R9-《化工传递过程导论》课程第九次作业参考答案
《化工传递过程导论》课程作业参考答案分析

《传递过程原理》课程第三次作业参考答案1. 不可压缩流体绕一圆柱体作二维流动,其流场可用下式表示θθθsin ;cos 22⎪⎪⎭⎫⎝⎛+=⎪⎪⎭⎫ ⎝⎛-=D r C u D r C u r其中C ,D 为常数,说明此时是否满足连续方程。
解:由题意,柱坐标下的连续性方程一般表达式为: ()()11()0r z u ru u t r r r z θρρρρθ∂∂∂∂+++=∂∂∂∂ 不可压缩流体:0tρ∂=∂且上式后三项可去除密度ρ 二维流动:()0z u zρ∂=∂则连续性方程简化为:()110r u ru r r r θθ∂∂+=∂∂22()111(cos )cos r ru C C r D D r r r r r r r θθ∂∂⎛⎫⎛⎫=-=-- ⎪ ⎪∂∂⎝⎭⎝⎭22111(sin )cos u C C D D r r r r r θθθθθ∂∂⎛⎫⎛⎫=+=+ ⎪ ⎪∂∂⎝⎭⎝⎭故:22()()1111cos cos 0r u ru C C D D r r r r r r r θθθθ∂∂⎛⎫⎛⎫+=--++= ⎪ ⎪∂∂⎝⎭⎝⎭ 由题意,显然此流动满足连续方程。
2. 判断以下流动是否可能是不可压缩流动(1)⎪⎩⎪⎨⎧-+=--=++=zx t u zy t u y x t u z y x 222 (2)()()()⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=-==-=22221211ttz u xy u x y u z y x ρρρρ解:不可压缩流动满足如下条件:0y x zu u u x y z∂∂∂++=∂∂∂ (1)2110y x zu u u x y z∂∂∂++=--=∂∂∂故可能为不可压缩流动 (2)122(222)0y x z u u u t x x t x y z tρρ∂∂∂++=-+-=-=-≠∂∂∂2t ρ=且。
显然不可能是不可压缩流动。
3. 对于下述各种运动情况,试采用适当坐标系的一般化连续性方程描述,并结合下述具体条件将一般化连续性方程加以简化,指出简化过程的依据。
化工传递过程基础(第三版)习题答案详解_部分4

·105·第九章 质量传递概论与传质微分方程9-1 在一密闭容器内装有等摩尔分数的O 2、N 2和CO 2,试求各组分的质量分数。
若为等质量分数,求各组分的摩尔分数。
解:当摩尔分数相等时,O 2,N 2和CO 2的物质的量相等,均用c 表示,则O 2的质量为32 c ,N 2的质量为28 c ,CO 2的质量为44 c ,由此可得O 2,N 2和CO 2的质量分数分别为1320.308322844a cc c c==++ 2280.269322844a cc c c==++ 3440.423322844a cc c c==++ 当质量分数相等时,O 2,N 2和CO 2的质量相等,均用m 表示,则O 2的物质的量为m /32,N 2的物质的量为m /28,CO 2的物质的量为m /44,由此可得O 2,N 2和CO 2的摩尔分数分别为1/320.3484/32/28/44x m m m m ==++2/280.3982/32/28/44x m m m m ==++ 3/440.2534/32/28/44x m m m m ==++ 9-2 含乙醇(组分A )12%(质量分数)的水溶液,其密度为980 kg/m 3,试计算乙醇的摩尔分数及物质的量浓度。
解:乙醇的摩尔分数为A AA 1/0.12/460.05070.12/460.88/18(/)i i Ni a M x a M ====+∑溶液的平均摩尔质量为0.0507460.94931819.42M =×+×= kg/kmol乙醇的物质的量浓度为A A A 9800.0507 2.55819.42c C x x Mρ===×=kmol/m 39-3 试证明由组分A 和B 组成的双组分混合物系统,下列关系式成立:(1)A B AA 2A AB B d d ()M M x a x M x M =+;(2)A A 2A B A B A B d d a x aa M M M M = +。
