高三一轮复习函数综合(提高)练习题

合集下载

函数的奇偶性与周期性-专项训练-2025届高三数学一轮复习(含解析)

函数的奇偶性与周期性-专项训练-2025届高三数学一轮复习(含解析)

2025高考数学一轮复习-2.3-函数的奇偶性与周期性-专项训练【A级 基础巩固】一、单选题1.下列函数中,是偶函数且在区间(0,+∞)上单调递减的函数是( ) A.y=2x B.y=xC.y=|x| D.y=-x2+12.设函数f(x)=x-2x+2,则下列函数中为奇函数的是( )A.f(x-2)-1 B.f(x-2)+1C.f(x+2)-1 D.f(x+2)+13.已知函数f(x)的图象关于原点对称,且周期为4,f(-1)=-2,则f(2 025)=( )A.2 B.0C.-2 D.-44.已知函数f(x)=sin x+x3+1x+3,若f(a)=-1,则f(-a)=( )A.3 B.5C.6 D.75.已知偶函数f(x)对于任意x∈R都有f(x+1)=-f(x),且f(x)在区间[0,1]上是单调递增的,则f(-6.5),f(-1),f(0)的大小关系是( )A.f(0)<f(-6.5)<f(-1)B.f(-6.5)<f(0)<f(-1)C.f(-1)<f(-6.5)<f(0)D.f(-1)<f(0)<f(-6.5)6.若函数f(x)=sin x·ln(mx+1+4x2)的图象关于y轴对称,则m=( ) A.2 B.4C.±2 D.±47.已知函数f(x)=e|x|+x2,(e为自然对数的底数),且f(3a-2)>f(a-1),则实数a的取值范围是( )A.(12,+∞)B.(-∞,12)C.(-∞,12)∪(34,+∞)D.(0,12)∪(34,+∞)8.已知f(x)是定义在R上的奇函数,且对任意的x∈R都有f(x+2)=-f(x),当x∈[0,2]时,f(x)=x2+ax+b,则a+b等于( )A.0 B.-1C.-2 D.2二、多选题9.已知y=f(x)是定义在R上的奇函数,则下列函数中为奇函数的是( ) A.y=f(|x|) B.y=f(-x)C.y=xf(x) D.y=f(x)+x10.已知定义在区间[-7,7]上的一个偶函数,它在[0,7]上的图象如图,则下列说法正确的有( )A.这个函数有两个单调递增区间B.这个函数有三个单调递减区间C.这个函数在其定义域内有最大值7D.这个函数在其定义域内有最小值-711.已知函数f(x)是定义在R上的奇函数,f(x+2)=-f(x),则下列说法正确的是( )A.f(x)的最小正周期为4B.f(x)的图象关于直线x=1对称C.f(x)的图象关于点(2,0)对称D.f(x)在(-5,5)内至少有5个零点12.已知f(x)是定义在R上的奇函数,f(2-x)=f(x),当x∈[0,1]时,f(x)=x3,则下列结论错误的是( )A.f(2 021)=0B.2是f(x)的一个周期C.当x∈(1,3)时,f(x)=(1-x)3D.f(x)>0的解集为(4k,4k+2)(k∈Z)三、填空题13.已知函数f(x)=2x-2-x lg a是奇函数,则a的值等于_________.14.已知奇函数f(x)在区间[3,6]上是增函数,且在区间[3,6]上的最大值为8,最小值为-1,则f(6)+f(-3)的值为_________.15.设f(x)是周期为3的函数,当1≤x≤3时,f(x)=2x+3,则f(8)=_7__.-2≤x≤0时,f(x)=_________.16.已知函数f(x),对∀x∈R满足f(1-x)=f(1+x),f(x+2)=-f(x),且f(0)=1,则f(26)=__________.17.已知定义在R上的奇函数y=f(x)在(0,+∞)内单调递增,且f(12)=0,则f(x)>0的解集为__________________.【B级 能力提升】1.设f(x)是R上的偶函数,且在(0,+∞)上是减函数,若x1<0且x1+x2>0,则( )A.f(-x1)>f(-x2)B.f(-x1)=f(-x2)C.f(-x1)<f(-x2)D.f(-x1)与f(-x2)的大小不能确定2.(多选题)函数f(x)的定义域为R,且f(x)是奇函数,f(x+1)是偶函数,则( )B.f(x)是周期函数C.f(x+3)为奇函数D.f(x+5)为偶函数3.若定义在R上的奇函数f(x)在(-∞,0)单调递减,且f(2)=0,则满足xf(x -1)≥0的x的取值范围是( )A.[-1,1]∪[3,+∞) B.[-3,-1]∪[0,1]C.[-1,0]∪[1,+∞) D.[-1,0]∪[1,3]4.已知函数f(x)的定义域为R,且f(x+y)+f(x-y)=f(x)f(y),f(1)=1,则(k)=( )A.-3 B.-2C.0 D.15.已知函数f(x)=x3(a·2x-2-x)是偶函数,则a=__________.6.函数f(x)=ax+bx2+1是定义在(-∞,+∞)上的奇函数,且f(12)=25.(1)求实数a,b,并确定函数f(x)的解析式;(2)用定义证明f(x)在(-1,1)上是增函数.7.已知函数f(x)是定义在R上的奇函数,且它的图象关于直线x=1对称.(1)求证:f(x)是周期为4的周期函数;(2)若f(x)=x(0<x≤1),求当x∈[-5,-4]时,函数f(x)的解析式.参考答案【A级 基础巩固】1.[解析] A选项,根据y=2x的图象知该函数非奇非偶,可知A错误;B 选项,由y=x的定义域为[0,+∞),知该函数非奇非偶,可知B错误;C选项,当x∈(0,+∞)时,y=|x|=x为增函数,不符合题意,可知C错误;D选项;由-(-x)2+1=-x2+1,可知该函数为偶函数,根据其图象可看出该函数在(0,+∞)上单调递减,可知D正确.故选D.2.[解析] 化简函数f(x)=1-4x+2,分别写出每个选项对应的解析式,利用奇函数的定义判断.由题意得,f(x)=1-4x+2.对A,f(x-2)-1=-4x是奇函数;对B,f(x-2)+1=2-4x,关于(0,2)对称,不是奇函数;对C,f(x+2)-1=-4x+4,定义域为(-∞,-4)∪(-4,+∞),不关于原点对称,不是奇函数;对D,f(x+2)+1=2-4x+4,定义域为(-∞,-4)∪(-4,+∞),不关于原点对称,不是奇函数.故选A.3.[解析] 依题意,函数f(x)的图象关于原点对称,则函数f(x)是奇函数,又f(x)的周期为4,且f(-1)=-2,则f(2 025)=f(1+506×4)=f(1)=-f(-1)=2.4.[解析] 函数f(x)=sin x+x3+1x+3,f(-x)+f(x)=sin(-x)+(-x)3-1x+3+sinx+x3+1x+3=-sin x-x3-1x+sin x+x3+1x+6=6,若f(a)=-1,则f(-a)=6-f(a)=6-(-1)=7.故选D.5.[解析] 由f(x+1)=-f(x),得f(x+2)=-f(x+1)=f(x),∴函数f(x)的周期是2.∵函数f(x)为偶函数,∴f(-6.5)=f(-0.5)=f(0.5),f(-1)=f(1).∵f(x)在区间[0,1]上是单调递增的,∴f(0)<f(0.5)<f(1),即f(0)<f(-6.5)<f(-1).6.[解析] 因为f(x)的图象关于y轴对称,所以f(x)为偶函数,又y=sin x为奇函数,所以y=ln(mx+1+4x2)为奇函数,即ln[-mx+1+4·(-x)2]=-ln(mx+1+4x2),解得m=±2.故选C.7.[解析] 显然f(x)为偶函数且在[0,+∞)上单调递增,∴f(3a-2)>f(a-1)⇔|3a-2|>|a-1|⇔(3a-2)2>(a-1)2⇔a>34或a<12,故选C.8.[解析] 因为f(x)是定义在R上的奇函数,且x∈[0,2]时,f(x)=x2+ax+b,所以f(0)=b=0,f(-x)=-f(x).又对任意的x∈R都有f(x+2)=-f(x),所以f(x+2)=f(-x),所以函数图象关于直线x=1对称,所以-a2=1,解得a=-2,所以a+b=-2.二、多选题9.[解析] 由奇函数的定义f(-x)=-f(x)验证,A项,f(|-x|)=f(|x|),为偶函数;B项,f[-(-x)]=f(x)=-f(-x),为奇函数;C项,-xf(-x)=-x·[-f(x)]=xf(x),为偶函数;D项,f(-x)+(-x)=-[f(x)+x],为奇函数.可知B、D正确.10.[解析] 根据偶函数在[0,7]上的图象及其对称性,作出其在[-7,7]上的图象,如图所示.由图象可知这个函数有三个单调递增区间,有三个单调递减区间,在其定义域内有最大值7,最小值不是-7,故选BC.11.[解析] 因为f(x)是定义在R上的奇函数,且f(x+2)=-f(x),所以f(x+4)=-f(x+2)=f(x),即f(x+4)=f(x),所以f(x)的周期为4,但f(x)的最小正周期不一定为4,如f(x)=sin(3π2x),满足f(x)为奇函数,且f(x+2)=sin[3π2(x+2)]=sin (3π2x+3π)=-sin(3π2x)=-f(x),而f(x)=sin(3π2x)的最小正周期为43,故A错误;因为f(x)为奇函数,且f(x+2)=-f(x),所以f(x+2)=f(-x),即f(x)的图象关于直线x=1对称,故B正确;由f(x+4)=f(x),及f(x)为奇函数可知f(x+4)+f(-x)=0,即f(x)的图象关于点(2,0)对称,故C正确;因为f(x)是定义在R上的奇函数,所以f(0)=0,又f(x+2)=-f(x),f(x+4)=f(x),所以f(2)=-f(0)=0,f(4)=f(0)=0,故f(-2)=-f(2)=0,f(-4)=-f(4)=0,所以在(-5,5)内f(x)至少有-4,-2,0,2,4这5个零点,故D正确.故选BCD.12.[解析] ∵f(x)是定义在R上的奇函数,∴f(2-x)=f(x)=-f(-x),∴f(2+x)=-f(x),∴f(4+x)=-f(2+x)=f(x),∴f(x)的最小正周期是4,故B错误;f(2 021)=f(1)=1,故A错误;∵当x∈[0,1]时,f(x)=x3,f(x)是定义在R上的奇函数,∴当x∈[-1,1]时,f(x)=x3,当x∈(1,3)时,2-x∈(-1,1),f(x)=f(2-x)=(2-x)3,故C错误;易知当x∈(0,2)时,f(x)>0,∵f(x)的最小正周期是4,∴f(x)>0的解集为(4k,4k+2)(k∈Z),故D正确.三、填空题13.[解析] 由题设条件可知,可由函数是奇函数,建立方程f(x)+f(-x)=0,由此方程求出a的值.函数f(x)=2x-2-x lg a是奇函数,∴f(x)+f(-x)=0,∴2x -2-x lg a+2-x-2x lg a=0,即2x+2-x-(2x+2-x)lg a=0,∴lg a=1,∴a=10.14.[解析] 由于f(x)在[3,6]上为增函数,所以f(x)的最大值为f(6)=8,f(x)的最小值为f(3)=-1,因为f(x)为奇函数,所以f(-3)=-f(3)=1,所以f(6)+f(-3)=8+1=9.15.[解析] 因为f(x)是周期为3的函数,所以f(8)=f(2)=2×2+3=7.当-2≤x≤0时,f(x)=f(x+3)=2(x+3)+3=2x+9.16.[解析] ∵f(x+2)=-f(x),∴f(x)的周期为4,∴f(26)=f(2).∵对∀x∈R有f(1-x)=f(1+x),∴f(x)的图象关于x=1对称,∴f(2)=f(0)=1,即f(26)=1.17.[解析] 由已知可构造y=f(x)的示意图象,所以f(x)>0的解集为(-12,0)∪(12,+∞).【B级 能力提升】1.[解析] 因为x1<0且x1+x2>0,所以x2>-x1>0,又因为f(x)在(0,+∞)上是减函数,且f(x)是R上的偶函数,所以f(-x2)=f(x2)<f(-x1).2.[解析] 因为f(x+1)是偶函数,所以函数f(x)的图象关于x=1对称,即f(-x)=f(2+x),又函数f(x)是定义在R上的奇函数,所以f(-x)=-f(x),f(0)=0,于是f(2+x)=-f(x),即有f(4+x)=-f(x+2)=f(x),所以函数f(x)的一个周期为4,故A错误,B正确;设g(x)=f(x+3),则g(-x)=f(-x+3)=f(-1+x)=f(x+3),即g(x)=g(-x),所以f(x+3)为偶函数,C错误;设h(x)=f(x+5),则h(-x)=f(-x+5)=f(x-3)=f(x+5),即h(x)=h(-x),所以f(x+5)为偶函数,D正确,故选BD.3.[解析] 因为定义在R上的奇函数f(x)在(-∞,0)上单调递减,且f(2)=0,所以f(x)在(0,+∞)上也单调递减,且f(-2)=0,f(0)=0,所以当x∈(-∞,-2)∪(0,2)时,f(x)>0,当x∈(-2,0)∪(2,+∞)时,f(x)<0,所以由xf(x-1)≥0可得Error!或Error!或x=0.解得-1≤x≤0或1≤x≤3,所以满足xf(x-1)≥0的x的取值范围是[-1,0]∪[1,3].故选D.4.[解析] 因为f(1)=1,所以在f(x+y)+f(x-y)=f(x)f(y)中,令y=1,得f(x+1)+f(x-1)=f(x)f(1),所以f(x+1)+f(x-1)=f(x)①,所以f(x+2)+f(x)=f(x+1)②.由①②相加,得f(x+2)+f(x-1)=0,故f(x+3)+f(x)=0,所以f(x+3)=-f(x),所以f(x+6)=-f(x+3)=f(x),所以函数f(x)的一个周期为6.在f(x+y)+f(x-y)=f(x)f(y)中,令x=1,y=0,得f(x)+f(x)=f(x)f(0),所以f(0)=2.令x=1,y=1,得f(2)+f(0)=f(1)f(1),所以f(2)=-1.由f(x+3)=-f(x),得f(3)=-f(0)=-2,f(4)=-f(1)=-1,f(5)=-f(2)=1,f(6)=-f(3)=2,所以f(1)+f(2)+…+f(6)=1-1-2-1+1+2=0,根据函数的周期性知,(k)=f(1)+f(2)+f(3)+f(4)=1-1-2-1=-3,故选A.5.[解析] 解法一(定义法):因为f(x)=x3(a·2x-2-x)的定义域为R,且是偶函数,所以f(-x)=f(x)对任意的x∈R恒成立,所以(-x)3(a·2-x-2x)=x3(a·2x-2-x)对任意的x∈R恒成立,所以x3(a-1)(2x+2-x)=0对任意的x∈R恒成立,所以a=1.解法二(取特殊值检验法):因为f(x)=x3(a·2x-2-x)的定义域为R,且是偶函数,所以f(-1)=f(1),所以-(a2-2)=2a-12,解得a=1,经检验,f(x)=x3(2x-2-x)为偶函数,所以a=1.解法三(转化法):由题意知f(x)=x3(a·2x-2-x)的定义域为R,且是偶函数.设g(x)=x3,h(x)=a·2x-2-x,因为g(x)=x3为奇函数,所以h(x)=a·2x-2-x为奇函数,所以h(0)=a·20-2-0=0,解得a=1,经检验,f(x)=x3(2x-2-x)为偶函数,所以a=1.6.[解析] (1)若函数f(x)=ax+bx2+1是定义在(-∞,+∞)上的奇函数,则f(-x)=-ax+bx2+1=-f(x)=-ax+bx2+1解得b=0,又∵f(12)=25.∴12a(12)2+1=25,解得a=1,故f(x)=xx2+1.(2)证明:任取区间(-1,1)上的两个实数m,n,且m<n,则f(m)-f(n)=mm2+1-nn2+1=(m-n)(1-mn)(m2+1)(n2+1).∵m2+1>0,n2+1>0,m-n<0,1-mn>0,∴f(m)-f(n)<0,即f(m)<f(n).∴f(x)在(-1,1)上是增函数.7.[解析] (1)证明:由函数f(x)的图象关于直线x=1对称,有f(x+1)=f(1-x),即在f(-x)=f(x+2).又函数f(x)是定义在R上的奇函数,故有f(-x)=-f(x).故f(x+2)=-f(x).从而f(x+4)=-f(x+2)=f(x),所以f(x)是周期为4的周期函数.(2)由函数f(x)是定义在R上的奇函数,有f(0)=0.当x∈[-1,0)时,即-x∈(0,1],f(x)=-f(-x)=--x.故x∈[-1,0]时,f(x)=--x.当x∈[-5,-4]时,x+4∈[-1,0],f(x)=f(x+4)=--x-4.从而,x∈[-5,-4]时,函数f(x)=--x-4.。

