数学与文化教案_数学与文化阅读答案
《数学与文化》课堂实录 教案教学设计共3篇

《数学与文化》课堂实录教案教学设计共3篇《数学与文化》课堂实录教案教学设计1《数学与文化》课堂实录教案教学设计数学与文化是一门独特而有趣的课程,旨在将数学与不同文化的传统、历史和艺术相结合,帮助学生更深入地理解数学的本质和应用。
在这篇文章中,我们将展示一堂《数学与文化》的课程实录,并探讨一些课程的教学设计。
课程概览本堂课程的主题为“数学在艺术中的应用”,旨在让学生了解数学是如何在不同的艺术形式中运用的,并增强他们对数学美学的感受力。
课程目标通过本堂课程的学习,学生将会:1. 了解数学是如何在不同的艺术形式中运用的。
2. 增强对数学美学的感受力。
3. 开发对于数学和艺术的创造性思维。
4. 学会利用数学知识和技能的实际应用。
教学设计1. 初始活动本次课程开始时,教师会提出一些有关数学在艺术中应用的问题,例如:大师画家梵高的《星夜》是否存在着数学的影子?莫比乌斯环是如何运用到雕塑中的?学生们需要在小组讨论之后,上台介绍自己的结论。
2. 介绍数学与艺术的结合方式接着,教师会介绍数学是如何与艺术结合的,并介绍不同艺术形式的数学运用。
例如:对称性在绘画、雕塑和建筑中的应用,黄金分割在建筑和绘画中的应用,图形、图案和色彩在纺织品中的应用等。
3. 进行艺术作品分析接下来,教师将介绍几个著名的艺术作品,并引导学生在数学角度进行分析。
例如:艾舍尔的作品《天使与魔鬼》和《螺旋形的图案》,学生需要描述和探索其对称性和尺度感;达芬奇的绘画作品《蒙娜丽莎》,学生需要分析其黄金分割和透视效果等。
4. 数学美学讨论在学生探索艺术作品时,教师会引导学生讨论数学美学问题,例如对称性、对比、重复等概念如何影响人的审美感受。
学生还将被鼓励分享自己最喜爱的艺术作品,并讲解自己被吸引的数学元素。
5. 实践活动最后,教师将组织实践活动,鼓励学生运用自己的数学和艺术知识进行创作。
例如:让学生在一个规定范围内尝试画出一幅具有对称性的图案,或者让学生使用黄金分割进行拼贴创作。
高中语文第六册教案全集(新教材)

高中语文第六册教案全集(新教材)《数学与文化》教案设计【教学目的】1.概括文中所述数学文化的特点,掌握提炼文章要点的方法。
2.领会作者对数学的高度评价,以及从文化兴衰、民族兴亡的高度认识数学的思想。
3.提高学生对数学文化的认识,培养学生树立正确的科学观。
【教学重难点】1.体会文章语言的准确性,认识数学文化的特点。
2.揣摩文中较难理解的句子,分析并理解其含义。
3.掌握并学会运用提要钩玄的阅读方法。
【教学设想】教学方法1.整体把握,理清思路。
从解决文中疑难语句入手,逐层深入地分析文章。
2.学生自读,归纳阅读中发现的问题,集中讨论解决。
教学时数:两课时【教学步骤】第一课时一、导语设计2002年8月,世界数学家大会在我国召开。
这标志着我国在数学领域的研究已经跨入世界先进行列。
然而作为文化组成部分的数学,你又了解多少呢?罗素在100年前说了一句经常被人引用的俏皮话:我们不知道数学研究的是什么,也不知道研究的结果是真是假;20世纪最伟大的数学家之一外尔给数学下定义说,“数学是无穷的科学”。
这些都让人们渴望了解数学,今天我们就学习《数学与文化》一课,来真正认识数学这门无穷的科学。
二、解题课文节选自《数学与文化》一书的绪言,是全书的总论。
课文论述了数学作为“现代科学技术的语言和工具”的重要地位,分析了数学能够影响人类生活的几个特点,高度评价了数学在促进人类思想解放、使人类摆脱宗教迷信等方面的历史功绩,认为它最根本的特征是“表达了一种探索精神”,并把数学提高到文化盛衰、民族兴亡的高度来认识。
作者齐民友是当代著名数学家、博士生导师,曾任武汉大学校长。
三、研习课文1.整体把握,理清思路。
(1)默读课文,画出文中出现的成语以及直接表明作者观点的句子。