北京化工大学《化工传递过程导论》课程第十次作业参考答案

《化工传递过程导论》课程第十次作业解题参考1. 流体在垂直壁面附近呈自然对流,已知局部传热系数h x =c ⋅x -1/4,式中x 为离平壁前缘的距离,c 为取决于流体物性的常量,试求局部传热系数与平均传热系数之比。
解:局部传热系数为当地的点值,平均传热系数为一段区间上的均值。
对于长为L 的平板壁面,平均传热系数为面积加权平均或线平均值,也即1m x A h h dA A =⎰⎰1401(1)(1)Lm h Cx dx L -⇒=⨯⎰1443m h CL -⇒= 故局部传热系数与平均传热系数之比11441433()4443x m h Cx x h L CL ---=== 2. 20℃的空气以均匀流速u=15m/s 平行流过温度为100℃的壁面。
已知临界雷诺数Re xc =5×105,求平板上层流段的长度、临界长度处速度边界层和温度边界层的厚度、局部对流传热系数和层流段的平均对流传热系数。
解:特征温度01()602o w t t t t C =+⇒= 60o C 下,空气的物性常数为:-31.060kg m ρ=⋅,-11.017kg/(kg K)p c =⋅2-12.89610W/(m K)k -=⨯⋅,52.0110Pa s μ-=⨯⋅普朗特数:352(1.01710)(2.0110)Pr 0.7062.89610p c kμ--⋅⨯⨯⨯===⨯该取值满足课本中波尔豪森解的条件。
因此,平板上层流段长度:550Re (510)(2.0110)0.632m 1.0615c x c x u μρ-⨯⨯⨯===⨯临界长度处速度边界层厚度:35.0 4.46910m δ-===⨯临界长度处温度边界层厚度:3311334.469105.01910m Pr0.706t δδ--⨯===⨯临界长度处局部对流传热系数:111122332252.896100.63215 1.0600.332Re Pr 0.332()0.7069.58W/(m K)0.632 2.0110x x k h x --⨯⨯⨯==⨯⨯⨯=⋅⨯ 临界段区间上的平均对流传热系数:111122332252.896100.63215 1.0600.664Re Pr 0.664()0.70619.16W/(m K)0.632 2.0110m L k h L --⨯⨯⨯==⨯⨯⨯=⋅⨯ 3. 空气以1.0m/s 的流速在宽1m ,长1.5m 的薄平板上流动,主体温度是4℃,试计算为了使平板保持在50℃的恒温必须供给平板的热量。
化工原理(第三版)习题解(谭天恩)第九章习题解

第九章 吸收9-1 总压为kPa 3.101、含3NH %5(体积分数)的混合气体,在C 25下与浓度为3.71.1-m kmol 的氨水接触,试判别此过程的进行方向,并在c p -图上示意求取传质推动力的方法。
解 氨—水平衡关系列在本章附录二中,需将题中组成化为其中的单位,以便比较。
气相氨分压 kPa p 065.505.03.101=⨯=液相组成换算要用到密度ρ,暂取3.990-=m kg ρ(参考例9-2,温度较高ρ较小)。
对3.71.1-=m kmolc 氨水,每立方米含氨kg 1.291771.1=⨯,含水kg 9.9601.29990=-;故kg 100水中含氨kg 03.3)9.960/1.26(100=⨯。
与附录二比较,氨水组成为kg 3氨.1-100(水)kg ,C 25下的平衡氨分压为kPa 13.3,比题给氨分压低,故知过程方向应为吸收。
(注:虽然氨水密度的估计稍有误差,但不影响过程方向。
作图从略)9-2 含%32CO (体积分数)的2CO —空气混合气,在填料塔中用水进行逆流吸收,操作压力为(绝)为kPa 200、温度为C25,试求出塔的g 100水中最多可溶解多少克2CO ?其浓度又为多少?解 出塔水的最大浓度系与逆流进塔的气体平衡,此时2CO 的分压kPa Py p 603.0200=⨯==,查本章附录一,C 25下2CO 溶于水的亨利系数MPa E 166=。