高考数学一轮复习 核心素养提升系列(一)函数与导数高考压轴大题的突破问题练习 新人教A版-新人教A版

高考数学一轮复习 核心素养提升系列(一)函数与导数高考压轴大题的突破问题练习 新人教A版-新人教A版

核心素养提升系列(一)1.(导学号14577259)(理科)(2018·湘西州一模)已知函数f (x )=x -a ln x ,g (x )=-1+ax,其中a ∈R ,e =2.718……(1)设函数h (x )=f (x )-g (x ),求函数h (x )的单调区间;(2)若存在x 0∈[1,e],使得f (x 0)<g (x 0)成立,求a 的取值X 围. 解:(1)函数h (x )=x -a ln x +1+ax的定义域为(0,+∞),h ′(x )=1-a x -1+a x 2=x +1[x -1+a ]x 2.①当1+a ≤0,即a ≤-1时,h ′(x )>0,故h (x )在(0,+∞)上是增函数; ②当1+a >0,即a >-1时,x ∈(0,1+a )时,h ′(x )<0;x ∈(1+a ,+∞)时,h ′(x )>0,故h (x )在(0,1+a )上是减函数,在(1+a ,+∞)上是增函数. (2)由(1)令h (x 0)=f (x 0)-g (x 0),x 0∈[1,e], ①当a ≤-1时,存在x 0∈[1,e],使得h (x 0)<0成立可化为h (1)=1+1+a <0,解得,a <-2; ②当-1<a ≤0时,存在x 0∈[1,e],使得h (x 0)<0成立可化为h (1)=1+1+a <0,解得,a <-2;③当0<a ≤e-1时,存在x 0∈[1,e],使得h (x 0)<0成立可化为h (1+a )=1+a -a ln(1+a )+1<0,无解;④当e -1<a 时,存在x 0∈[1,e],使得h (x 0)<0成立可化为h (e)=e -a +1+ae<0, 解得,a >e 2+1e -1.综上所述,a 的取值X 围为(-∞,-2)∪⎝ ⎛⎭⎪⎫e 2+1e -1,+∞.1.(导学号14577260)(文科)(2017·某某某某市名校联考)已知函数f (x )=2ln x -x 2+ax (a ∈R ).(1)当a =2时,求f (x )的图象在x =1处的切线方程;(2)若函数g (x )=f (x )-ax +m 在⎣⎢⎡⎦⎥⎤1e ,e 上有两个零点,某某数m 的取值X 围;(3)若函数f (x )的图象与x 轴有两个不同的交点A (x 1,0),B (x 2,0),且0<x 1<x 2,求证:f ′⎝⎛⎭⎪⎫x 1+x 22<0(其中f ′(x )是f (x )的导函数).解:(1)当a =2时,f (x )=2ln x -x 2+2x ,f ′(x )=2x-2x +2,切点坐标为(1,1),切线的斜率k =f ′(1)=2,∴切线方程为y -1=2(x -1),即y =2x -1. (2)g (x )=2ln x -x 2+m ,则g ′(x )=2x-2x =-2x +1x -1x,∵x ∈⎣⎢⎡⎦⎥⎤1e ,e ,故g ′(x )=0时,x =1. 当1e <x <1时,g ′(x )>0;当1<x <e 时,g ′(x )<0. 故g (x )在x =1处取得极大值g (1)=m -1. 又g ⎝ ⎛⎭⎪⎫1e =m -2-1e 2,g (e)=m +2-e 2,g (e)-g ⎝ ⎛⎭⎪⎫1e =4-e 2+1e2<0,∴g (e )<g ⎝ ⎛⎭⎪⎫1e,∴g (x )在⎣⎢⎡⎦⎥⎤1e ,e 上的最小值是g (e). g (x )在⎣⎢⎡⎦⎥⎤1e,e 上有两个零点的条件是⎩⎪⎨⎪⎧g 1=m -1>0,g ⎝ ⎛⎭⎪⎫1e =m -2-1e 2≤0,解得1<m ≤2+1e2,∴实数m 的取值X 围是⎝⎛⎦⎥⎤1,2+1e 2. (3)∵f (x )的图象与x 轴交于两个不同的点A (x 1,0),B (x 2,0),∴方程2ln x -x 2+ax =0的两个根为x 1,x 2,则⎩⎪⎨⎪⎧2ln x 1-x 21+ax 1=0,2ln x 2-x 22+ax 2=0,两式相减得a =(x 1+x 2)-2ln x 1-ln x 2x 1-x 2.又f (x )=2ln x -x 2+ax ,f ′(x )=2x-2x +a ,则f ′⎝ ⎛⎭⎪⎫x 1+x 22=4x 1+x 2-(x 1+x 2)+a =4x 1+x 2-2ln x 1-ln x 2x 1-x 2. 下证4x 1+x 2-2ln x 1-ln x 2x 1-x 2<0(*),即证明2x 2-x 1x 1+x 2+ln x 1x 2<0,令t =x 1x 2,∵0<x 1<x 2,∴0<t <1,即证明u (t )=21-tt +1+ln t <0在0<t <1上恒成立.∵u ′(t )=-2t +1-21-t t +12+1t =t +12-4tt t +12=t -12t t +12,又0<t <1,∴u ′(t )>0,∴u (t )在(0,1)上是增函数,则u (t )<u (1)=0,从而知2x 2-x 1x 1+x 2+ln x 1x 2<0,故(*)式<0,即f ′⎝⎛⎭⎪⎫x 1+x 22<0成立.2.(导学号14577261)(文科)(2018·某某市一模)已知函数f (x )=(x 2-ax +a +1)e x. (1)讨论函数f (x )的单调性;(2)函数f (x )有两个极值点,x 1,x 2(x 1<x 2),其中a >0.若mx 1-f x 2e x 2>0恒成立,某某数m 的取值X 围.解:(1)f ′(x )=[x 2+(2-a )x +1]e x, 令x 2+(2-a )x +1=0(*),①Δ=(2-a )2-4>0,即a <0或a >4时, 方程(*)有2根,x 1=a -2-a 2-4a2,x 2=a -2+a 2-4a2,函数f (x )在(-∞,x 1),(x 2,+∞)递增,在(x 1,x 2)递减. ②Δ≤0时,即0≤a ≤4时,f ′(x )≥0在R 上恒成立, 函数f (x )在R 递增.综上,a <0或a >4时,函数f (x )在(-∞,x 1),(x 2,+∞)递增,在(x 1,x 2)递减;0≤a ≤4时,函数f (x )在R 递增.(2)∵f ′(x )=0有2根x 1,x 2且a >0,∴a >4且⎩⎪⎨⎪⎧x 1+x 2=a -2x 1x 2=1,∴x 1>0,mx 1-f x 2e x 2>0恒成立等价于m >f x 2x 1e x 2=x 22-ax 2+a +1x 1恒成立,即m >-x 22+2x 2+1恒成立. 令t =a -2(t >2),则x 2=a -2+a 2-4a2.令g (t )=t +t 2-42,t >2时,函数g (t )=t +t 2-42递增,g (t )>g (2)=1,∴x 2>1,∴-x 22+2x 2+1<2, 故m 的X 围是[2,+∞).2.(导学号14577262)(理科)(2018·某某市二模)已知三次函数f (x )的导函数f ′(x )=-3x 2+3且f (0)=-1,g (x )=x ln x +ax(a ≥1).(1)求f (x )的极值;(2)求证:对任意x 1,x 2∈(0,+∞),都有f (x 1)≤g (x 2).解:(1)依题意得f (x )=-x 3+3x -1,f ′(x )=-3x 2+3=-3(x +1)(x -1), 知f (x )在(-∞,-1)和(1,+∞)上是减函数,在(-1,1)上是增函数, ∴f (x )极小值=f (-1)=-3,f (x )极大值=f (1)=1. (2)证明:法一:易得x >0时,f (x )最大值=1,依题意知,只要1≤g (x )(x >0)⇔1≤x ln x +a x(a ≥1)(x >0). 由a ≥1知,只要x ≤x 2ln x +1(x >0)⇔x 2ln x +1-x ≥0(x >0). 令h (x )=x 2ln x +1-x (x >0),则h ′(x )=2x ln x +x -1, 注意到h ′(1)=0,当x >1时,h ′(x )>0;当0<x <1时,h ′(x )<0,即h (x )在(0,1)上是减函数,在(1,+∞)是增函数,h (x )最小值=h (1)=0即h (x )≥0.综上知对任意x 1,x 2∈(0,+∞),都有f (x 1)≤g (x 2). 法二:易得x >0时,f (x )最大值=1,由a ≥1知,g (x )≥x ln x +1x(x >0),令h (x )=x ln x +1x(x >0)则h ′(x )=ln x +1-1x 2=ln x +x 2-1x2.注意到h ′(1)=0,当x >1时,h ′(x )>0;当0<x <1时,h ′(x )<0,即h (x )在(0,1)上是减函数,在(1,+∞)是增函数,h (x )最小值=h (1)=1,所以h (x )最小值=1,即g (x )最小值=1.综上知对任意x 1,x 2∈(0,+∞),都有f (x 1)≤g (x 2). 法三:易得x >0时,f (x )最大值=1.由a ≥1知,g (x )≥x ln x +1x (x >0),令h (x )=x ln x +1x (x >0),则h ′(x )=ln x +1-1x2(x >0).令φ(x )=ln x +1-1x 2(x >0),则φ′(x )=1x +1x3>0,知φ(x )在(0,+∞)递增,注意到φ(1)=0,所以,h (x )在(0,1)上是减函数,在(1,+∞)是增函数, 有h (x )最小值=1,即g (x )最小值=1.综上知对任意x 1,x 2∈(0,+∞),都有f (x 1)≤g (x 2).3.(导学号14577263)(理科)(2018·东北三省(某某、某某、某某、某某四城市)联考)定义在R 上的函数f (x )满足f (x )=f ′12·e2x -2+x 2-2f (0)x ,g (x )=f ⎝ ⎛⎭⎪⎫x 2-14x 2+(1-a )x +a .(1)求函数f (x )的解析式; (2)求函数g (x )的单调区间;(3)如果s 、t 、r 满足|s -r |≤|t -r |,那么称s 比t 更靠近r . 当a ≥2且x ≥1时,试比较e x和e x -1+a 哪个更靠近ln x ,并说明理由.解:(1)f ′(x )=f ′(1)e2x -2+2x -2f (0),所以f ′(1)=f ′(1)+2-2f (0),即f (0)=1. 又f (0)=f ′12·e -2,所以f ′(1)=2e 2,所以f (x )=e 2x+x 2-2x .(2)∵f (x )=e 2x-2x +x 2,∴g (x )=f ⎝ ⎛⎭⎪⎫x 2-14x 2+(1-a )x +a =e x +14x 2-x -14x 2+(1-a )x +a =e x-a (x -1),∴g ′(x )=e x -a .①当a ≤0时,g ′(x )>0,函数f (x )在R 上单调递增; ②当a >0时,由g ′(x )=e x-a =0得x =ln a , ∴x ∈(-∞,ln a )时,g ′(x )<0,g (x )单调递减;x ∈(ln a ,+∞)时,g ′(x )>0,g (x )单调递增.综上,当a ≤0时,函数g (x )的单调递增区间为 (-∞,+∞);当a >0时,函数g (x )的单调递增区间为(ln a ,+∞),单调递减区间为(-∞,ln a ). (3)设p (x )=e x-ln x ,q (x )=e x -1+a -ln x ,∵p ′(x )=-e x 2-1x<0,∴p (x )在x ∈[1,+∞)上为减函数,又p (e)=0,∴当1≤x ≤e 时,p (x )≥0,当x >e 时,p (x )<0. ∵q ′(x )=ex -1-1x ,q ″(x )=e x -1+1x2>0,∴q ′(x )在x ∈[1,+∞)上为增函数,又q ′(1)=0,∴x ∈[1,+∞)时,q ′(x )≥0,∴q (x )在x ∈[1,+∞)上为增函数,∴q (x )≥q (1)=a +2>0.①当1≤x ≤e 时,|p (x )|-|q (x )|=p (x )-q (x )=e x -e x -1-a ,设m (x )=e x-e x -1-a ,则m ′(x )=-e x2-e x -1<0,∴m (x )在x ∈[1,+∞)上为减函数, ∴m (x )≤m (1)=e -1-a ,∵a ≥2,∴m (x )<0,∴|p (x )|<|q (x )|,∴e x比e x -1+a 更靠近ln x .②当x >e 时,设n (x )=2ln x -ex -1-a ,则n ′(x )=2x -e x -1,n ″(x )=-2x2-e x -1<0,∴n ′(x )在x >e 时为减函数,∴n ′(x )<n ′(e)=2e-e e -1<0,∴n (x )在x >e 时为减函数,∴n (x )<n (e)=2-a -e e -1<0,∴|p (x )|<|q (x )|,∴e x比e x -1+a 更靠近ln x .综上:在a ≥2,x ≥1时,e x比e x -1+a 更靠近ln x .3.(导学号14577264)(文科)(2018·某某市三调)已知函数f (x )=1x+a ln x (a ≠0,a∈R ).(1)若a =1,求函数f (x )的极值和单调区间;(2)若在区间(0,e]上至少存在一点x 0,使得f (x 0)<0成立,某某数a 的取值X 围. 解:(1)因为f ′(x )=-1x 2+a x =ax -1x2,当a =1,f ′(x )=x -1x 2. 令f ′(x )=0,得x =1,又f (x )的定义域为(0,+∞),f ′(x ),f (x )随x 的变化情况如下表:所以x =1f (x )的单调递增区间为(1,+∞),单调递减区间为(0,1).(2)∵f ′(x )=ax -1x 2,(a ≠0,a ∈R ). 令f ′(x )=0,得到x =1a.若在区间[0,e]上存在一点x 0,使得f (x 0)<0成立, 其充要条件是f (x )在区间(0,e]上的最小值小于0即可.①当x =1a<0,即a <0时,f ′(x )<0对x ∈(0,+∞)成立,∴f (x )在区间(0,e]上单调递减,故f (x )在区间(0,e]上的最小值为f (e)=1e +a ln e=1e+a . 由1e +a <0,得a <-1e . ②当x =1a>0,即a >0时,(ⅰ)若e≤1a,则f ′(x )≤0对x ∈(0,e]成立,∴f (x )在区间(0,e]上单调递减,∴f (x )在区间(0,e]上的最小值为f (e)=1e +a ln e =1e +a >0,显然,f (x )在区间(0,e]上的最小值小于0不成立. (ⅱ)若1<1a <e ,即a >1e时,则有∴f (x )在区间[0,e]上的最小值为f ⎝ ⎛⎭⎪⎫a =a +a ln a.由f ⎝ ⎛⎭⎪⎫1a =a +a ln 1a=a (1-ln a )<0,得1-ln a <0,解得a >e ,即a ∈(e ,+∞). 综上,由①②可知:a ∈⎝⎛⎭⎪⎫-∞,-1e ∪(e ,+∞).4.(导学号14577265)(理科)(2018·某某市一模)已知函数f (x )=a ln x -x -ax+2a (其中a 为常数,a ∈R ).(1)求函数f (x )的单调区间;(2)当a >0时,是否存在实数a ,使得当x ∈[1,e]时,不等式f (x )>0恒成立?如果存在,求a 的取值X 围;如果不存在,说明理由(其中e 是自然对数的底数,e =2.718 28…)解:(1)由于f (x )=a ln x -x -a x+2a ,(x >0), 则f ′(x )=-x 2+ax +ax2, ①a ≤0时,f ′(x )<0恒成立,于是f (x )的递减区间是(0,+∞). ②a >0时,令f ′(x )>0,解得:0<x <a +a 2+4a2,令f ′(x )<0,解得:x >a +a 2+4a2,故f (x )在⎝ ⎛⎭⎪⎫0,a +a 2+4a 2递增,在⎝ ⎛⎭⎪⎫a +a 2+4a 2,+∞递减.(2)a >0时,①若a +a 2+4a2≤1,即0<a ≤12,此时f (x )在[1,e]递减,f (x )min =f (e)=3a -e -a e=⎝ ⎛⎭⎪⎫3-1e a -e≤⎝⎛⎭⎪⎫3-1e ×12-e <0,f (x )>0恒成立,不合题意.②若a +a 2+4a2>1,a +a 2+4a2<e ,即12<a <e2e +1时,此时f (x )在⎝ ⎛⎭⎪⎫1,a +a 2+4a 2递增,在⎝ ⎛⎭⎪⎫a +a 2+4a 2,e 递减.要使在[1,e]恒有f (x )>0恒成立,则必有⎩⎪⎨⎪⎧f1>0fe >0,则⎩⎪⎨⎪⎧a -1>03a -e -ae >0,解得e 23e -1<a <e2e +1.③若a +a 2+4a2≥e,即a ≥e2e +1时,f (x )在[1,e]递增,令f (x )min =f (1)=a -1>0,解得a ≥e2e +1.综上,存在实数a ∈⎝ ⎛⎭⎪⎫e 23e -1,+∞,使得f (x )>0恒成立.4.(导学号14577266)(文科)(2018·某某市二模)已知函数f (x )=x 2-a2ln x 的图象在点⎝ ⎛⎭⎪⎫12,f ⎝ ⎛⎭⎪⎫12处的切线斜率为0. (1)讨论函数f (x )的单调性;(2)若g (x )=f (x )+12mx 在区间(1,+∞)上没有零点,某某数m 的取值X 围.解:(1)f (x )=x 2-a 2ln x 的定义域为(0,+∞),f ′(x )=2x -a 2x .因为f ′⎝ ⎛⎭⎪⎫12=1-a=0,所以a =1,f (x )=x 2-12ln x ,f ′(x )=2x -12x=2x -12x +12x .令f ′(x )>0,得x >12;令f ′(x )<0,得0<x <12,故函数f (x )的单调递增区间是⎝ ⎛⎭⎪⎫12,+∞,单调递减区间是⎝ ⎛⎭⎪⎫0,12. (2)g (x )=x 2-12 ln x +12mx ,由g ′(x )=2x -12x +m 2=4x 2+mx -12x=0,得x =-m +m 2+168.设x 0=-m +m 2+168,所以g (x )在(0,x 0]上是减函数,在[x 0,+∞)上为增函数.因为g (x )在区间(1,+∞)上没有零点,所以g (x )>0在(1,+∞)上恒成立. 由g (x )>0,得12m >ln x 2x -x ,令y =ln x 2x -x ,则y ′=2-2ln x 4x 2-1=2-2ln x -4x24x 2. 当x >1时,y ′<0,所以y =ln x2x -x 在(1,+∞)上单调递减,所以当x =1时,y max =-1,故12m ≥-1,即m ∈[-2,+∞).。