明确:成语:泽被天下、风调雨顺、淋漓尽致。
表明作者观点的句子:a.首先,它追求一种完全确定、完全可靠的知识。
b.另一个特点是它不断追求最简单的、最深层次的、超出人类感官所及的宇宙的根本。
《数学与文化》教案

《数学与文化》教案一、教学目标1. 让学生了解数学与文化之间的关系,认识到数学在文化发展中的重要作用。
2. 培养学生对数学的兴趣和好奇心,提高学生运用数学知识解决实际问题的能力。
3. 通过对数学文化的学习,培养学生团结协作、勇于探索的精神。
二、教学内容1. 数学与文化的关系2. 数学在我国古代的发展3. 数学在现代社会中的应用4. 数学与艺术的交融5. 数学家的故事三、教学方法1. 采用讲授法,讲解数学与文化之间的关系,数学在我国古代的发展,数学在现代社会中的应用等内容。
2. 采用案例分析法,分析数学与艺术的交融,介绍数学家的故事。
3. 组织学生进行小组讨论,分享学习心得,培养学生的团队合作能力。
四、教学准备1. 教案、教材、多媒体设备2. 与教学内容相关的图片、视频等资料3. 练习题及答案五、教学过程1. 导入:简要介绍数学与文化之间的关系,引发学生对数学文化的兴趣。
2. 讲解:详细讲解数学在我国古代的发展,数学在现代社会中的应用等内容。
3. 案例分析:分析数学与艺术的交融,介绍数学家的故事。
4. 小组讨论:组织学生进行小组讨论,分享学习心得,培养学生的团队合作能力。
6. 布置作业:布置与本节课内容相关的作业,巩固所学知识。
7. 课后反思:教师对本节课的教学进行反思,为下一节课的教学做好准备。
六、教学评价1. 学生能够理解数学与文化之间的关系,了解数学在我国古代的发展和现代社会中的应用。
2. 学生能够分析数学与艺术的交融,了解数学家的故事,体会数学的内涵和魅力。
3. 学生能够通过小组讨论,分享学习心得,展现出团结协作、勇于探索的精神。
七、教学拓展1. 组织学生参观数学博物馆或数学相关的展览,让学生更直观地感受数学与文化之间的联系。
2. 鼓励学生参加数学竞赛或数学社团活动,提高学生的数学素养。
3. 推荐学生阅读数学家的传记或数学史相关的书籍,拓宽学生的知识视野。
八、教学建议1. 在教学过程中,注重启发式教学,引导学生主动思考,提高学生的问题解决能力。
人教版高三语文下册《数学与文化》教案

人教版高三语文下册《数学与文化》教案【课时安排】本课为人教版高中语文必修三下册第二十三课,预计共需用时1课时【教学目标】1. 了解古代数学的发展及其与文化的关系;2. 理解“以数会友”,探究数学与人类文化交流的意义;3. 能够运用所学知识阅读并理解相关文献。
【教学重点】1. 古代数学的发展及其与文化的关系;2. “以数会友”的文化内涵及其意义。
【教学难点】1. “以数会友”的文化内涵及其意义;2. 探究数学与人类文化交流的深刻意义。
【教学方法】课件展示、讲解分析、讨论交流、问答互动【教学过程】★ Step 1 复习导入教师引导学生回忆上节课内容,回答以下问题:1.你还记得古代的“天人合一”吗?它和古代数学的发展有哪些关系?2.在古代,书法家和画家为什么对数学有着浓厚的兴趣?★ Step 2 探究实践1.教师播放《数学与文化》视频,引导学生关注内容,并记录下学习到的信息。
2.学生分组展开小组讨论,围绕以下问题进行探讨:A. 数学和文化的界限在哪里?B. 举例说明数字在文化传承中的重要作用?3.学生汇报讨论结果并进行分享。
教师适当补充相关知识点。
★ Step 3 拓展延伸1.教师引导学生思考“以数会友”的文化内涵,探究数学与人类文化交流的深刻意义。
2.学生分组展开小组讨论,讨论以下问题:A. 你认为“以数会友”有怎样的内涵?B. 你如何理解数学与人类文化交流的意义?3.每个小组派出一名代表进行汇报分享。
★ Step 4 总结点睛教师对本课所学知识点进行总结,强调数学与文化交流的重要性。