按式(9-5),液相平衡组成为[]153)(.1061.3101666--*+⨯=⨯==B A mol A mol E p x 而 155max ).(1084.81061.3)1844()()(---**⨯=⨯⨯=≈=gS gA x M M x M M S A L A ω 即 123100.(1084.8--⨯)g gCO浓度 335max .1001.2)1061.3()18/1000()(---**⨯=⨯⨯≈≈=m kmol x M sCx c s ρ9-3 总压kPa 3.101、含%62CO (体积分数)的空气,在C 20下与2CO 浓度为3.3-m kmol 的水溶液接触,试判别其传质方向。
化工导论内容答案(参考)解析-考试必备

化工导论内容答案解析(参考)考试必备1.化学工程与技术包括哪些二级学科?各学科的研究内容和方向都有哪些?二级学科:1.化学工程:化工热力学、传递过程原理、分离工程、化学反应工程、过程系统工程及其他学科分支。
2.化学工艺:研究化学品的合成机理、生产原理、产品开发、工艺实施过程及装备的设计与优化,所涉及的工业领域包括采用化学加工过程,生产石油及石油化工、煤化工、基本有机化工、无机化工、化工冶金和高分子化工产品的工业部分。
3.生物化工:研究有生物体或生物活性物质参与过程的基本理论和工程技术。
研究方向有遗传工程、细胞工程、酶工程及工程技术理论等。
4.应用化学:研究内容包括化工产品制备、分离与精制、产品复配与商品化,以及精细化学品、专用化学品、功能材料与器件研制过程中的合成化学、物理化学、化工单元反应及工艺、生物技术等。
研究方向有化工、电子、能源、材料、航天、兵器、环境工程技术等。
5.工业催化:研究方向包括表面催化、分子催化、生物催化、催化剂制造科学与工程、催化反应工程、新催化材料与新催化工程开发、环境催化、能源与资源精化过程中的催化、化学工业与石油炼制催化等。
2.常用的化工原料有哪些?常用的化工原料有哪些?矿物原料:金属矿、非金属矿和化石燃料矿。
生物资源:动物原料、植物原料;主要来自农、林、牧、副、渔的植物体和动物体。
其他原料:空气、水、垃圾废料。
3.化学与化工有何区别?化学——新物质的合成、新化学反应的发现、研究物质的化学结构与性质、化学反应的机理、规律、理论。
属于理科。
化工——将实验室合成的化学物质或化学反应放大到工业规模的运用与实现。
属于工科。
4.分离工程中物系的分离方法可以如何分类?分离组分在原料中浓度大小:富集、浓缩、纯化、除杂。
采用方法的不同:物理分离、化学分离。
相态的不同:非均相混合物的分离、均相混合物的分离。
5 课程中都提到了那些化工单元操作?从本质上来说,这些单元操作可归纳为那些传递过程?流体输送、搅拌、加热、冷却、蒸发、蒸馏、萃取、吸收、吸附、沉降、过滤、干燥、离子交换、膜分离、结晶、颗粒分级等归结为:动量传递、质量传递和热量传递三大类6 化学工业的定义及其分类化学工业的定义及其分类。
奥鹏西安交通大学课程考试《化工传递过程》参考资料答案.doc

西安交通大学课程考试复习资料单选题1.下面说法不正确的是( )。
A.热量传递的两种基本机制是传导和对流B.传导产生的原因是温度差,对流产生的原因是流体宏观流动C.上述说法都不对答案: C2.下面说法不正确的是( )。
A.流体流动分层流和湍流两种基本流型B.判别流型的无因次数为雷诺数C.上述说法都不对答案: C3.仅考虑摩擦曳力时,柯尔本J因子类似可以表示为( )。
A.jH=jD=f/4B.jH=jD=f/2C.jH=jD=f答案: B4.若流体普兰特数数值小于1,可依次判据流动中动量扩散系数数值( )热扩散系数。
A.大于B.等于C.小于答案: C5.计算细微颗粒在流体中所受外力的斯托克斯方程的应用前提是粒子处于( )沉降过程中。
A.加速B.匀速C.任意速度答案: B6.对流动流体中流体微元进行进行受力分析时,微元所受法向应力应该包括( )。