高三一轮复习函数综合(提高)练习题

高三一轮复习函数综合(提高)练习题

第一轮复习函数复习训练题一、选择题:1、若集合{}||A x x x ==,{}20B x x x =+≥,则A B =( ) A .[1,0]- B .[0,)+∞ C .[1,)+∞ D .(,1]-∞-2、设函数)(1)(R x xxx f ∈+-=,区间M=],[b a (b a <),集合}),({M x x f y y N ∈==,则使M=N 成立的实数对),(b a 有( )A .0个B .1个C .2个D .无数多个 3、已知函数()()⎩⎨⎧∈-⋅==*Nn n f n n n f ,10,1 , 则()6f 的值是( ) A . 6B . 24C . 120D . 7204、若不等式x x a 42-≤对任意]1,0(∈x 恒成立,则a 的取值范围是( ) A .4-≥a B .3-≥a C .03≤<-a D .3-≤a5、设二次函数cbx ax x f ++=2)(,如果))(()(2121x x x f x f ≠=,则)(21x x f +等于( )A .ab2-B .ab-C .cD .ab ac 442-6、已知时且当时当是偶函数]1,3[,4)(,0,)(--∈+=>=x xx x f x x f y ,m x f n ≤≤)(恒成立,则n m -的最小值是( ) A .31B .32C .1D .347、偶函数))((R x x f ∈满足:0)1()4(==-f f ,且在区间[0,3]与),3[+∞上分别递减和递增,则不等式0)(3<x f x 的解集为( )A .),4()4,(+∞⋃--∞B .)4,1()1,4(⋃--C .)0,1()4,(-⋃--∞D .)4,1()0,1()4,(⋃-⋃--∞8、定义在R 上的偶函数)(x f 在(-∞,0]上单调递增,若21x x >,021>+x x ,则( ) A .)()(21x f x f >B .)()(21x f x f >-C .)()(21x f x f -<D .)(1x f ,)(2x f 的大小与1x ,2x 的取值有关9、函数)(x f 为奇函数,)5(),2()()2(,21)1(f f x f x f f 则+=+==( )A .0B .1C .25D .510、对于实数x,符号[x ]表示不超过x 的最大整数,例如,2]08.1[,3][-=-=π定义函数],[)(x x x f -=则下列命题中正确的是( ) A .1)3(=fB .方程21)(=x f 有且仅有一个解 C .函数)(x f 是周期函数 D .函数)(x f 是增函数11、定义在R 上的函数()y f x =的值域为[,]a b ,则(1)y f x =+的值域为( )A 。

山东济宁高三数学一轮复习函数专项提升训练

山东济宁高三数学一轮复习函数专项提升训练

山东济宁高三数学一轮复习函数专项提升训练形如y=kx+b(k,b是常数,k0)的函数叫做一次函数,以下是整理的函数专项提升训练,希望对考生有帮助。

1.记f(x)=lg(2x-3)的定义域为集合M,函数g(x)=的定义域为集合N,求:(1)集合M,N;(2)集合MN,MN.解 (1)M={x|2x-30}=,N==={x|x3,或x1}.(2)MN={x|x3},MN=..二次函数f(x)满足f(x+1)-f(x)=2x,且f(0)=1.(1)求f(x)的解析式;(2)在区间[-1,1]上,函数y=f(x)的图象恒在直线y=2x+m的上方,试确定实数m的取值范围.解 (1)由f(0)=1,可设f(x)=ax2+bx+1(a0),故f(x+1)-f(x)=a(x+1)2+b(x+1)+1-(ax2+bx+1)=2ax+a+b,由题意,得解得故f(x)=x2-x+1.(2)由题意,得x2-x+12x+m,即x2-3x+1m,对x[-1,1]恒成立.令g(x)=x2-3x+1,则问题可转化为g(x)minm,又因为g(x)在[-1,1]上递减,所以g(x)min=g(1)=-1,故m-1..下列函数中,既是偶函数又在(0,+)内单调递减的函数是().A.y=x2B.y=|x|+1C.y=-lg|x|D.y=2|x|解析对于C中函数,当x0时,y=-lg x,故为(0,+)上的减函数,且y=-lg |x|为偶函数.答案 C设函数y=x2-2x,x[-2,a],若函数的最小值为g(a)g(a)的表达式。