同时,让学生留下反思问题:如何在日常生活中更好地发掘数学与文化的内涵?【板书设计】《数学与文化》以数会友数学与文化交流“以数会友”的文化内涵与意义【教学反思】本课是一节探究性的语文课,通过引导学生理解数学和文化之间的联系,探究“以数会友”的文化内涵及其意义,帮助学生更好地认识和理解数学在人类文化传承中的重要作用。
通过小组讨论和分享,让学生在交流中互相学习,同时也锻炼了他们的表达能力和合作意识。
最新《数学与文化》阅读练习(无答案)

《数学与文化》阅读练习(无答案)(一)首先,它求一种完全确定、完全可靠的知识。
在这本小书里可以看到许多被吸引到数学中来的人正是因为数学有这样的特点。
例如说,欧几里德平面上的三角形内角和为180o,这绝不是说“在某种条件下”,“绝大部分”三角形的内角和“在某种误差范围内”为180 o ,而是在命题规定的范围内,一切三角形的内角和不多不少为180o。
产生这个特点的原因可以由其对象和方法两个方面来说明。
从希腊的文化背景中形成了数学的对象并不只是具体问题,数学所探讨的不是转瞬即逝的知识,而是某种永恒不变的东西。
所以数学的对象必须有明确无误的概念,而且其方法必须由明确无误的命题开始,并服从明确无误的推理规则,借以达到正确的结论。
通过纯粹的思维竟能在认识宇宙上达到如此确定无疑的地步,当然会给一切需要思维的人以极大的启发。
人们自然会要求在一切领域中都这样去做。
正是因为这样,而且也仅仅因为这样,数学方法既成为人类认识方法的一个典范,也成为人在认识宇宙和人类自己时必须持有的客观态度的一个标准。
就数学本身而言,达到数学真理的途径既有逻辑的方面也有直觉的方面,但就其与其他科学比较而言,就其影响人类文化的其他部门而言,它的逻辑方法是最突出的,这个方法发展成为人们常说的公理方法。
迄今为止,人类知识还没有哪一个部门应用公理方法得到如数学那样大的成功。
但是,如果到今天某个知识部门还是只有论断而没有论据,只是一堆相互没有逻辑联系的命题,前后又无一贯性,恐怕是不会有人接受的了。
每个论点都必须有根据,都必须持之有理。
除了逻辑的要求和实践的检验以外,无论是几千年的习俗、宗教的权威、皇帝的敕令、流行的风尚弦是没有用的。
这样一种求真的态度,倾毕生之力用理性的思维去解开那伟大而永恒的谜——宇宙和人类的真面目是什么?——是人类文化发展到高度的标志。
这个伟大的理性探索是数学发展必不可少的文化背景,反过来也是数学贡献于文化最突出的功绩之一。
1.文章开头举例,强调“在命题规定的范围内,一切三角形的内角和不多不少为180o”,是为了证明下面的一个观点()A. 因为数学本身的特点,许多人被吸引到数学中来。
高中高三数学《数学与文化艺术》优秀教学案例

三、教学策略
(一)情景创设
为了让学生更好地感知数学与文化艺术的关系,本章节将采用以下情景创设策略:
1.利用多媒体手段,展示数学在美术、音乐、建筑等领域的经典案例,让学生在视觉和听觉上感受数学的美感。
2.创设生活化的情境,如选取学生熟悉的建筑物、图案等,引导学生发现数学在现实生活中的应用,激发他们的学习兴趣。
4.结合教材内容,讲解数学与文化艺术相互促进、相互影响的发展过程,加深学生对数学与文化艺术关系的理解。
(三)学生小组讨论
在学生小组讨论环节,我将组织以下活动:
1.将学生分成若干小组,每组选择一个数学与文化艺术相结合的案例进行分析,如建筑、绘画、音乐等。
2.各小组通过查阅资料、讨论交流等方式,总结数学在该领域中的应用原理和规律。
3.鼓励学生分享自己的学习心得和感悟,激发他们持续学习的兴趣。
4.对学生在课堂上的表现进行评价,肯定优点,指出不足,提出改进建议。
(ห้องสมุดไป่ตู้)作业小结
在作业小结环节,我将布置以下任务:
1.让学生选择一个数学与文化艺术相结合的案例,撰写一篇小论文,深入分析数学在该领域中的应用原理。