A.静压力和粘滞力B.静压力和体积力C.粘滞力和体积力答案: A7.下面关于欧拉观点和拉格朗日观点说法正确的是( )。
A.欧拉观点是选定一个流体质点,对其跟踪观察,描述其运动参数(如位移、速度等)与时间的关系。
整个流动为各质点运动的汇总。
B.拉格朗日观点是以流动的空间为观察对象,观察不同时刻各空间点上流体质点的运动参数,将各时刻的情况汇总可描述整个流动C.其他说法都不对答案: C8.下面关于流体可压缩性说法不正确的是( )。
A.流体在外力作用下,其体积发生变化而引起密度变化B.作用在流体上的外力增加时,其体积减小C.其他说法都不对答案: C9.按连续介质的概念,流体质点指的是( )。
A.流体分子B.流体内的颗粒C.几何的点D.宏观足够小,微观含有足够多分子的微元体答案: D10.流体流入溶解扩散管后形成稳定的湍流边界层,溶质溶解扩散进入流体,则沿管长方向对流传质系数的变化规律应是( )。
A.始终不变B.先下降,后上升,最终趋于稳定C.先上升,后下降,最终趋于稳定答案: B11.给出所有时刻物体端面处的导热通量的边界条件类型是( )。
北京化工大学《化工传递过程导论》课程第九次作业参考答案

《化工传递过程导论》课程第九次作业解题参考第5章 热量传递及其微分方程1. 某不可压缩的黏性流体层流流过与其温度不同的无限宽度的平板壁面。
设流动为定态,壁温及流体的密度、黏度等物理性质恒定。
试由方程(5-13a)出发,简化上述情况的能量方程,并说明简化过程的依据。
解:课本(5-13a)式如下:222222()x y z T T T T T T T u u u t x y z x y zα∂∂∂∂∂∂∂+++=++∂∂∂∂∂∂∂ 由题意可知,定态流动0Tt∂⇒=∂。
在直角坐标系中,三维方向对应长、宽、高,题中“无限宽度的平板壁面”则可认为是在宽这个维度上无限,姑且设定此方向垂直于纸面且为z 方向,故可认为题意所指流动过程为二维流动,且0z u = 且2200T Tz z∂∂=⇒=∂∂则(5-13a)式可简化为2222()x y T T T Tu u x y x yα∂∂∂∂+=+∂∂∂∂ 如果引入热边界层概念,则基于尺度和量级的考虑,可进一步简化上式为22x y T T Tu u x y yα∂∂∂+=∂∂∂ 其中,y 方向为垂直主流方向(x )的距壁面的距离。
2. 假定人对冷热的感觉是以皮肤表面的热损失(刘辉注:换言之,是传热或散热速率)作为衡量依据。
设人体脂肪层的厚度为3mm ,其内表面温度为36℃且保持不变。
在冬天的某一天气温为-15℃。
无风条件下裸露皮肤表面与空气的对流传热系数为25W/(m 2·K);有风时,表面对流传热系数为65W/(m 2·K)。
人体脂肪层的导热系数k =0.2W/(m·K)。
试确定:(a) 要使无风天的感觉与有风天气温-15℃时的感觉一样(刘辉注:换言之,是传热或散热速率一样),则无风天气温是多少?(b) 在同样是-15℃的气温下,无风和刮风天,人皮肤单位面积上的热损失(刘辉注:单位面积上的热损失就是传热通量)之比是多少?解:(a )此处,基本为对象是:人体皮下为脂肪层,层内传热为导热;体外或体表之外暴露在流动的空气中,紧邻表面之上为对流传热。
传递过程原理作业题和答案

《化工传递过程原理(Ⅱ)》作业题1. 粘性流体在圆管内作一维稳态流动。
设r 表示径向距离,y 表示自管壁算起的垂直距离,试分别写出沿r 方向和y 方向的、用(动量通量)=-(动量扩散系数)×(动量浓度梯度)表示的现象方程。
1.(1-1) 解:()d u dyρτν= (y ,u ,dudy > 0)()d u dr ρτν=- (r ,u , dudr< 0) 2. 试讨论层流下动量传递、热量传递和质量传递三者之间的类似性。
2. (1-3) 解:从式(1-3)、(1-4)、(1-6)可看出:A A AB d j D dyρ=- (1-3)()d u dyρτν=- (1-4) ()/p d c t q A dyρα=- (1-6)1. 它们可以共同表示为:通量 = -(扩散系数)×(浓度梯度);2. 扩散系数 ν、α、AB D 具有相同的因次,单位为 2/m s ;3. 传递方向与该量的梯度方向相反。