解析函数y=x2-2x=(x-1)2-1,对称轴为直线x=1.当-21时,函数在[-2,a]上单调递减,则当x=a时,ymin=a2-2a;当a1时,函数在[-2,1]上单调递减,在[1,a]上单调递增,则当x=1时,ymin=-1.综上,g(a)=答案.设函数f(x)对任意的a,bR,都有f(a+b)=f(a)+f(b)-1,且当x0时,f(x)1.(1)求证:f(x)是R上的增函数;(2)若f(4)=5,解不等式f(3m2-m-2)3.(1)证明设x10,f(x)1,f(x2)=f(x1+x)=f(x1)+f(x)-1f(x1),f(x)是R上的增函数.(2)解 f(4)=f(2)+f(2)-1=5,f(2)=3,f(3m2-m-2)3=f(2).又由(1)的结论知f(x)是R上的增函数,3m2-m-22,-10-20.综上,f(x)0的解集为{x|-20,016-4x16,[0,4).答案 C.已知函数f(x)=若f(a)=,则a的值为().A.-1B.C.-1或D.-1或解析若a0,有log2a=,a=;若a0,有2a=,a=-1.答案 D.函数y=f(x)在R上单调递增,且f(m2+1)f(-m+1),则实数m的取值范围是().A.(-,-1)B.(0,+)C.(-1,0)D.(-,-1)(0,+)解析由题意得m2+1-m+1,即m2+m0,故m-1或m0.答案 D.奇函数f(x)在[3,6]上是增函数,且在[3,6]上的最大值为2,最小值为-1,则2f(-6)+f(-3)=().A.5B.-5C.3D.-3解析由题意又f(x)是奇函数,2f(-6)+f(-3)=-2f(6)-f(3)=-4+1=-3.答案 D.规定记号表示一种运算,即ab=ab+a+b2(a,b为正实数).若1k=3,则k=().A.-2B.1C.-2或1D.2解析根据运算有1k+1+k2=3,k为正实数,所以k=1.答案 B.函数f(x)=的定义域是________.解析由log(x-1)000时,f(x)=ax(a0且a1),且f=-3,则a的值为().A. B.3 C.9 D.解析 f(log4)=f=f(-2)=-f(2)=-a2=-3,a2=3,解得a=,又a0,a=.答案 A.设a=log3,b=0.3,c=ln ,则().A.aln e=1,故a7,则实数m的取值范围是________.解析 f(2)=4,f(f(2))=f(4)=12-m7,m5.答案 (-,5)函数专项提升训练及答案的所有内容就是这些,更多精彩内容请持续关注。

2023年一轮复习《指数函数》提升训练(含解析)

2023年一轮复习《指数函数》提升训练(含解析)

2023年一轮复习《指数函数》提升训练一、单选题(本大题共12小题,共60分)1.(5分)函数f(x)=ln(x−1x)的图象是()A. B.C. D.2.(5分)已知函数f(x)=a x+b(a>0且a≠1)的定义域和值域都是[−1,0],则a+ b=( )A. −12B. −32C. −52D. −12或−523.(5分)已知A={ x|−2<x<1},B={ x|2x>1},则A∩(∁R B)为()A. (−2,1)B. (−∞,1)C. (0,1)D. (−2,0]4.(5分)已知全集U=R,集合A={x||x|⩽1,x∈R},集合B={x|2x⩾1,x∈R},则集合A∪B=()A. (−∞,1]B. [0,1]C. [−1,0]D. [−1,+∞)5.(5分)函数y=ln(5−x)+√2x−8的定义域是()A. [2,3)B. [3,5)C. (−∞,3)D. (2,3)6.(5分)设集合A={ x|e x>1},B={ x||x|>2},则A∩B=()A. (−2,0)B. (1,2)C. (2,+∞)D. (1,+∞)7.(5分)已知实数a,b,c满足不等式0<a<b<c<1,且M=2a,N=5−b,P=(17)c,则M、N、P的大小关系为()A. M>N>PB. P<M<NC. N>P>MD. P>N>M8.(5分)若2x+5y⩽2−y+5−x,则有()A. x+y⩾0B. x+y⩽0C. x−y⩽0D. x−y⩾09.(5分)设集合A ={ x |2x ⩾4),集合B ={ x |−1⩽x ⩽5),则A ∩B =( )A. { x |−1⩽x ⩽2}B. { x |2⩽x ⩽5}C. { x |x ⩾−1}D. { x |x ⩾2}10.(5分)函数y =3|log 3x|的图象是( )A. B. C. D.11.(5分)定义在R 上的奇函数f(x)满足f(x +1)=f(−x),当x ∈(0,12]时,f(x)=log 12(1−x),则f(x)在区间(1,32)内是( )A. 减函数且f(x)>0B. 减函数且f(x)<0C. 增函数且f(x)>0D. 增函数且f(x)<012.(5分)已知a =log 23+log 2√3,b =log 29−log 2√3,c =log 32,则a ,b ,c 的大小关系是( )A. a =b <cB. a =b >cC. a <b <cD. a >b >c二 、填空题(本大题共4小题,共20分)13.(5分)已知实数x ,y 均大于零,且x +2y =4,则log 2x +log 2y 的最大值为______. 14.(5分)已知函数f(x)=ln (√1+x 2−x)+2,则f(≶3)+f(≶13)= ______ .15.(5分)已知存在实数x ,y ∈(0,1),使得不等式1x +11−x <2y 2−y+t 成立,则实数t的取值范围为__________.16.(5分)设f(x)是R 上的偶函数,且在[0,+∞)上递减,若f(12)=0,若f(log 14x)>0,那么x 的取值范围是 ______ .三 、解答题(本大题共6小题,共72分)17.(12分)已知函数f(x)=3x ,且f(a +2)=18,g(x)=3ax −4x 的定义域为[-1,1].(1)求3a 的值及函数g(x)的解析式; (2)试判断函数g(x)的单调性;(3)若方程g(x)=m 有解,求实数m 的取值范围. 18.(12分)设a ∈R ,函数f(x)=2x −a 2x +a.(1)若a >0,判断并证明函数f(x)的单调性;(2)若a ≠0,函数f(x)在区间[m,n ](m <n)上的取值范围是[k2m ,k2n ](k ∈R),求ka 的范围.19.(12分)已知函数f(x)=√−x 2+5x −6的定义域为A ,集合B={x |2⩽2x ⩽16},非空集合C={x |m +1⩽x ⩽2m −1},全集为实数集R. (1)求集合A ∩B 和∁R B;(2)若A ∪C =A ,求实数m 取值的集合.20.(12分)f(x)=a⋅4x−a⋅2x+1+1−b,a>0在区间[−1,2]上最大值9,最小值0.(1)求a,b的值(2)求不等式f(x)⩾1的解集.21.(12分)已知奇函数f(x)=12x−1+a.(1)求f(x)的定义域;(2)求a的值;(3)证明x>0时,f(x)>0.22.(12分)已知函数f(x)=2xa +a2x−1(a>0)是R上的偶函数.(1)求a的值;(2)解方程f(x)=134.答案和解析1.【答案】B;【解析】这道题主要考查了对数函数的定义域和复合函数的单调性,属于基础题.首先根据对数函数的性质,求出函数的定义域,再很据复合函数的单调性求出f(x)的单调性,问题得以解决.解:因为x−1x 1x>0,解得x>1或−1<x<0,所以函数f(x)=ln(x−1x 1x)的定义域为:(−1,0)∪(1,+∞).所以选项A、D不正确.当x∈(−1,0)时,g(x)=x−1x 1x是增函数,因为y=lnx是增函数,所以函数f(x)=ln(x−1x 1x)是增函数.故选B.2.【答案】B;【解析】当a>1时,f(x)单调递增,有f(−1)=1a+b=−1,f(0)=1+b=0,无解;当0<a<1时,f(x)单调递减,有f(−1)=1a+b=0,f(0)=1+b=−1,解得a=12,b=−2,所以a+b=−32.故选B.3.【答案】D;【解析】该题考查了集合的定义与运算问题,是基础题.解不等式得集合B,根据交集与补集的定义写出A∩(∁R B)即可.解:A={ x|−2<x<1},B={ x|2x>1}={ x|x>0},∴∁R B={ x|x⩽0},∴A∩(∁R B)=(−2,0].故选:D .4.【答案】D;【解析】【试题解析】此题主要考查集合的并集及其运算,考查指数不等式的求解,属于基础题. 先分别求出集合A 、B ,再根据集合的并集定义求解即可.解:集合A =\left{ x ||x|⩽1,x ∈R }=\left{ x |−1⩽x ⩽1,x ∈R }, 集合B =\left{ x |2x ⩾1,x ∈R }=\left{ x |x ⩾0,x ∈R }, 所以A ∪B =[−1,+∞). 故选D.5.【答案】B; 【解析】此题主要考查了函数的定义域及其求法,属基础题. 根据对数的真数大于0,和偶次根式被开方非负列式解得.解:由{5−x >02x −8⩾0,解得:3⩽x <5,故选B.6.【答案】C; 【解析】此题主要考查交集的运算,属于基础题. 可求出集合A ,B ,然后进行交集的运算即可.解:A ={ x |x >0},B ={ x |x <−2或x >2}; ∴A ∩B =(2,+∞). 故选C.7.【答案】A;【解析】解:∵0<a <b <c <1, ∴1<2a <2,15<5−b <1,17<(17)c <1, 5−b =(15)b >(15)c >(17)c , 即M >N >P , 故选:A根据幂函数指数函数的性质进行比较即可.这道题主要考查函数值的大小比较,根据幂函数和指数函数的单调性的性质是解决本题的关键8.【答案】B;【解析】此题主要考查指数幂的运算性质,函数的单调性,是中档题.由已知构造函数f(x)=2x−5−x,易知f(x)=2x−5−x在R上为增函数,利用单调性即可得解.解:由已知可得2x−5−x⩽2−y−5y,令f(x)=2x−5−x,易知f(x)=2x−5−x在R上为增函数,因为2x−5−x⩽2−y−5y,即2x−5−x⩽−(5y−2−y),所以f(x)⩽f(−y)所以x⩽−y,即x+y⩽0.故选B.9.【答案】B;【解析】此题主要考查集合的交集运算,属于基础题.化简A,由交集运算即可求解.解:由A={ x|2x⩾4}={ x|x⩾2},集合B={ x|−1⩽x⩽5},则A∩B={ x|2⩽x⩽5}.故选:B.10.【答案】B;x|>0,则y>1,【解析】解:当0<x<1,|log3x|⩾0,则y⩾1,当x⩾1时,|log3故选:B根据对数函数和指数函数的图象的性质即可判断.该题考查了函数图象的识别和对数函数和指数函数的性质,属于基础题.11.【答案】B;【解析】解;因为定义在R上的奇函数满足f(x+1)=f(−x),所以f(x+1)=−f(x),即f(x+2)=−f(x+1)=f(x),所以函数的周期是2,则f(x)在(1,32)上图象和在(−1,−12)上的图象相同, 设x ∈(−1,−12),则x +1∈(0,12), 又当x ∈(0,12]时,f(x)=log 12(1−x),所以f(x +1)=log 12(−x),由f(x +1)=f(−x)得,f(−x)=log 12(−x),所以f(x)=−f(−x)=−log 12(−x),由x ∈(−1,−12)得,f(x)=−log 12(−x)在(−1,−12)上是减函数,且f(x)<f(−1)=0,所以则f(x)在区间(1,32)内是减函数且f(x)<0, 故选:B .