2.设计一道具有挑战性的数学题目,要求学生运用所学知识解决实际问题,提高应用能力。
二、教学目标
(一)知识与技能
本章节的核心是让学生在学习数学基础知识的同时,能够将其与文化艺术相结合,提升数学应用能力。具体包括以下方面:
1.理解数学与文化艺术之间的关系,掌握数学在艺术创作中的基本应用,如几何图形在美术作品中的应用、数学规律在音乐创作中的体现等。
2.学会运用数学知识分析和解决文化艺术中的问题,例如通过几何图形的变换和组合,创作具有美感的艺术作品。
《数学与文化》教案

《数学与文化》教案下面是小编整理提供的《数学与文化》教案,欢迎阅读与参考。
《数学与文化》教案(一)1.概括文中所述数学文化的特点,掌握提炼文章要点的方法。
2.领会作者对数学的高度评价,以及从文化兴衰、民族兴亡的高度认识数学的思想。
3.提高学生对数学文化的认识,培养学生树立正确的科学观。
1.体会文章语言的准确性,认识数学文化的特点。
2.揣摩文中较难理解的句子,分析并理解其含义。
3.掌握并学会运用提要钩玄的阅读方法。
教学方法1.整体把握,理清思路。
从解决文中疑难语句入手,逐层深入地分析文章。
2.学生自读,归纳阅读中发现的问题,集中讨论解决。
教学时数两课时方案一第一课时一、导语设计2002年8月,世界数学家大会在我国召开。
这标志着我国在数学领域的研究已经跨入世界先进行列。
然而作为文化组成部分的数学,你又了解多少呢?罗素在100年前说了一句经常被人引用的俏皮话:我们不知道数学研究的是什么,也不知道研究的结果是真是假;20世纪最伟大的数学家之一外尔给数学下定义说,“数学是无穷的科学”。
这些都让人们渴望了解数学,今天我们就学习《数学与文化》一课,来真正认识数学这门无穷的科学。
二、解题课文节选自《数学与文化》一书的绪言,是全书的总论。
课文论述了数学作为“现代科学技术的语言和工具”的重要地位,分析了数学能够影响人类生活的几个特点,高度评价了数学在促进人类思想解放、使人类摆脱宗教迷信等方面的历史功绩,认为它最根本的特征是“表达了一种探索精神”,并把数学提高到文化盛衰、民族兴亡的高度来认识。
作者齐民友是当代著名数学家、博士生导师,曾任武汉大学校长。
三、研习课文1.整体把握,理清思路。
(1)默读课文,画出文中出现的成语以及直接表明作者观点的句子。
明确:成语:泽被天下、风调雨顺、淋漓尽致。
表明作者观点的句子:a.首先,它追求一种完全确定、完全可靠的知识。
b.另一个特点是它不断追求最简单的、最深层次的、超出人类感官所及的宇宙的根本。
《数学与文化》教案设计

《数学与文化》教案设计[导学新概念]?高六册第一单元安排的是科技说明文和科技论文的阅读《数学与文化》是其中的第一篇阅读科技说明文和科技论文需要提要钩玄“提要”就是提炼出文章论述的要点“钩玄”就是探索文章更精微的内涵换言之提要就是概括文章的内容要点钩玄就是分析作者的思想观点因此学习本单元要通过对文章内容的提要钩玄加深对文章的理解增强对文章概括分析的能力?《数学与文化》一文主要阐述了作为人类文化组成部分的数学的特点读后可让我们感觉到数学对于人类的积极作用阅读时要把握提示语提取概括句更重要的是对每一个特点作仔细的分析找到数学与文化的关系、数学与人类的关系?[资料显示屏]?