3. 试写出温度t 对时间θ的全导数和随体导数,并说明温度对时间的偏导数、全导数和随体导数的物理意义。
3.(3-1) 解:全导数:d t t t d x t d y t d zd x d y d z d θθθθθ∂∂∂∂=+++∂∂∂∂ 随体导数:x y z Dt t t t t u u u D x y zθθ∂∂∂∂=+++∂∂∂∂ 物理意义:tθ∂∂——表示空间某固定点处温度随时间的变化率;dt d θ——表示测量流体温度时,测量点以任意速度dx d θ、dy d θ、dz d θ运动所测得的温度随时间的变化率Dt θ——表示测量点随流体一起运动且速度x u dx d θ=、y u dy d θ=、z u dzd θ=时, 测得的温度随时间的变化率。
4. 有下列三种流场的速度向量表达式,试判断哪种流场为不可压缩流体的流动。
(1)j xy i x z y x u )2()2(),,(2θθ--+= (2)y x z x x z y x )22()(2),,(++++-= (3)xz yz xy y x 222),(++=4.(3-3) 解:不可压缩流体流动的连续性方程为:0u ∇=(判据)1. 220u x x ∇=-=,不可压缩流体流动;2. 2002u ∇=-++=-,不是不可压缩流体流动;3. 002222()u y z x x y z =⎧⎨≠⎩∇=++=++= ,不可压缩,不是不可压缩5. 某流场可由下述速度向量式表达:(,,,)3u x y z xyzi y j z k θθ=+-试求点(2,1,2,1)的加速度向量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《化工传递过程导论》课程第九次作业解题参考第5章 热量传递及其微分方程1. 某不可压缩的黏性流体层流流过与其温度不同的无限宽度的平板壁面。
设流动为定态,壁温及流体的密度、黏度等物理性质恒定。
试由方程(5-13a)出发,简化上述情况的能量方程,并说明简化过程的依据。
解:课本(5-13a)式如下:222222()x y z T T T T T T T u u u t x y z x y zα∂∂∂∂∂∂∂+++=++∂∂∂∂∂∂∂ 由题意可知,定态流动0Tt∂⇒=∂。
在直角坐标系中,三维方向对应长、宽、高,题中“无限宽度的平板壁面”则可认为是在宽这个维度上无限,姑且设定此方向垂直于纸面且为z 方向,故可认为题意所指流动过程为二维流动,且0z u = 且2200T Tz z∂∂=⇒=∂∂则(5-13a)式可简化为2222()x y T T T Tu u x y x yα∂∂∂∂+=+∂∂∂∂ 如果引入热边界层概念,则基于尺度和量级的考虑,可进一步简化上式为22x y T T T u u x y yα∂∂∂+=∂∂∂ 其中,y 方向为垂直主流方向(x )的距壁面的距离。
2. 假定人对冷热的感觉是以皮肤表面的热损失(刘辉注:换言之,是传热或散热速率)作为衡量依据。
设人体脂肪层的厚度为3mm ,其内表面温度为36℃且保持不变。
在冬天的某一天气温为-15℃。
无风条件下裸露皮肤表面与空气的对流传热系数为25W/(m 2·K);有风时,表面对流传热系数为65W/(m 2·K)。
人体脂肪层的导热系数k =0.2W/(m·K)。
试确定:(a) 要使无风天的感觉与有风天气温-15℃时的感觉一样(刘辉注:换言之,是传热或散热速率一样),则无风天气温是多少?(b) 在同样是-15℃的气温下,无风和刮风天,人皮肤单位面积上的热损失(刘辉注:单位面积上的热损失就是传热通量)之比是多少?解:(a )此处,基本为对象是:人体皮下为脂肪层,层内传热为导热;体外或体表之外暴露在流动的空气中,紧邻表面之上为对流传热。
上述导热和对流传热为串联过程,在定态下(如空气流动相对平稳且气温也相对稳定),两种过程速率相等。
作为近似,取各层为平板,传热均为一维。