根据条件推出函数的周期性,利用函数的周期性得:f(x)在(1,32)上图象和在(−1,−12)上的图象相同,利用条件、奇偶性、对数函数单调性之间的关系即可得到结论. 此题主要考查函数奇偶性和单调性的应用,利用条件推出函数的周期性是解决本题的关键,综合考查函数性质的综合应用,考查了转化思想.12.【答案】B;【解析】解:∵a =log 23+log 2√3=log 23√3,b =lo g 29−lo g 2√3=lo g √3=lo g 23√3>1,∴a =b >1,又0<c =log 32<1, ∴a =b >c . 故选:B .利用对数的运算性质可求得a =log 23√3,b =log 23√3>1,而0<c =log 32<1,从而可得答案.该题考查不等式比较大小,掌握对数的运算性质既对数函数的性质是解决问题之关键,属于基础题.13.【答案】1; 【解析】该题考查了基本不等式、对数的运算法则和单调性,属于基础题. 利用基本不等式、对数的运算法则和单调性即可得出.解:∵实数x ,y >0,且x +2y =4,∴4⩾2√2xy ,化为xy ⩽2,当且仅当x =2y =2时取等号. 则log 2x +log 2y =log 2(xy )⩽log 22=1. 因此log 2x +log 2y 的最大值是1.故答案为:1.14.【答案】4;【解析】解:∵f(−x)+f(x)=ln[√1+x2+x][√1+x2−x]+4=ln1+4=4,∴f(≶3)+f(≶13)=f(≶3)+f(−≶3)=4.故答案为:4.利用f(−x)+f(x)=ln[√1+x2+x][√1+x2−x]+4=4,即可得出.该题考查了函数的奇偶性、对数的运算性质,属于基础题.15.【答案】(3,+∞);【解析】此题主要考查基本不等式的运用,不等式恒成立问题,属于中档题.求出1x +11−x的最小值为4,得到t>4−2y2−y,由0<y<1得到4−2y2−y>3,即可得到答案.解:∵1x +11−x=(x+1−x)(1x+11−x)=2+1−xx+x1−x⩾2+2√1−=4,当x=0.5时,显然等号成立,∴1x +11−x的最小值为4,∴只需存在实数y∈(0,1),使得2y2−y+t>4成立即可,即t>4−2y2−y,易知当0<y<1时,y²−y<0,∴4−2y2−y>3,∴t>3,∴实数t的取值范围为(3,+∞).故答案为:(3,+∞).16.【答案】(12,2);【解析】解:∵f(x)是R上的偶函数,∴f(|x|)=f(x),∴f(log14x)=f(|log14x|),又∵f(x)在[0,+∞)上递减,且f(12)=0,∴f(|log14x|)>0=f(12),∴|log14x|<12,∴−12<12log2x<12,∴−1<log2x<1,∴12<x<2,故答案为:(12,2).首先,根据偶函数的性质,得到f(log 14x)=f(|log 14x|),然后,根据函数的单调性得到∴−12<12log 2x <12,从而得到相应的范围.此题主要考查了函数的单调性和奇偶性、函数的单调性的应用,对数的运算等知识,属于中档题,本题解题关键是准确把握偶函数的性质.17.【答案】解:(1)f (a +2)=3a+2=32⋅3a =18,所以3a =2,所以g (x )=(3a )x −4x =2x −4x . (2)g (x )=2x −4x =−(2x )2+2x , 令2x =t ∈[12,2],所以g (x )=μ(t )=−t 2+t =−(t −12)2+14在t ∈[12,2]上单调递减, 又t =2x 为单调递增函数, 所以g (x )在x ∈[−1,1]上单调递减.(3)由(2)知g (x )=μ(t )=−t 2+t =−(t −12)2+14在t ∈[12,2]上单调递减, 所以g (x )∈[−2,14],即m ∈[−2,14].;【解析】(1)将a +2代入函数的解析式,根据指数的运算性质可得3a =2,再代入即可得g (x )的解析式;(2)令2x =t ∈[12,2],所以g (x )=μ(t )=−t 2+t =−(t −12)2+14,根据二次函数的性质可得μ(t )单调递减,t =2x 为单调递增函数,根据复合函数的单调性可得结果; (3)利用二次函数的性质求出g (x )的范围即可.18.【答案】解:(1)当a >0时,因为2x >0,所以2x +a >0 所以函数f(x)=2x −a 2x +a 的定义域为R , 结论:函数f(x)=2x −a 2x +a (a >0)是增函数.证明:设对任意的x 1,x 2∈R ,且x 1<x 2, 则:f(x 1)−f(x 2)=2x 1−a2x 1+a −2x 2−a2x 2+a , =(2x 1−a)(2x 2+a)−(2x 2−a)(2x 1+a)(2x 1+a)(2x 2+a),=2a (2x 1−2x 2)(2x 1+a)(2x 2+a),因为x 1<x 2,所以2x 2>2x 1,即2x 1−2x 2<0,又因为2x 1+a >0,2x 2+a >0,a >0,所以2a (2x 1−2x 2)(2x 1+a)(2x 2+a)<0, 所以f(x 1)<f(x 2),即证.(2)因为m <n , 所以2m <2n ,从而12m >12n . 又由[k 2m,k 2n]知,k2m<k 2n,所以k <0,因为a ≠0,所以a <0或a >0. ①当a >0时,由(1)知,函数f(x)=2x −a 2x +a是增函数.因为函数f(x)在区间[m,n] (m <n)上的取值范围是 [k 2m,k 2n](k ∈R),所以{f(m)=k2m ,f(n)=k 2n ,即: {2m −a2m +a =k2m2n −a 2n+a=k2n, 从而关于x 的方程2x −a 2x +a=k 2x有两个互异实根.令t =2x ,则t >0,所以方程t 2−(a +k)t −ak =0(k <0)有两个互异正根, 所以 \matrixLatexcasesFa+k2>0,a+k)^{2}+4ak>0,\\-ak>0\end{cases}从而:-3+2\sqrt{2}< \frac{k}{a}< 0.<br/>②$当a <0时,函数$f(x)=1-\frac{2a}{2^{x}+a}在区间(-\infty,\log_{2}(-a)),(\log_{2}(-a),+\infty)上均单调递减,<br/>若[m,n]⊆(\log_{2}(-a),+\infty),则f(x)>1,于是\frac{k}{2^{m}}>0$,这与k <0矛盾,故舍去$;<br/>若[m,n]\subseteq(-\infty,\log_{2}(-a)),则f(x)< 1,<br/>于是\left{ \begin{array}{l}f(m)=\frac{k}{{2}^{n}}\\ f(n)=\frac{k}{{2}^{m}}\end{array}\right.,\;\;\;\;\;即:\;\left{ \begin{array}{l}\frac{{2}^{m}-a}{{2}^{m}+a}=\frac{k}{{2}^{n}}\;\;\;\;➀\\ \frac{{2}^{n}-a}{{2}^{n}+a}=\frac{k}{{2}^{m}}\;\;\;\;\;②\end{array}\right.,.<br/>所以\left{ \begin{array}{ll}{2}^{n}({2}^{m}-a)=k({2}^{m}+a)\\ {2}^{m}({2}^{n}-a)=k({2}^{n}+a)\end{array}\right.,两式相减并整理得,(k-a)(2^{n}-2^{m})=0,<br/>又2^{m}< 2^{n},故2^{n}-2^{m}>0,从而k-a=0.$因为a <0,所以$\frac{k}{a}=1.<br/>综上,\frac{k}{a}的范围是(-3+2\sqrt{2},0)∪{ 1}.$;【解析】此题主要考查函数的单调性,函数定义域与值域以及指数函数的性质,属于难题.(1)利用函数单调性的定义求证即可;(2)依题意,函数f(x)在区间[m,n] (m <n)上的取值范围是[k 2m ,k 2n](k ∈R),分别讨论a的范围即可求解.19.【答案】解:(1)∵函数f(x)=√−x 2+5x −6的定义域为A , ∴\mathopA={x |−x 2+5x −6⩾又由2⩽2x ⩽16得B=[1,4].∴ A ∩B =[2,3],∁R B =(−∞,1)∪(4,+∞). (2)∵A ∪C =A. ∴C ⊆A则{&m +1⩾2 2m −1⩽3 ,即1⩽m ⩽2.又要使集合C={ x|m+1⩽x⩽2m−1}为非空集合,则必须m+1⩽2m−1即m⩾2,综上可得m=2,所以实数m的取值集合为{2}.;【解析】此题主要考查集合的运算以及集合中参数的取值范围问题.属于基础题.(1)首先求出集合A与集合B,再求交集、补集;(2)由题意可知C⊆A,因此可建立不等式组,即可解出实数m的取值集合.20.【答案】解:(1)f(x)=a•4x-a•2x+1+1-b,a>0,设t=2x(12≤t≤4),则g(t)=a t2-2at+1-b=a(t-1)2-a-b+1,当t=1时,取得最小值1-a-b,即有1-a-b=0,①又t=4时,取得最大值8a-b+1=9,②由①②解得a=1,b=0;(2)f(x)≥1,即为4x-2x+1+1≥1,即有2x(2x-2)≥0,由于2x>0,则2x≥2,解得x≥1,则解集为{x|x≥1}.;【解析】(1)可令t=2x(12⩽t⩽4),则g(t)=at2−2at+1−b=a(t−1)2−a−b+1,考虑对称轴和区间关系,可得t=1取得最小值,t=4取得最大值,解a,b的方程组,即可得到所求值;(2)由指数不等式的解法,结合指数函数的单调性,即可得到所求范围.该题考查指数函数的性质和运用,考查可化为二次函数的最值的求法,考查换元法的运用,以及不等式的解法,属于中档题.21.【答案】解:(1)∵2x-1≠0,即2x≠1,∴x≠0故f(x)的定义域是(-∞,0)∪(0,+∞)(2)解:∵f(x)是奇函数又∵f(−x)=12−x−1+a=2x1−2x+a∴f(x)+f(−x)=12x−1+a+2x1−2x+a=0∴a=12(3)证明:当x>0时,2x>1,∴2x-1>0∴12x−1+12>0,即x>0时,f(x)>0;【解析】(1)根据2x−1≠0,即2x≠1,求解.(2)根据奇函数的概念,f(x)+f(−x)=12x−1+a+2x1−2x+a=0,求解.(3)根据不等式的性质证明,结合指数函数的单调性.该题考查了函数的概念,性质,属于容易题.22.【答案】解:(1)∵f(x)为偶函数,∴f(−x)=f(x)恒成立,∴2xa +a2x=2−xa+a2−x恒成立,即(1a−a)(2x−2−x)=0恒成立,∴1a−a=0,解得a=±1,∵a>0,∴a=1.(2)由(1)知f(x)=2x+2−x−1=134,∴4⋅(2x)2−17⋅2x+4=0,解得2x=4或14,∴x=±2,所以原方程的解为x=±2.;【解析】【试题解析】此题主要考查了偶函数的定义,一元二次方程的解法,考查了计算能力,属于基础题.(1)根据f(x)为偶函数可得出f(−x)=f(x)恒成立,从而可得出(1a−a)(2x−2−x)=0恒成立,从而可求出a=1;(2)根据(1)即可得出4⋅(2x)2−17⋅2x+4=0,然后解出x的值即可.。

