大小由f=μmg 突变为零,此后以速度V 走完余下距离。

由于f=μmg=ma,所以a=μg. 加速时间 gVa V t μ==1加速位移 g V at S μ22112121== 通过余下距离所用时间 g V V S V S S t μ212-=-=共用时间 g V V S t t t μ221+=+=摩擦力对零件做功 221mV W =3.如图7所示,一质量为m =2 kg 的滑块从半径为R =0.2 m 的光滑四分之一圆弧轨道的顶端A 处由静止滑下,A 点和圆弧对应的圆心O 点等高,圆弧的底端B 与水平传送带平滑相接.已知传送带匀速运行的速度为v 0=4 m/s ,B 点到传送带右端C 点的距离为L =2 m .当滑块滑到传送带的右端C 时,其速度恰好与传送带的速度相同.(g =10 m/s 2),求:(1)滑块到达底端B 时对轨道的压力;(2)滑块与传送带间的动摩擦因数μ;(3)此过程中,由于滑块与传送带之间的摩擦而产生的热量Q .答案 (1)60 N ,方向竖直向下 (2)0.3 (3)4 J解析 (1)滑块由A 到B 的过程中,由机械能守恒定律得:mgR =12mv 2B ①物体在B点,由牛顿第二定律得:F B-mg=m v2BR②由①②两式得:F B=60 N由牛顿第三定律得滑块到达底端B时对轨道的压力大小为60 N,方向竖直向下.(2)解法一:滑块在从B到C运动过程中,由牛顿第二定律得:μmg=ma ③由运动学公式得:v20-v2B=2aL ④由①③④三式得:μ=0.3 ⑤解法二:滑块在从A到C整个运动过程中,由动能定理得:mgR+μmgL=12mv2-0 解得:μ=0.3(3)滑块在从B到C运动过程中,设运动时间为t由运动学公式得:v0=v B+at ⑥产生的热量:Q=μmg(v0t-L) ⑦由①③⑤⑥⑦得:Q=4 J.4.如图9所示,绷紧的传送带与水平面的夹角θ=30°,皮带在电动机的带动下,始终保持v0=2 m/s的速率运行,现把一质量为m=10 kg的工件(可看做质点)轻轻放在皮带的底端,经过时间t=1.9 s,工件被传送到h=1.5 m的高处,取g=10 m/s2,求:(1)工件与传送带间的动摩擦因数;(2)电动机由于传送工件多消耗的电能.解析(1)由题图可知,皮带长x=hsin θ=3 m.工件速度达到v前,做匀加速运动的位移x1=v t1=v2t1匀速运动的位移为x-x1=v0(t-t1)解得加速运动的时间t1=0.8 s 加速运动的位移x1=0.8 m,所以加速度a=vt1=2.5 m/s2由牛顿第二定律有:μmg cos θ-mg sin θ=ma,解得μ=3 2 .(2)根据能量守恒的观点,显然电动机多消耗的电能用于增加工件的动能、势能以及克服传送带与工件之间发生相对位移时摩擦力做功产生的热量.在时间t1内,皮带运动的位移x皮=v0t1=1.6 m ,工件相对皮带的位移x相=x皮-x1=0.8 m摩擦产生的热量Q=μmg cos θx相=60 J,工件获得的动能E k=12mv2=20 J工件增加的势能E p=mgh=150 J,电动机多消耗的电能W=Q+E k+E p=230 J.答案(1)32(2)230 J5.如图10所示,质量为m的物体在水平传送带上由静止释放,传送带由电动机带动,始终保持以速度v匀速运动,物体与传送带间的动摩擦因数为μ,物体在滑下传送带之前能保持与传送带相对静止,图10对于物体从静止释放到与传送带相对静止这一过程,下列说法中正确的是( )A.电动机多做的功为12mv21B.物体在传送带上的划痕长v2μgC.传送带克服摩擦力做的功为12mv2D.电动机增加的功率为μmgv答案D解析小物块与传送带相对静止之前,物体做匀加速运动,由运动学公式知x物=v2 t,传送带做匀速运动,由运动学公式知x传=vt,对物块根据动能定理μmgx物=12mv2,摩擦产生的热量Q=μmgx相=μmg(x传-x物),四式联立得摩擦产生的热量Q=12mv2,根据能量守恒定律,电动机多做的功一部分转化为物块的动能,一部分转化为热量,故电动机多做的功等于mv2,A项错误;物体在传送带上的划痕长等于x传-x物=x物=v22μg,B项错误;传送带克服摩擦力做的功为μmgx传=2μmgx物=mv2,C项错误;电动机增加的功率也就是电动机克服摩擦力做功的功率为μmgv,D项正确.6.如图14所示,倾斜的传送带始终以恒定速率v2运动.一小物块以v1的初速度冲上传送带,v1>v2.小物块从A到B的过程中一直做减速运动,则( )A.小物块到达B端的速度可能等于v2 B.小物块到达B端的速度不可能等于零C.小物块的机械能一直在减少D.小物块所受合力一直在做负功答案AD解析小物块一直做减速运动,到B点时速度为小于v1的任何值,故A正确,B错误.当小物块与传送带共速后,如果继续向上运动,摩擦力将对小物块做正功,机械能将增加,故C错误.W合=ΔE k<0,D正确.7.一个平板小车置于光滑水平面上,其右端恰好和一个14光滑圆弧轨道AB的底端等高对接,如图9所示.已知小车质量M=2 kg,小车足够长,圆弧轨道半径R=0.8 m.现将一质量m=0.5 kg的小滑块,由轨道顶端A点无初速度释放,滑块滑到B端后冲上小车.滑块与小车上表面间的动摩擦因数μ=0.2.(取g=10 m/s2)试求:(1)滑块到达B端时,对轨道的压力大小;(2)小车运动2 s时,小车右端距轨道B端的距离;(3)滑块与车面间由于摩擦而产生的内能.答案(1)15 N (2)0.96 m (3)3.2 J解析(1)滑块从A端下滑到B端时速度大小为v0,由动能定理得mgR=12mv2v=4m/s在B点对滑块由牛顿第二定律得F N-mg=m v2 0 R解得轨道对滑块的支持力F N=3mg=15 N由牛顿第三定律得,滑块对轨道的压力大小F N ′=15 N(2)滑块滑上小车后,由牛顿第二定律对滑块:-μmg =ma 1,得a 1=-2 m/s 2 对小车:μmg =Ma 2,得a 2=0.5 m/s 2设经时间t 后两者达到共同速度,则有 v 0+a 1t =a 2t 解得t =1.6 s由于t =1.6 s<2 s .故1.6 s 后小车和滑块一起匀速运动,速度v =a 2t =0.8 m/s因此,2 s 时小车右端距轨道B 端的距离为 x =12a 2t 2+v (2-t )=0.96 m (3)滑块相对小车滑动的距离为 Δx =v 0+v 2t -v2t =3.2 m 所以产生的内能Q =μmg Δx =3.2 J (1)传送带对小物体做的功;(2)电动机做的功。

相关文档
最新文档