对脂肪层内的导热,已知传热速率为()1S kAq T T L=- (6-5) 其中, L 为脂肪层的厚度,T 1为脂肪层的内表面温度,T S 为脂肪层的外表面或人体的体表温度(未知)。
为计算体表温度,可利用题给条件,即有风天、气温为-15℃(此处称情形或Case 1)下的对流传热速率与脂肪层内导热速率相等,也即()111101()S S kAT T h T T L -=- 其中,T 01为对应的气温。
所以113360.265[(15)]310S S T T --⨯=⨯--⨯故体表温度o110.82C S T =。
由上述计算也可见,热损失相等,也即热通量相等,因之只需保证体表温度一致即可(式6-5)。
所以,无风条件下(此处称情形或Case 2)的气温满足如下关系11012202()()S S h T T h T T -=-10221012()S S h T T T T h ⇒=+- 利用o 2110.82C S S T T ==条件可以求得0256.315oT C =-(刘辉注:这似乎是北极的温度,看来穿衣服少了不行。
)(b )由题意可知,外界温度同为-15℃,但有风和无风两种情形下对流传热系数不同,所以相应的传热速率不同,继而体表温度也不同;基本的关系是导热和对流传热速率相等。
所以两种情形下分别有,()111101()S S kAT T h T T L -=-()121202()S S kAT T h T T L-=- 但此时o010215C T T ==-,因此在情形1(有风)下,113360.265[(15)]310S S T T --⨯=⨯--⨯ 解得o110.82C S T =。
同理可得情形2(无风)下o222.09C S T =。
故,无风和有风两种条件下的热损失之比为:2202211101()()S S h T T q q h T T -=- 2125[22.091(15)]65[18.023(15)]q q ⨯--⇒=⨯-- 210.552q q ⇒=3. 傅里叶场方程在圆柱坐标系的表达式是⎥⎦⎤⎢⎣⎡∂∂+∂∂+∂∂+∂∂=∂∂222222211z T T r r T r r T t T θα (a) 对于定态下的径向传热,这个方程可简化成什么形式? (b) 对边界条件:在r =r i 时,T = T i ;在r =r o 时,T = T o从(a)所得的结果方程出发,求温度分布曲线的方程式。
(c) 根据(b)的结果求出传热速率表达式。
解:(a) 柱坐标系下的傅里叶方程为222222211TT T T T t rr r r z αθ⎡⎤∂∂∂∂∂=+++⎢⎥∂∂∂∂∂⎣⎦ (1) 定态0Tt∂⇒=∂; 径向传热,为一维导热,故220T θ∂=∂,220T z ∂=∂。
原方程可简化为:2210T Tr r r∂∂+=∂∂ (2)(b) 依题意,对式(1)所得简化式(2)积分得12ln T c r c =+代入边界条件,可得温度分布方程为00000ln ln ln ln ln i i i i iT T T r T rT r r r r r --=+ (c) 传热速率表达式,可通过如下方式求得TQ kAr∂=-∂由于温度是半径的单值函数,故偏导可写成常导dT Q kAdr⇒=- 令圆柱长度为L ,代入(b )所得到的温度表达式0012ln i i T T Q k rL r r r π-=-⋅⋅故传热速率表达式002()ln i i LkQ T T r r π=-第6章 热传导1. 用平底锅烧开水,与水相接触的锅底温度为111℃,热流通量为42400W/m 2。
使用一段时间后,锅底结了一层平均厚度为3mm 的水垢,假设此时与水相接触的水垢的表面温度及热流通量分别等于原来的值,试计算水垢与金属锅底接触面的温度。
水垢的导热系数取为1 W/(m·K)。
解:由题意可以想见,原来无水垢时是对流传热;结垢后垢层中为导热,此时定态、一维平板的传热通量为()1S q kT T A L⎛⎫=- ⎪⎝⎭ (6-5)其中, L 为垢层的厚度,T 1为水垢与金属锅底接触面的温度(未知),T S 为与水相接触的垢层表面温度。