高三一轮复习 函数全章 练习(11套)+易错题+答案

高三一轮复习 函数全章 练习(11套)+易错题+答案

第二章函数第1节函数概念及其表示方法一、选择题1.下列集合A到集合B的对应f是函数的是( A )(A)A={-1,0,1},B={0,1},f:A中的数平方(B)A={0,1},B={-1,0,1},f:A中的数开方(C)A=Z,B=Q,f:A中的数取倒数(D)A=R,B={正实数},f:A中的数取绝对值解析:按照函数定义,选项B中集合A中的元素1对应集合B中的元素±1,不符合函数定义中一个自变量的值对应唯一的函数值的条件;选项C中的元素0取倒数没有意义,也不符合函数定义中集合A中任意元素都对应唯一函数值的要求;选项D中,集合A中的元素0在集合B 中没有元素与其对应,也不符合函数定义,只有选项A符合函数定义.2.已知f(x-1)=2x-5,且f(a)=6,则a等于( B )(A)- (B) (C) (D)-解析:令t=x-1,则x=2t+2,f(t)=2(2t+2)-5=4t-1,又由f(a)=6,则4a-1=6,解得a=.3.若f(1-2x)=(x≠0),那么f()等于( C )(A)1 (B)3 (C)15 (D)30解析:法一令1-2x=t,则x=(t≠1),则f(t)=-1,则f()=16-1=15.法二令1-2x=,得x=,则f()=16-1=15.4.已知f(x)=的值域为R,那么a的取值范围是( C )(A)(-∞,-1] (B)(-1,)(C)[-1,) (D)(0,)解析:要使函数f(x)的值域为R,需使则则-1≤a<.即a的取值范围是[-1,).5.已知函数f(x)=且f(a)=-1,则f(6-a)等于( A )(A)1 (B)2 (C)3 (D)4解析:由题意,知a>0,则由-log2(a+1)+2=-1,解得a=7,所以f(6-a)= f(-1)=2-1+1=1,故选A.6.设函数y=f(x)在R上有定义,对于任一给定的正数p,定义函数f p(x)=则称函数f p(x)为f(x)的“p界函数”,若给定函数f(x)=x2-2x-1,p=2,则下列结论不成立的是( B )(A)f p[f(0)]=f[f p(0)] (B)f p[f(1)]=f[f p(1)](C)f p[f p(2)]=f[f(2)] (D)f p[f p(3)]=f[f(3)]解析:给定函数f(x)=x2-2x-1,p=2,则f(1)=-2,f p(1)=-2,所以f[f p(1)]=f(-2)=7,f p[f(1)]=f p(-2)=2,所以f p[f(1)]≠f[f p(1)],故选B.二、填空题7.函数y=的定义域是.解析:要使函数有意义,需满足即x<且x≠-1.答案:(-∞,-1)∪(-1,)8.已知函数f(x)=且f(a)=-3,则f(5-a)= . 解析:若a≤1,则2a-2=-3,即2a=-1,不合题设;故a>1,即-log2(a+1)=-3,解之得a=7,代入f(5-a)=f(-2)=-2=-.答案:-9.已知f(2x-2)的定义域是[1,2],则f(2x+1)的定义域为.解析:由题知f(2x-2)中1≤x≤2,则0≤2x-2≤2,即f(x)的定义域为[0,2],所以0≤2x+1≤2,得-≤x≤,故f(2x+1)的定义域为[-,].答案:[-,]10.定义在R上的函数f(x)满足f(x-1)=2f(x),若当0≤x≤1时,f(x)=x(1-x),则当1≤x≤2时,f(x)= .解析:由f(x-1)=2f(x),则f(x)=f(x-1).由1≤x≤2,则0≤x-1≤1.又当0≤x≤1时,f(x)=x(1-x),则f(x-1)=(x-1)[1-(x-1)]=(x-1)(2-x),则f(x)=f(x-1)=(x-1)(2-x).答案:(x-1)(2-x)11.定义在R上的函数f(x)满足f(x+y)=f(x)+f(y)+2xy(x,y∈R), f(1)=2,则f(-3)= .解析:令x=1,y=1,则f(2)=f(1)+f(1)+2=6,令x=2,y=1,则f(3)=f(2)+f(1)+4=12,令x=0,y=0,则f(0)=0,令y=-x,则f(0)=f(x)+f(-x)-2x2,则f(-x)=f(0)-f(x)+2x2,则f(-3)=f(0)-f(3)+2×32=0-12+18=6.答案:612.设函数f(x)=则满足f(f(a))=2f(a)的a的取值范围为.解析:由f(f(a))=2f(a)得,f(a)≥1.当a<1时,有3a-1≥1,则a≥,则≤a<1;当a≥1时,有2a≥1,则a≥0,则a≥1.综上,a≥.答案:[,+∞)三、解答题13.设函数f(x)满足2f()+f()=1+x,其中x≠0,x∈R,求f(x). 解:令x=t,则2f()+f()=1+t,①令x=-t,则2f()+f()=1-t,②由①②得f()=t+,令=x可得f(x)=+,x≠1.14.已知函数f(x)满足f(x+y)+f(x-y)=2f(x)·f(y),且f(0)≠0,若f()=0,求f(π)及f(2π)的值.解:令x=y=0,则f(0)+f(0)=2[f(0)]2,则f(0)[f(0)-1]=0,由f(0)≠0,则f(0)=1,令x=y=,则f(π)+f(0)=2[f()]2=0,则f(π)=-1;令x=y=π,则f(2π)+f(0)=2[f(π)]2=2,则f(2π)=1.第2节二次函数一、选择题1.函数f(x)=2x2-mx+3,当x∈[-2,+∞)时,f(x)是增函数,当x∈(-∞,-2]时,f(x)是减函数,则f(1)的值为( B )(A)-3 (B)13 (C)7 (D)5解析:函数f(x)=2x2-mx+3图象的对称轴为直线x=,由函数f(x)的增减区间可知=-2,所以m=-8,即f(x)=2x2+8x+3,所以f(1)=2+8+3=13.2.已知二次函数f(x)满足f(2+x)=f(2-x),且f(x)在[0,2]上是增函数,若f(a)≥f(0),则实数a的取值范围是( C )(A)[0,+∞) (B)(-∞,0](C)[0,4] (D)(-∞,0]∪[4,+∞)解析:由f(2+x)=f(2-x)可知,函数f(x)图象的对称轴为x==2,又函数f(x)在[0,2]上单调递增,所以由f(a)≥f(0)可得0≤a≤4.3.若函数f(x)=(1-x2)(x2+ax-5)的图象关于直线x=0对称,则f(x)的最大值是( B )(A)-4 (B)4 (C)4或-4 (D)不存在解析:依题意,函数f(x)是偶函数,则y=x2+ax-5是偶函数,故a=0,则f(x)=(1-x2)(x2-5)=-x4+6x2-5=-(x2-3)2+4,当x2=3时,f(x)取最大值为4.4.设函数f(x)=x2-23x+60,g(x)=f(x)+|f(x)|,则g(1)+g(2)+…+g(20)等于( B )(A)56 (B)112 (C)0 (D)38解析:由二次函数图象的性质得,当3≤x≤20时,f(x)+|f(x)|=0,所以g(1)+g(2)+…+g(20)=g(1)+g(2)=f(1)+|f(1)|+f(2)+|f(2)|=112.5.已知函数f(x)(x∈R)满足f(x)=f(2-x),若函数y=|x2-2x-3|与y=f(x)图象的交点为(x1,y1),(x2,y2),…,(x m,y m),则x1+x2+…+x m等于( B )(A)0 (B)m (C)2m (D)4m解析:由f(x)=f(2-x)知函数f(x)的图象关于直线x=1对称,又y=|x2-2x-3|的图象也关于直线x=1对称,所以这两函数的交点也关于直线x=1对称.不妨设x1<x2<…<x m,则=1,即x1+x m=2,同理x2+x m-1=2,x3+x m-2=2,…,设S m=x1+x2+…+x m,则S m=x m+x m-1+ (x1)所以2S m=(x1+x m)+(x2+x m-1)+…+(x m+x1)=2m,所以S m=m.6.设函数f(x)=,g(x)=ax2+bx(a,b∈R,a≠0),若y=f(x)的图象与y=g(x)的图象有且仅有两个不同的公共点A(x1,y1),B(x2,y2),则下列判断正确的是( D )(A)当a<0时,x1+x2<0,y1+y2<0(B)当a<0时,x1+x2>0,y1+y2>0(C)当a>0时,x1+x2>0,y1+y2<0(D)当a>0时,x1+x2<0,y1+y2>0解析:当a<0时,作出两个函数的图象,如图,因为函数f(x)是奇函数,所以A与A′关于原点对称,显然x2>-x1>0,即x1+x2>0,-y1>y2,即y1+y2<0;当a>0时,作出两个函数的图象,同理有x1+x2<0,y1+y2>0.二、填空题7.二次函数的图象与x轴只有一个交点,对称轴为x=3,与y轴交于点(0,3).则它的解析式为 .解析:由题意知,可设二次函数的解析式为y=a(x-3)2,又图象与y轴交于点(0,3),所以3=9a,即a=,所以y=(x-3)2=x2-2x+3.答案:y=x2-2x+38.若函数f(x)=(x+a)(bx+2a)(常数a,b∈R)是偶函数,且它的值域为(-∞,4],则该函数的解析式f(x)= .解析:由f(x)是偶函数知f(x)图象关于y轴对称,所以b=-2,所以f(x)=-2x2+2a2,又f(x)的值域为(-∞,4],所以2a2=4,故f(x)=-2x2+4.答案:-2x2+49.若关于x的不等式x2-4x≥m对任意x∈(0,1]恒成立,则m的取值范围为.解析:只需要在x∈(0,1]时,(x2-4x)min≥m即可.因为函数f(x)=x2-4x在(0,1]上为减函数,所以当x=1时,(x2-4x)min=1-4=-3,所以m≤-3.答案:(-∞,-3]10.若函数f(x)=x2-x+a的定义域和值域均为[1,b](b>1),则a= ,b= .解析:因为f(x)=(x-1)2+a-,所以其对称轴为x=1,即[1,b]为f(x)的单调递增区间.所以f(x)min=f(1)=a-=1,①f(x)max=f(b)=b2-b+a=b,②由①②解得答案: 311.设f(x)与g(x)是定义在同一区间[a,b]上的两个函数,若函数y=f(x)-g(x)在x∈[a,b]上有两个不同的零点,则称f(x)和g(x)在[a,b]上是“关联函数”,区间[a,b]称为“关联区间”.若f(x)=x2-3x+4与g(x)=2x+m在[0,3]上是“关联函数”,则m的取值范围为.解析:由题意知,y=f(x)-g(x)=x2-5x+4-m在[0,3]上有两个不同的零点.在同一直角坐标系下作出函数y=m与y=x2-5x+4(x∈[0,3])的图象如图所示,结合图象可知,当x∈[2,3]时,y=x2-5x+4∈[-,-2],故当m∈(-,-2]时,函数y=m与y=x2-5x+4(x∈[0,3])的图象有两个交点.答案:(-,-2]12.若函数f(x)=cos 2x+asin x在区间(,)上是减函数,则a的取值范围是.解析:f(x)=cos 2x+asin x=-2sin2x+asin x+1,令sin x=t,则f(x)=-2t2+at+1,因为x∈(,),所以t∈(,1).因为f(x)在x∈(,)上是减函数,所以y=-2t2+at+1在t∈(,1)上是减函数,又对称轴是t=,所以≤,所以a≤2.答案:(-∞,2]三、解答题13.已知二次函数f(x)的二次项系数为a,且f(x)>-2x的解集为{x|1<x<3},方程f(x)+6a=0有两个相等的实根,求f(x)的解析式. 解:设f(x)+2x=a(x-1)(x-3)(a<0),则f(x)=ax2-4ax+3a-2x,因为f(x)+6a=ax2-(4a+2)x+9a=0有两个相等的实根,所以Δ=(4a+2)2-36a2=0,解得a=-,或a=1(舍去).因此f(x)的解析式为f(x)=-x2-x-.14.已知函数f(x)=x2-2ax+5(a>1).若f(x)在区间(-∞,2]上是减函数,且对任意的x1,x2∈[1,a+1],总有|f(x1)-f(x2)|≤4,求实数a的取值范围.解:因为f(x)的对称轴方程为x=a,且f(x)在区间(-∞,2]上是减函数,所以a≥2.又x∈[1,a+1],且(a+1)-a≤a-1,所以f(x)max=f(1)=6-2a,f(x)min=f(a)=5-a2.因为对任意的x1,x2∈[1,a+1],总有|f(x1)-f(x2)|≤4,所以f(x)max-f(x)min≤4,得-1≤a≤3.又a≥2,所以2≤a≤3.所以a的取值范围是[2,3].15.已知函数f(x)= (k∈Z)满足f(2)<f(3).(1)求k的值并求出相应的f(x)的解析式;(2)对于(1)中得到的函数f(x),试判断是否存在q>0,使函数g(x)=1-qf(x)+(2q-1)x在区间[-1,2]上的值域为[-4,]?若存在,求出q;若不存在,请说明理由.解:(1)由已知,f(x)在第一象限是增函数.故-k2+k+2>0,解得-1<k<2.又因为k∈Z,所以k=0或k=1.当k=0或k=1时,-k2+k+2=2,所以f(x)=x2.(2)假设存在q>0满足题设,由(1)知g(x)=-qx2+(2q-1)x+1,x∈[-1,2].因为g(2)=-1,所以两个最值点只能在端点(-1,g(-1))和顶点(,)处取得.所以-1<<2,q>0,g(x)max==,g(x)min=g(-1)=2-3q=-4.解得q=2,所以存在q=2满足题意.第3节二次函数与不等式一、选择题1.已知不等式2x≤x2的解集为P,不等式(x-1)(x+2)<0的解集为Q,则集合P∩Q等于( B )(A){x|-2<x≤2} (B){x|-2<x≤0}(C){x|0≤x<1} (D){x|-1<x≤2}解析:P={x|x2-2x≥0}={x|x≤0或x≥2},Q={x|-2<x<1},所以P∩Q={x|-2<x≤0}.2.使不等式2x2-5x-3≥0成立的一个充分不必要条件是( C )(A)x≥0 (B)x<0或x>2(C)x∈{-1,3,5} (D)x≤-或x≥3解析:不等式2x2-5x-3≥0的解集是{x|x≥3或x≤-}.由题意,选项中x的范围应该是上述解集的真子集,只有C满足. 3.已知函数f(x)=-x2-mx+1,若对于任意x∈[m,m+1],都有f(x)>0成立,则实数m的取值范围是( B )(A)[-,0] (B)(-,0)(C)[0,] (D)(0,)解析:函数f(x)=-x2-mx+1的图象开口向下,且过点(0,1),所以为使对于任意x∈[m,m+1],都有f(x)>0,须即所以-<m<0.4.若关于x的不等式ax-b>0的解集是(-∞,-2),则关于x的不等式>0的解集为( B )(A)(-2,0)∪(1,+∞)(B)(-∞,0)∪(1,2)(C)(-∞,-2)∪(0,1)(D)(-∞,1)∪(2,+∞)解析:关于x的不等式ax-b>0的解集是(-∞,-2),所以a<0,=-2,所以b=-2a,所以=>0,因为a<0,所以<0,解得x<0或1<x<2.5.