北大数学所所长张恭庆院士将数学的作用分为三个层次第一个层次为其他学科提供语言、概念、思想、理论和方法自然科学和经济、管理等社会科学离开了数学便无从产生和发展第二个层次是直接应用于工程技术、生产活动这类例子是大量的第三个层次是作为一种文化对全社会的成员起着潜移默化的作用一个民族数学修养的高低对这个民族奈拿饔泻艽蟮挠跋臁?nbsp;——《数学——撬起未来的杠杆》数学正越来越广泛地应用到人文科学、社会科学领域世界上很多经济学家常常是先获得了数学博士学位后才研究经济的有人曾用概率统计法研究《红楼梦》作者的语言习惯发现后四十回与前八十回是很一致的说明曹雪芹曾创作了后四十回至少留下了后四十回的部分手稿原苏联曾有人对《静静的顿河》一书的真正创作者提出过疑问有人用概率统计法研究该书的用词习惯发现与肖洛霍夫其他著作的习惯是一致的因而认为此书确是他写的——《数学——撬起未来的杠杆》回顾过去的一个世纪数学学科的巨大发展比以往任何时代都更牢固地确定了它作为整个科学技术的基础的地位数学正突破传统的应用范围向几乎所有的人类知识领域渗透并越来越直接地为人类物质生产和日常生活作出贡献同时对于当今社会每一个有文化的人士而言不论他从事何种职业都需要学习数学、了解数学和运用数学现代社会对数学的这种需要在未来的世纪中无疑将更加与日俱增——《蚁迹寻踪及其他数学探索》(美)[教学设计ABC]?设计A一、导语设计?1.可以从一般人对数学的认识上导入我们总以为数学是自然科学中的基础学科它与文化不会有什么关系事实却并非如此(这样导入可引起人们对数学文化的重视)2.可以从xx年北京的国际数学家大会导入(这样导入有利于培养对数学的兴趣)?二、过程设计1.浏览阅读把握文章的大致内容?浏览是一种快速的阅读方法其目的是要把握文章所写的内容浏览的关键是:(1)细读开头寻找有关文章所写内容的提示语;(2)关注提示语提取与文章标题或内容有关的概括语句《数学与文化》的开头部分由11句话组成其中最富有信息量的是第10句:“我这里并不想概括什么是数学文化而只是就它对人类精神生活影响最突出之处提出一些看法”这句话告诉我们本文要谈的是数学文化对人类精神生活的影响然后浏览全文可以快速提取出论述数学文化特点的几个提示语“首先”“另一个特点”“再一个特点”和“总之”“概括为一句话”“最根本的特征”等提示语这样全文的大致内容就已经清楚了2.精读文章的主要段落分析文章的基本观点精读就是反复仔细地阅读其目的在于把握文章的基本观点精读需要做的工作是:(1)筛选观点与材料;(2)分析段内层次辨明句间关系例如文章的第二段谈的是数学的第一个特点即“数学追求一种完全确定、完全可靠的知识”这是本段的观点;接着用欧几里德平面几何中三角形三内角之和等于180°为例进行证明说明数学所追求的完全确定和完全可靠是指在一定命题范围内的绝对正确没有例外然后文章就着重论述产生这个特点的原因(与数学的对象和方法有关)这等于又提出一个观点接下来文章就从“对象”和“方法”(重点谈的是方法)两方面来论述最后又阐述了这种数学方法对人类认识方法的影响并揭示出这种方法的实质:是一种求真的态度是人类文化发展到高度的标志再如文章的第四段谈的是数学的第三个特点即数学“不仅研究宇宙的规律而且也研究它自己”这是本段的观点接下来用三句话对这一观点加以解释再往后就用大量的数学研究的材料来证明数学的这个观点材料从希腊人研究有理数的问题开始到三等分角的问题到五次以上方程的求解、平行线公理的证明到不可交换的乘法的研究等等说明数学一直在进行着对自己的研究本段的最后指出数学对自己的研究(即数学的“变)是从否定自己开始的数学的这一特点显然对人类精神有着明显的影响按照精读的基本方法可以把文章其他段落的意思都概括出来然后把几个段落的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学与文化教案_数学与文化阅读答案
课文《数学与文化》出自高三语文下册课文,其原文如下:【原文】
绪言
一理性的觉醒
1.1 希腊的几何学
1.2 欧几里得的《几何原本》
1.3 数学与第一次科学革命
1.4 欧几里得与理性时代
1.5 希尔伯特的《几何基础》
二数学反思呼唤着暴风雨
2.1 绝对几何学与欧几里得几何
2.2 非欧几何的发现
2.3 罗巴契夫斯基几何内容的简单介绍
2.4 数学——人类悟性的自由创造物?
2.5 罗氏几何的相容性
2.6 关于数学基础
2.7 数学的“失乐园”
——哥德尔定理意味着什么?