因此可得1S q LT T A k⎛⎫=+ ⎪⎝⎭31310111424001T -⨯⇒=+⨯1238.2o T C ⇒=故得出水垢与金属锅底接触面的温度为238.2oC2. 有一管道外径为150mm ,外表面温度为180℃,包覆矿渣棉保温层后外径为250mm.。
已知矿渣棉的导热系数0.0640.000144k T =+W/(m·K),T 单位为℃。
保温层外表面温度为30℃,试求包有保温层后管道的热损失。
解: 本题考虑对象为保温层,其中为定态、一维筒壁、无内热源导热问题,可以有多种解法。
与书中讨论不同的是,导热系数并非常数,而是随温度变化。
首先,形式上,将题给导热系数写作()0(1)0.06410.00225k k t t β=+=+以下分别给出几种解法。
第一解法:精确解定态下,传热速率为常数,也即0112(1)2(1)()2dtk rLConst drdtk t rL dr dr t dt C C r k L παβπααβπ-==-+⋅⋅=⇒+==-⋅不定积分一次得:2121122ln 20.15,1800.25,30O O t t C r C r m t C r m t C β⎧+=+⎪⎪⎪==⎨⎪==⎪⎪⎩利用边界条件确定积分常数:)6(ln ln )(2)(2)5(ln )(2)()4(ln 2)3(ln 21212221212112212221211221222211211r r r t t t t t t C r r t t t t C C r C t t C r C t t ⋅-+---=-+-=∴+=++=+βββββ所以单位管长的传热速率或热损失为02212120122212213543[J/s/m]13543[W/m]q dt rk L dr dtk (t )rdr(t t )(t t )k r ln r ..ππββπ=-⋅=-⋅+⋅-+-=-⋅⋅==22000225180301803022006401502514598[J/s/m]14598[W/m].()()q..Lln ...π-+-⇒=-⋅⋅== 第二解法:精确解Const drdtrL k q =-=π2 (1a) 0)(=∴drdtkr dr d (1b) 01122[(1)]00.15,1800.25,30OO d dt k t r dr drr m t C r m t C β⎧+⋅=⎪⎪⎪==⎨⎪==⎪⎪⎩(1c) 积分两次:1)1(C drdtr t =+β (2a) r d C t t d ln ]2[12=+β(2b)212ln 2C r C t t +=+β(2c)可得与第一解法同样的结果。
第三解法:近似解取导热系数近似为常数,对应保温层的平均温度o 18030105C 2T +==,故导热系数为 0.0640.00014k T =+0.0640.000144k ⇒=+⨯()W 0.07912m K k ⇒=⋅故而,计算每米管长的热损失,可得0330220.07912W ()(18030)145.98m25010ln ln15010i iQ k T T r L r ππ--⨯=-=-=⨯⨯3. 有一具有均匀内热源的平板,其发热速率q =1.2⨯106J/(m 3·s),平板厚度(x 方向)为0.4m 。
已知平板内只进行x 方向上的一维定态导热,两端面温度维持70℃,平均温度下的导热系数377=k W/(m·K)。
求距离平板中心面0.1m 处的温度值。
解:由题意,有均匀内热源的平板一维、定态热传导。
控制方程为220T qx k∂+=∂ 设定平板中心为坐标原点,可得到边界层条件0.2x m =,70o T C = 0.2x m =-,70o T C =且6321.210 3.18310377q k m k ⨯==⨯对原式积分,并代入边界条件,可得32(1.59210)133.68T x =-⨯+距平板中心0.1m 处的温度为32(1.59210)0.1133.68117.76o T C =-⨯⨯+=刘辉注:在积分控制方程时,也可采用如下边界条件,结果与前相同。