若不等式x2+ax-2>0在区间[1,5]上有解,则a的取值范围是( A )(A)(-,+∞) (B)[-,1](C)(1,+∞) (D)(-∞,-]解析:由Δ=a2+8>0,知方程恒有两个不等实根,又知两根之积为负,所以方程必有一正根、一负根.于是不等式在区间[1,5]上有解的充要条件是f(5)>0,解得a>-,故a的取值范围为(-,+∞).6.已知f(x)=不等式f(x+a)>f(2a-x)在[a,a+1]上恒成立,则实数a的取值范围是( A )(A)(-∞,-2) (B)(-∞,0)(C)(0,2) (D)(-2,0)解析:f(x)为R上的减函数,故f(x+a)>f(2a-x)⇔x+a<2a-x,即2x<a在[a,a+1]上恒成立,所以(2x)max=2(a+1)<a,得a<-2.二、填空题7.不等式<4的解集为.解析:由题意得x2-x<2⇒-1<x<2,解集为(-1,2).答案:(-1,2)8. 若“x∈{a,3}”是“不等式2x2-5x-3≥0成立”的一个充分不必要条件,则实数a的取值范围是.解析:由题设2a2-5a-3≥0,解得a≥3或a≤-,由集合中元素的互异性可得a≠3.答案:(-∞,-]∪(3,+∞)9.设f(x)是定义在R上的以3为周期的奇函数,若f(1)>1,f(2)=,则实数a的取值范围是.解析:因为f(x+3)=f(x),所以f(2)=f(-1+3)=f(-1)=-f(1)<-1. 所以<-1⇔<0⇔(3a-2)(a+1)<0,所以-1<a<.答案:(-1,)10.在R 上定义运算:( a b c d )=ad-bc,若不等式(121 x a a x --+ )≥1对任意实数x 恒成立,则实数a 的最大值为 .解析:由定义知,不等式(121 x a a x --+ )≥1等价于x 2-x-(a 2-a-2)≥1, 所以x 2-x+1≥a 2-a 对任意实数x 恒成立.因为x 2-x+1=(x-)2+≥,所以a 2-a ≤,解得-≤a ≤,则实数a 的最大值为.答案:11.对于实数x,规定[x]表示不大于x 的最大整数,那么不等式4[x]2-36[x]+45<0的解集为 .解析:由题意解得<[x]<,所以[x]的取值为2,3,4,5,6,7,又[x]表示不大于x 的最大整数,故2≤x<8.答案:[2,8)12.已知f(x)=m(x-2m)(x+m+3),g(x)=2x -2.若同时满足条件: ①对任意x ∈R,f(x)<0或g(x)<0;②存在x∈(-∞,-4),f(x)g(x)<0.则m的取值范围是.解析:当x<1时,g(x)<0,当x>1时,g(x)>0,当x=1时,g(x)=0,m=0不符合要求;当m>0时,根据函数f(x)和函数g(x)的单调性,一定存在区间[a,+∞)使f(x)≥0且g(x)≥0,故m>0时不符合第①条的要求;当m<0时,如图所示,如果符合①的要求,则函数f(x)的两个零点都得小于1,如果符合第②条要求,则函数f(x)至少有一个零点小于-4,问题等价于函数f(x)有两个不相等的零点,其中较大的零点小于1,较小的零点小于-4,函数f(x)的两个零点是2m,-(m+3),故m满足或解第一个不等式组得-4<m<-2,第二个不等式组无解,故所求m的取值范围是(-4,-2).答案:(-4,-2)三、解答题13.已知函数f(x)=x2-(a+1)x+b.(1)若f(x)<0的解集为(-1,3),求a,b的值;(2)当a=1时,若对任意x∈R,f(x)≥0恒成立,求实数b的取值范围;(3)当b=a时,解关于x的不等式f(x)<0(结果用a表示).解:(1)由已知,x2-(a+1)x+b=0的两个根为-1和3,所以解得a=1,b=-3.(2)当a=1时,f(x)=x2-2x+b,因为对任意x∈R,f(x)≥0恒成立,所以Δ=(-2)2-4b≤0,解得b≥1,所以实数b的取值范围是[1,+∞).(3)当b=a时,f(x)<0,即x2-(a+1)x+a<0,所以(x-1)(x-a)<0,所以当a<1时,不等式f(x)<0的解集为{x|a<x<1};当a=1时,不等式f(x)<0的解集为 ;当a>1时,不等式f(x)<0的解集为{x|1<x<a}.14.已知a是实数,函数f(x)=2ax2+2x-3在[-1,1]上恒小于零,求实数a的取值范围.解:由题可知2ax2+2x-3<0在[-1,1]上恒成立.当x=0时,有-3<0恒成立;当x≠0时,a<(-)2-,因为∈(-∞,-1]∪[1,+∞),当=1,即x=1时,不等式右边取最小值,所以a<.实数a的取值范围是(-∞,).15.已知函数f(x)=ax2+bx+c(a>0,b∈R,c∈R).(1)若函数f(x)的最小值是f(-1)=0,且c=1,F(x)=求F(2)+F(-2)的值;(2)若a=1,c=0,且|f(x)|≤1在区间(0,1]上恒成立,试求b的取值范围.解:(1)由已知c=1,a-b+c=0,且-=-1,解得a=1,b=2.所以f(x)=(x+1)2.所以F(x)=所以F(2)+F(-2)=(2+1)2-(-2+1)2=8.(2)由题可知,f(x)=x2+bx,原命题等价于-1≤x2+bx≤1在(0,1]上恒成立,即b≤-x且b≥--x在(0,1]上恒成立.又-x的最小值为0,--x的最大值为-2,所以-2≤b≤0.故b的取值范围是[-2,0].第4节函数的单调性与最值一、选择题1.给定函数①y=,②y=lo(x+1),③y=,④y=2x+1.其中在区间(0,1)上单调递减的函数序号是( B )(A)①②(B)②③(C)③④(D)①④解析:①y=在(0,1)上递增;②因为t=x+1在(0,1)上递增,且0<<1,故y=lo(x+1)在(0,1)上递减;③结合图象可知y=|x-1|在(0,1)上递减;④因为u=x+1在(0,1)上递增,且2>1,故y=2x+1在(0,1)上递增.故在区间(0,1)上单调递减的函数序号是②③.2.定义在R上的函数f(x)的图象关于直线x=2对称,且f(x)在(-∞,2)上是增函数,则( A )(A)f(-1)<f(3) (B)f(0)>f(3)(C)f(-1)=f(3) (D)f(0)=f(3)解析:依题意得f(3)=f(1),且-1<1<2,于是由函数f(x)在(-∞,2)上是增函数得f(-1)<f(1)=f(3).同理f(0)<f(3).3.函数y=()的单调递增区间为( B )(A)(1,+∞) (B)(-∞,](C)(,+∞) (D)[,+∞)解析:令u=2x2-3x+1=2(x-)2-.因为u=2(x-)2-在(-∞,]上单调递减,函数y=()u在R上单调递减.所以y=()在(-∞,]上单调递增,即该函数的单调递增区间为(-∞,].4.已知f(x)=是(-∞,+∞)上的减函数,那么a的取值范围是( C )(A)(0,1) (B)(0,)(C)[,) (D)[,1)解析:当x=1时,log a1=0,若f(x)为R上的减函数,则(3a-1)x+4a>0在x<1时恒成立,令g(x)=(3a-1)x+4a,则必有即解得≤a<.此时,log a x是减函数,符合题意.5.已知a>0,设函数f(x)=(x∈[-a,a])的最大值为M,最小值为N,那么M+N等于( D )(A)2 016 (B)2 018(C)4 032 (D)4 034解析:由题意得f(x)==2018-.因为y=2 018x+1在[-a,a]上是单调递增的,所以f(x)=2018-在[-a,a]上是单调递增的,所以M=f(a),N=f(-a),所以M+N=f(a)+f(-a)=4 036--=4 034.6.已知函数f(x)的图象关于(1,0)对称,当x>1时,f(x)=log a(x-1),且f(3)=-1,若x1+x2<2,(x1-1)(x2-1)<0,则( B )(A)f(x1)+f(x2)<0 (B)f(x1)+f(x2)>0(C)f(x1)+f(x2)可能为0 (D)f(x1)+f(x2)可正可负解析:因为当x>1时,f(x)=log a(x-1),f(3)=log a2=-1,所以a=,故函数f(x)在(1,+∞)上为减函数,若x1+x2<2,则x2<2-x1,又(x1-1)(x2-1)<0,不妨令x1<1,x2>1,所以f(x2)>f(2-x1),又因为函数f(x)的图象关于(1,0)对称,所以f(x1)=-f(2-x1),此时f(x1)+f(x2)=-f(2-x1)+f(x2)>0.二、填空题7.函数y=-(x-3)|x|的递增区间是.解析:y=画图象如图所示,可知递增区间为[0,].答案:[0,]8.已知函数f(x)为(0,+∞)上的增函数,若f(a2-a)>f(a+3),则实数a 的取值范围为.解析:由已知可得解得-3<a<-1或a>3.答案:(-3,-1)∪(3,+∞)9.函数f(x)=lg(9-x2)的定义域为;其单调递增区间为.解析:对于函数f(x)=lg(9-x2),令9-x2>0,解得-3<x<3,即函数的定义域为(-3,3).令g(x)=9-x2,则函数f(x)=lg(g(x)),又函数g(x)在定义域内的增区间为(-3,0].所以函数f(x)=lg(9-x2)在定义域内的单调递增区间为(-3,0].答案:(-3,3) (-3,0]10.已知函数f(x)=则f(x)的最小值是.解析:当x≥1时,x+-3≥2-3=2-3,当且仅当x=,即x=时等号成立,此时f(x)min=2-3<0;当x<1时,lg(x2+1)≥lg(02+1)=0,此时f(x)min=0.所以f(x)的最小值为2-3.答案:2-311.设0<x<1,则函数y=+的最小值是.解析:y=+=,当0<x<1时,0<x(1-x)=-(x-)2+≤.所以y≥4.答案:412.已知f(x)=不等式f(x+a)>f(2a-x)在[a,a+1]上恒成立,则实数a的取值范围是.解析:作出函数f(x)图象的草图如图,易知函数f(x)在R上为减函数,所以不等式f(x+a)>f(2a-x)在[a,a+1]上恒成立等价于x+a<2a-x,即x<在[a,a+1]上恒成立,所以只需a+1<,即a<-2.答案:(-∞,-2)三、解答题13.求f(x)=x2-2ax-1在区间[0,2]上的最大值和最小值.解:f(x)=(x-a)2-1-a2,对称轴为x=a.(1)当a<0时,由图①可知,f(x)min=f(0)=-1,f(x)max=f(2)=3-4a.(2)当0≤a<1时,由图②可知,f(x)min=f(a)=-1-a2,f(x)max=f(2)=3-4a.(3)当1<a≤2时,由图③可知,f(x)min=f(a)=-1-a2,f(x)max=f(0)=-1.(4)当a>2时,由图④可知,f(x)min=f(2)=3-4a,f(x)max=f(0)=-1.综上,当a<0时,f(x)min=-1,f(x)max=3-4a;当0≤a<1时,f(x)min=-1-a2,f(x)max=3-4a;当1<a≤2时,f(x)min=-1-a2,f(x)max=-1;当a>2时,f(x)min=3-4a,f(x)max=-1.14.已知f(x)=(x≠a).(1)若a=-2,试证明f(x)在(-∞,-2)内单调递增;(2)若a>0且f(x)在(1,+∞)上单调递减,求a的取值范围.(1)证明:任取x1<x2<-2,则f(x1)-f(x2)=-=.因为(x1+2)(x2+2)>0,x1-x2<0,所以f(x1)-f(x2)<0,即f(x1)<f(x2),所以f(x)在(-∞,-2)上单调递增.(2)解:任取1<x1<x2,则f(x1)-f(x2)=-=.因为a>0,x2-x1>0,所以要使f(x1)-f(x2)>0,只需(x1-a)(x2-a)>0在(1,+∞)上恒成立,所以a≤1.综上所述,a的取值范围是(0,1].15.函数y=f(x)的定义域为R,若存在常数M>0,使得|f(x)|≥M|x|对一切实数x均成立,则称f(x)为“圆锥托底型”函数.(1)判断函数f(x)=2x,g(x)=x3是否为“圆锥托底型”函数?并说明理由.(2)若f(x)=x2+1是“圆锥托底型”函数,求出M的最大值.解:(1)对于函数f(x)=2x,因为|2x|=2|x|≥2|x|,即对于一切实数x使得|f(x)|≥2|x|成立,所以函数f(x)=2x是“圆锥托底型”函数.对于g(x)=x3,如果存在M>0满足|x3|≥M|x|,而当x=时,由||3≥M||,所以≥M,得M≤0,矛盾,所以g(x)=x3不是“圆锥托底型”函数.(2)因为f(x)=x2+1是“圆锥托底型”函数,故存在M>0,使得|f(x)|=|x2+1|≥M|x|对于任意实数恒成立.所以x≠0时,M≤|x+|=|x|+,此时当x=±1时,|x|+取得最小值2,所以M≤2.而当x=0时,也成立.所以M的最大值等于2.第5节函数的奇偶性与周期性一、选择题1.在函数y=xcos x,y=e x+x2,y=lg,y=xsin x中,偶函数的个数是( B )(A)3 (B)2 (C)1 (D)0解析:y=xcos x是奇函数,y=lg和y=xsin x是偶函数,y=e x+x2是非奇非偶函数,所以偶函数的个数是2.2.下列函数中,既是偶函数,又在区间(1,2)内是增函数的为( B )(A)y=cos 2x,x∈R(B)y=log2|x|,x∈R且x≠0(C)y=,x∈R(D)y=x3+1,x∈R解析:选项A中函数y=cos 2x在区间(0,)上单调递减,不满足题意;选项C中的函数为奇函数;选项D中的函数为非奇非偶函数.3.设f(x)=x+sin x(x∈R),则下列说法错误的是( D )(A)f(x)是奇函数(B)f(x)在R上单调递增(C)f(x)的值域为R(D)f(x)是周期函数解析:因为f(-x)=-x+sin(-x)=-(x+sin x)=-f(x),所以f(x)为奇函数,故A正确;因为f′(x)=1+cos x≥0,所以函数f(x)在R上单调递增,故B正确;f(x)的值域为R,故C正确;f(x)不是周期函数,D错误. 4.已知定义域为{x|x≠0}的函数f(x)为偶函数,且f(x)在区间(-∞,0)上是增函数,若f(-3)=0,则<0的解集为( D )(A)(-3,0)∪(0,3) (B)(-∞,-3)∪(0,3)(C)(-∞,-3)∪(3,+∞) (D)(-3,0)∪(3,+∞)解析:由已知条件,可得函数f(x)的图象大致如图,故<0的解集为(-3,0)∪(3,+∞).5.设函数f(x)(x∈R)满足f(x+π)=f(x)+sin x.