传送带木板滑块专题

传送带木板滑块专题
传送带木板滑块专题

专题动力学中的典型“模型”

热点一滑块——长木板模型

滑块——长木板模型是近几年来高考考查的热点,涉及摩擦力的分析判断、牛顿运动定律、匀变速直线运动等主干知识,能力要求较高.滑块和木板的位移关系、速度关系是解答滑块——长木板模型的切入点,前一运动阶段的末速度是下一运动阶段的初速度,解题过程中必须以地面为参考系.1.模型特点:滑块(视为质点)置于长木板上,滑块和木板均相对地面运动,且滑块和木板在摩擦力的作用下发生相对滑动.

2.位移关系:滑块由木板一端运动到另一端过程中,滑块和木板同向运动时,位移之差Δx=x2-x1=L(板长);滑块和木板反向运动时,位移之和Δx=x2+x1=L.

考向一外力F作用下的滑块——长木板

1 [2016·兰州实战考试] 如图Z3-1所示,质

量m=1 kg的物块A放在质量M=4 kg的木板B的左端,起初A、B静止在水平地面上.现用一水平向左的力F作用在木板B上,已知A、B之间的动摩擦因数为μ1=0.4,地面与B之间的动摩擦因数为μ2=0.1,假设最大静摩擦力等于滑动摩擦力,g取10 m/s2.

(1)求能使A、B发生相对滑动的F的最小值;

(2)若F=30 N,作用1 s后撤去F,要使A不从B上滑落,则木板至少为多长?从开始到A、B均静止,

A的总位移是多少?

图Z3-1

式题 (多选)[2015·陕西宝鸡九校联考] 如图

Z3-2所示,光滑水平面上放着质量为M的木板,木板左端有一个质量为m的木块.现对木块施加一个水平向右的恒力F,木块与木板由静止开始运动,经过时间t分离.下列说法正确的是( )

图Z3-2

A.若仅增大木板的质量M,则时间t增大

B.若仅增大木块的质量m,则时间t增大

C.若仅增大恒力F,则时间t增大

D.若仅增大木块与木板间的动摩擦因数,则时间t增大

考向二无外力F作用的滑块——长木板

2 [2016·广州模拟] 在粗糙水平面上,一电

动玩具小车以v0=4 m/s的速度做匀速直线运动,其正前方平铺一边长为L=0.6 m的正方形薄板,小车在到达薄板前某处立即关闭电源,靠惯性运动s=3 m的距离后沿薄板一边的中垂线平滑地冲上薄板.小车与水平面以及小车与薄板之间的动摩擦因数均为μ1=0.2,薄板与水平面之间的动摩擦因数μ2=0.1,小车质量M为薄板质量m的3倍,小车可看成质点,重力加速度g取10 m/s2,求:

(1)小车冲上薄板时的速度大小;

(2)小车从刚冲上薄板到停止时的位移大小.

式题 (多选)[2016·山西长治一模] 如图Z3-3所示,一足够长的木板静止在粗糙的水平面上,t=0时刻滑块从板的左端以速度v0水平向右滑行,木板与滑块之间存在摩擦,且最大静摩擦力等于滑动摩擦力,则滑块的v-t图像可能是图Z3-4中的( )

考向三斜面上的滑块——长木板

3 [2016·武汉武昌区调研] 如图Z3-5所示,

在倾角为θ=37°的固定长斜面上放置一质量M=1 kg、长度L1=3 m的极薄平板AB,薄平板的上表面光滑,其下端B与斜面底端C的距离为L2=16 m.在薄平板的上端A处放一质量m=0.6 kg的小滑块(视为质点),将小滑块和薄平板同时由静止释放.设薄平板与斜面之间、小滑块与斜面之间的动摩擦因数均为μ=0.5,求滑块与薄平板下端B到达斜面底端C的时间差Δt.(已知sin 37°=0.6,cos 37°=0.8,重力加速度g取10 m/s2)

图Z3-5

式题 如图Z3-6所示,一质量为M 的斜面体静

止在水平地面上,斜面倾角为θ,斜面上叠放着A 、B 两物体,物体B 在沿斜面向上的力F 的作用下沿斜面匀速上滑.若A 、B 之间的动摩擦因数为μ,μ

图Z3-6

A .A 、

B 保持相对静止

B .地面对斜面体的摩擦力等于F cos θ

C .地面受到的压力等于(M +2m )g

D .B 与斜面间的动摩擦因数为F -mg sin θ-μmg cos θ

2mg cos θ

■ 建模点拨

“滑块——长木板模型”解题思路:

1.选取研究对象:隔离滑块、木板,对滑块和木板进行受力分析和运动分析.

2.寻找临界点:根据牛顿第二定律和直线运动规律求解加速度,判断是否存在速度相等的“临界点”,注意“临界点”摩擦力的突变.

3.分析运动结果:无临界速度时,滑块与木板分离,确定相等时间内的位移关系.有临界速度时,滑块与木板不分离,假设速度相等后加速度相同,由整体法求解系统的共同加速度,再由隔离法用牛顿第二

定律求滑块与木板间的摩擦力,如果该摩擦力不大于最大静摩擦力,则说明假设成立,可对整体列式;如果该摩擦力大于最大静摩擦力,则说明假设不成立,可对两者分别列式,确定相等时间内的位移关系.

热点二涉及传送带的动力学问题传送带问题为高中动力学问题中的难点,主要表现在两方面:其一,传送带问题往往存在多种可能结论的判定,即需要分析确定到底哪一种可能情况会发生;其二,决定因素多,包括滑块与传送带间的动摩擦因数大小、斜面倾角、传送带速度、传送方向、滑块初速度的大小及方向等.这就需要考生对传送带问题能做出准确的动力学过程分析.下面是最常见的几种传送带问题模型.

考向一水平传送带模型

4 如图Z3-7所示,水平方向的传送带顺时针

转动,传送带速度大小恒为v=2 m/s,两端A、B间距离为3 m.一物块从B端以初速度v0=4 m/s滑上传送带,物块与传送带间的动摩擦因数μ=0.4,g取10 m/s2.物块从滑上传送带至离开传送带的过程中,速度随时间变化的图像是图Z3-8中的( )

图Z3-7

图Z3-8

式题如图Z3-9所示,足够长的水平传送带静

止时在左端做标记点P,将工件放在P点.启动传送带,使其向右做匀加速运动,工件相对传送带发生滑动.经过t1=2 s时立即控制传送带,使其做匀减速运动,再经过t2=3 s传送带停止运行,测得标记点P 通过的距离x0=15 m.

(1)求传送带的最大速度;

(2)已知工件与传送带间的动摩擦因数μ=0.2,重力加速度g取10 m/s2,求整个过程中工件运动的总距离.

图Z3-9 考向二倾斜传送带模型

5 如图Z3-10甲所示,倾斜传送带倾角θ=37°,两端A、B间距离L=4 m,传送带以4 m/s的速度顺时针转动,质量为1 kg的滑块从传送带顶端B 点由静止释放后下滑,到A端时用时2 s,g取10 m/s2,sin 37°=0.6,cos 37°=0.8.

(1)求滑块与传送带间的动摩擦因数;

(2)若该滑块在传送带的底端A点,如图乙所示,现用一沿传送带向上的大小为6 N的恒定拉力F拉滑块,使其由静止开始沿传送带向上运动,当滑块速度与传送带速度相等时,撤去拉力,则当滑块到传送

相关主题
相关文档
最新文档