三“我从一无所有之中创造了一个新宇宙”
3.1 弯曲的宇宙
3.2 相对论——牛顿的时空的终结
3.3 无尽的探索
结束语
【前言】
《数学与文化》,主要阐述了作为人类文化组成部分的数学的特点,读后可让我们感觉到数学对于人类的OrG积极作用。
阅读时要把握提示语,提取概括句。
更重要的是对每一个特点作仔细的分析,找到数学与文化的关系、数学与人类的关系。
【释义】
这篇课文节选自《数学与文化》一书的绪言。
作者齐民友,1930年生,安徽芜湖人,数学教授,曾任武汉大学校长。
1988年夏季的一天,作者和几位朋友谈到数学时,提出了“一个没有现代数学的文化是注定要衰落的”观点。
后来,作者又为哲学系学生讲数学课,更加全面系统地研究了数学文化的特点以及数学对于人类文化的影响。
课文节选的部分,体现了作者的一些主要观点。
【课文赏析】
在当代社会,探讨数学与文化的关系问题,一般公众可能会有更多的陌生感和畏惧心理。
因为现代数学的发展,毕竟远离了普通人的生活视野和经验,变得越来越抽象。
如果不从人类文化的高度来认识这个问题,很难激发起人们的兴趣。
作者在第1段中正是选取了这样一个切入点,大声疾呼:“请注意,数学也是文化的一部分。
”然后,由浅入深地概括了数学在现代自然科学中的基础学科地位:数学首先
是一种科学的语言和工具,也是“科学革命的旗帜”。
理解第一点似乎不难,因为这差不多已融入现代人关于数学的模糊的认识中;但理解第二点,则需要对近现代科学史有一定的了解,作者在后文中也着重列举了这方面的例子。
课文的2~5段是主体部分,主要讲了数学文化的以下三个特点:第一,数学“追求一种完全确定、完全可靠的知识”。
这是从数学学科本体方面来论述的。
请注意这里所用的修饰、限定词语“完全确定”“完全可靠”,这正是数学有别于其他知识之处。
作者举的“三角形内角和为180°”的例子,是初学平面几何必学的内容,浅近易懂。
然而作者并没有就事论事,而是进一步在更深层的社会文化背景中来论述数学的这一特点,从古希腊的文化背景中来思考问题。
古希腊的智者由于坚信这个世界是可以理解的,并可以用永恒的法则来表述它,才发展了数学精神,也强化了用演绎的形式进行严密推理的“逻辑方法”,这就保证了数学成为一门确定可靠的知识。
第二,数学的简单性、深刻性、统一性。
这是从数学学科与其他学科的关系,即作为一种科学语言方面来论述的。
这种理念也根植于古希腊科学哲学思想,并越来越为近现代科学发展的历史所证明。
所谓简单性,是指大千世界纷繁的表象可以用很简单的定律来解释。
像牛顿的万有引力定律(物体间由于质量而引起的相互吸引力的基本定律),既可以解释苹果落地,也可以解释行星运动;所谓深刻性,是指数学可以找出物质世界的一些终极答案,如爱因斯坦的著名公式
E=mc2,就揭示了质量(m)和能量(E)的相当性;所谓统一性,是
指数学可以对不同的物质现象作综合的解释,如麦克斯韦方程组就统一了关于电和磁的理论。
第三,数学可以自我反思、自我完善。
数学发展的历史,就是在不断探索中逐步完善的历史。
很多概念从无到有,许多方法从旧到新。
到了现代,数学更对自己的科学体系进行了一系列反思。
最有代表性的事件是1900年德国数学家希尔伯特在巴黎第二届国际数学大会上所作的“数学问题”的讲演,他根据19世纪数学研究的状况,对各类数学问题的意义和研究方法作了精辟的阐述,并提出了23个数学问题,涉及现代数学大部分重要领域,推动了20世纪的数学发展,数学史上称之为“希尔伯特数学问题”。
课文6~8段,作者简单论述了数学对其他人类文化和对人类精神生活的影响。
首先肯定数学对其他学科的支持作用,赞美“数学是人类理性发展最高的成就”,然后从“促进了人的思想解放”和“表达了一种探索精神”两个方面阐述数学文化对人类进步的贡献。
在西方,科学发展的历史,就是与宗教抗争的历史,就是反蒙昧、反专制的历史。
在这中间,数学以它的确实和完美,起到了主要的作用,并最终逐出了在自然科学领域同样居于统治地位的上帝。
促进人的思想解放,可以说是数学探索精神最值得骄傲的胜利。
课文结语,作者满怀激情地提出了他思索已久的中心论点:“一种没有相当发达的数学的文化是注定要衰落的,一个不掌握数学作为一种文化的民族也是注定要衰落的。
”这是发人深省的议论。
---来源网络整理,仅供参考。