当0≤x<π时,f(x)=0,则f()等于( A )(A) (B) (C)0 (D)-解析:因为f(x+2π)=f(x+π)+sin(x+π)=f(x)+sin x-sin x=f(x),所以f(x)的周期T=2π,又因为当0≤x<π时,f(x)=0,所以f()=f(-+π)=f(-)+sin(-)=0,所以f(-)=,所以f()=f(4π-)=f(-)=.6.已知定义在R上的奇函数f(x)在x>0时满足f(x)=x4,且f(x+t)≤4f(x)在x∈[1,16]时恒成立,则实数t的最大值是( A )(A)-1 (B)16(-1)(C)+1 (D)16(+1)解析:因为f(x)在x>0时满足f(x)=x4,所以f(x)在(0,+∞)上单调递增,又f(x)在R上为奇函数,所以f(x)在R上单调递增,而f(x+t)≤4f(x)(x∈[1,16])等价于f(x+t)≤f(x)(x∈[1,16]),即当x∈[1,16]时,x+t≤x恒成立,即t≤(-1)x,x∈[1,16],所以只需t≤-1,故t的最大值为-1.二、填空题7.设函数f(x)=x(e x+a)(x∈R)是偶函数,则实数a的值为.解析:因为f(x)是偶函数,所以恒有f(-x)=f(x),即-x(e-x+ae x)=x(e x+ae-x),化简得x(e-x+e x)(a+1)=0.因为上式对任意实数x都成立,所以a=-1.答案:-18.设f(x)为定义在R上的奇函数,当x≥0时,f(x)=2x+2x+b(b为常数),则f(-1)= .解析:因为f(x)是定义在R上的奇函数,因此f(-x)+f(x)=0.当x=0时,可得f(0)=0,可得b=-1,此时f(x)=2x+2x-1,因此f(1)=3.又f(-1)=-f(1),所以f(-1)=-3.答案:-39.奇函数f(x)的周期为4,且x∈[0,2],f(x)=2x-x2,则f(2 018)+f(2 019)+f(2 020)的值为.解析:函数f(x)是奇函数,则f(0)=0,由f(x)=2x-x2,x∈[0,2]知f(1)=1,f(2)=0,又f(x)的周期为4,所以f(2 018)+f(2 019)+f(2 020)=f(2)+f(3)+f(0)=f(3)=f(-1)=-f(1)=-1.答案:-110.设函数f(x)是定义在R上的奇函数,若f(x)满足f(x+3)=f(x),且f(1)≥1,f(2)=,则m的取值范围是.解析:因为f(x+3)=f(x),所以f(2)=f(-1+3)=f(-1).因为f(x)为奇函数,且f(1)≥1,所以f(-1)=-f(1)≤-1,所以≤-1.解得-1<m≤.答案:(-1,]11.已知函数f(x)满足:f(1)=,4f(x)f(y)=f(x+y)+f(x-y)(x,y∈R),则f(2 018)= .解析:法一令x=1,y=0时,4f(1)·f(0)=f(1)+f(1),解得f(0)=,令x=1,y=1时,4f(1)·f(1)=f(2)+f(0),解得f(2)=-,令x=2,y=1时,4f(2)·f(1)=f(3)+f(1),解得f(3)=-,依次求得f(4)=-,f(5)=,f(6)=,f(7)=,f(8)=-,f(9)=-,…可知f(x)是以6为周期的函数,所以f(2 018)=f(336×6+2)=f(2)=-.法二因为f(1)=,4f(x)·f(y)=f(x+y)+f(x-y),所以构造符合题意的函数f(x)=cos x,所以f(2 018)=cos(×2 018)=-.答案:-12.已知函数f(x)=x3+x,对任意的m∈[-2,2],f(mx-2)+f(x)<0恒成立,则x的取值范围为.解析:易知f(x)在R上为单调递增函数,且f(x)为奇函数,由f(mx-2)+ f(x)<0,得f(mx-2)<-f(x)=f(-x),所以mx-2<-x,即mx+x-2<0对所有m∈[-2,2]恒成立,令h(m)=mx+x-2,此时,只需解得x∈(-2,).答案:(-2,)三、解答题13.已知函数f(x)=是奇函数.(1)求实数m的值;(2)若函数f(x)在区间[-1,a-2]上单调递增,求实数a的取值范围. 解:(1)设x<0,则-x>0,所以f(-x)=-(-x)2+2(-x)=-x2-2x.又f(x)为奇函数,所以f(-x)=-f(x),于是x<0时,f(x)=x2+2x=x2+mx,所以m=2.(2)由(1)及已知,f(x)在(-∞,-1]上是减函数,在[-1,1]上是增函数,在[1,+∞)上是减函数,要使f(x)在[-1,a-2]上单调递增,必需且只需所以1<a≤3,故实数a的取值范围是(1,3].14.已知奇函数f(x)的定义域为[-2,2],且在区间[-2,0]上递减,求满足f(1-m)+f(1-m2)<0的实数m的取值范围.解:因为f(x)的定义域为[-2,2],所以解得-1≤m≤. ①又f(x)为奇函数,且在[-2,0]上递减,所以f(x)在[-2,2]上递减,所以f(1-m)<-f(1-m2)=f(m2-1),即1-m>m2-1,解得-2<m<1. ②综合①②可知,-1≤m<1.即实数m的取值范围是[-1,1).第6节函数单调性、奇偶性与周期性综合运用一、选择题1.已知f(x)是定义在R上的偶函数,且满足f(x+2)=-,当1≤x≤2时,f(x)=x-2,则f(6.5)等于( D )(A)4.5 (B)-4.5 (C)0.5 (D)-0.5解析:由f(x+2)=-,得f(x+4)=-=f(x),所以f(x)的周期是4,得f(6.5)=f(2.5).因为f(x)是偶函数,则f(2.5)=f(-2.5)=f(1.5).而1≤x≤2时,f(x)=x-2,所以f(1.5)=-0.5.由上知f(6.5)=-0.5.2.设函数f(x)满足:①y=f(x+1)是偶函数;②在[1,+∞)上为增函数,则f(-1)与f(2)的大小关系是( A )(A)f(-1)>f(2) (B)f(-1)<f(2)(C)f(-1)=f(2) (D)无法确定解析:由y=f(x+1)是偶函数,得到y=f(x)的图象关于直线x=1对称,所以f(-1)=f(3).又f(x)在[1,+∞)上为单调增函数,所以f(3)>f(2),即f(-1)>f(2).3.已知函数f(x)的定义域为R,当x<0时,f(x)=x3-1;当-1≤x≤1时,f(-x)=-f(x);当x>时,f(x+)=f(x-).则f(6)等于( D ) (A)-2 (B)-1 (C)0 (D)2解析:因为当x>时,f(x+)=f(x-),所以x>1时,f(x)=f(x-1),即f(6)=f(1).因为当-1≤x≤1时,f(-x)=-f(x),所以f(1)=-f(-1).因为当x<0时,f(x)=x3-1,所以f(6)=f(1)=-f(-1)=-[(-1)3-1]=2.4.定义在R上的函数f(x)既是奇函数,又是周期函数,T是它的一个正周期.若将方程f(x)=0在闭区间[-T,T]上的根的个数记为n,则n可能为( D )(A)0 (B)1 (C)3 (D)5解析:因为f(x)是R上的奇函数,所以f(0)=0.又因为T是函数f(x)的一个正周期,所以f(T)=f(-T)=f(0)=0,又f(-)=f(T-)=f(),且f(-)=-f(),所以f()=0,于是可得f(-)=f()=0.所以方程f(x)=0在闭区间[-T,T]上的根的个数可能为5.5.已知f(x)是奇函数并且是R上的单调函数,若函数y=f(2x2+1)+ f(λ-x)只有一个零点,则实数λ的值是( C )(A)(B)(C)- (D)-解析:令y=f(2x2+1)+f(λ-x)=0,且f(x)是奇函数,则f(2x2+1)=-f(λ-x)=f(x-λ),又因为f(x)是R上的单调函数,所以2x2+1=x-λ只有一个根,即2x2-x+1+λ=0只有一个根,则Δ=1-8(1+λ)=0,解得λ=-.6.记max{x,y}=若f(x),g(x)均是定义在实数集R上的函数,定义函数h(x)=max{f(x),g(x)},则下列命题正确的是( C )(A)若f(x),g(x)都是单调函数,则h(x)也是单调函数(B)若f(x),g(x)都是奇函数,则h(x)也是奇函数(C)若f(x),g(x)都是偶函数,则h(x)也是偶函数(D)若f(x)是奇函数,g(x)是偶函数,则h(x)既不是奇函数,也不是偶函数解析:对于A,如f(x)=x,g(x)=-2x都是R上的单调函数,而h(x)=不是定义域R上的单调函数,故A错误;对于B,如f(x)=x,g(x)=-2x都是R上的奇函数,而h(x)=不是定义域R上的奇函数,故B错误;对于C,当f(x),g(x)都是定义域R上的偶函数时,h(x)=max{f(x),g(x)}也是定义域R上的偶函数,故C正确;对于D,如f(x)=sin x是定义域R上的奇函数,g(x)=x2+2是定义域R 上的偶函数,而h(x)=g(x)=x2+2是定义域R上的偶函数,故D错误.二、填空题7.定义在R上的函数f(x)满足f(x)=f(-x),且f(x)=f(x+6),当x∈[0,3]时,f(x)单调递增,则f(x)在[4,5]上单调.(递增,递减)解析:由已知,f(x)在[-3,0]上单调递减,又周期为6,所以f(x)在[3,6]上单调递减,在[4,5]上单调递减.答案:递减8.已知函数f(x)是R上的偶函数,g(x)是R上的奇函数,且g(x)=f(x-1),若f(2)=2,则f(2 018)的值为.解析:由g(x)=f(x-1),得g(-x)=f(-x-1),又g(x)为R上的奇函数,所以g(-x)=-g(x),所以f(-x-1)=-f(x-1),即f(x-1)=-f(-x-1),用x+1替换x,得f(x)=-f(-x-2).又f(x)是R上的偶函数,所以f(x)=-f(x+2).所以f(x)=f(x+4),即f(x)的周期为4.所以f(2 018)=f(4×504+2)=f(2)=2.答案:29.若函数f(x)是定义在R上的周期为2的奇函数,当0<x<1时,f(x)= 4x,则f(-)+f(2)= .解析:因为f(x)是周期为2的函数,所以f(x)=f(x+2).又f(x)是奇函数,所以f(x)=-f(-x),f(0)=0.所以f(-)=f(-)=-f()=-4×=-2,f(2)=f(0)=0,所以f(-)+f(2)=-2.答案:-210.已知定义在R上的奇函数f(x)满足f(x-4)=-f(x),且在区间[0,2]上是增函数,若方程f(x)=m(m>0),在区间[-8,8]上有四个不同的根x1,x2,x3,x4,则x1+x2+x3+x4= .解析:因为定义在R上的奇函数f(x)满足f(x-4)=-f(x),所以f(4-x)=f(x).因此,函数图象关于直线x=2对称且f(0)=0,由f(x-4)=-f(x)知f(x-8)=f(x),所以函数是以8为周期的周期函数.又因为f(x)在区间[0,2]上是增函数,所以f(x)在区间[-2,0]上也是增函数,如图所示,方程f(x)=m(m>0)在区间[-8,8]上有四个不同的根x1,x2,x3,x4,不妨设x1<x2<x3<x4.由对称性知x1+x4=-4,x2+x3=-4.所以x1+x2+x3+x4=-8.答案:-811.设函数f(x)是定义在R上的偶函数,且对任意的x∈R恒有f(x+1)=f(x-1),已知当x∈[0,1]时,f(x)=(),则①2是函数f(x)的周期;②函数f(x)在(1,2)上递减,在(2,3)上递增;③函数f(x)的最大值是1,最小值是0;④当x∈(3,4)时,f(x)=()x-3.其中所有正确命题的序号是.解析:由已知条件:f(x+1)=f(x-1)得f(x+2)=f(x),则y=f(x)是以2为周期的周期函数,①正确;当-1≤x≤0时0≤-x≤1,f(x)=f(-x)=()1+x,函数y=f(x)的图象如图所示,当3<x<4时,-1<x-4<0,f(x)=f(x-4)=()x-3,因此②④正确.③不正确. 答案:①②④三、解答题12.已知函数f(x)=x2+(x≠0).(1)判断f(x)的奇偶性,并说明理由;(2)若f(1)=2,试判断f(x)在[2,+∞)上的单调性.解:(1)当a=0时,f(x)=x2,f(-x)=f(x),函数是偶函数.当a≠0时,f(x)=x2+(x≠0),取x=±1,得f(-1)+f(1)=2≠0;f(-1)-f(1)=-2a≠0,所以f(-1)≠-f(1),f(-1)≠f(1).所以函数f(x)既不是奇函数也不是偶函数.(2)若f(1)=2,即1+a=2,解得a=1,此时f(x)=x2+.任取x1,x2∈[2,+∞),且x1<x2,则f(x1)-f(x2)=(+)-(+)=(x1+x2)(x1-x2)+=(x1-x2)(x1+x2-).由于x1≥2,x2≥2,且x1<x2,所以x1-x2<0,x1+x2>,所以f(x1)<f(x2),故f(x)在[2,+∞)上是增函数.13.函数f(x)的定义域为D={x|x≠0},且满足对任意x1,x2∈D,有f(x1·x2)=f(x1)+f(x2).(1)求f(1)的值;(2)判断f(x)的奇偶性并证明你的结论;(3)如果f(4)=1,f(x-1)<2,且f(x)在(0,+∞)上是增函数,求x的取值范围.解:(1)因为对于任意x1,x2∈D,有f(x1·x2)=f(x1)+f(x2),所以令x1=x2=1,得f(1)=2f(1),所以f(1)=0.(2)f(x)为偶函数.证明如下:令x1=x2=-1,有f(1)=f(-1)+f(-1),所以f(-1)=f(1)=0.令x1=-1,x2=x,有f(-x)=f(-1)+f(x),所以f(-x)=f(x),所以f(x)为偶函数.(3)依题设有f(4×4)=f(4)+f(4)=2,由(2)知,f(x)是偶函数,所以f(x-1)<2⇔f(|x-1|)<f(16).又f(x)在(0,+∞)上是增函数.所以0<|x-1|<16,解得-15<x<17且x≠1.所以x的取值范围是(-15,1)∪(1,17).14.已知函数f(x)在R上满足f(2-x)=f(2+x),f(7-x)=f(7+x),且在闭区间[0,7]上,只有f(1)=f(3)=0.(1)试判断函数y=f(x)的奇偶性;(2)试求方程f(x)=0在闭区间[-2 018,2 018]上根的个数,并证明你的结论.解:(1)若y=f(x)为偶函数,则f(-x)=f[2-(x+2)]=f[2+(x+2)]=f(4+x)=f(x),所以f(7)=f(3)=0,这与f(x)在闭区间[0,7]上,只有f(1)=f(3)=0 矛盾;因此f(x)不是偶函数.若y=f(x)为奇函数,则f(0)=f(-0)=-f(0),所以f(0)=0,这与f(x)在闭区间[0,7]上,只有f(1)=f(3)=0矛盾;因此f(x)不是奇函数.综上可知:函数f(x)既不是奇函数也不是偶函数.(2)因为f(x)=f[2+(x-2)]=f[2-(x-2)]=f(4-x),f(x)=f[7+(x-7)]=f[7-(x-7)]=f(14-x),所以f(14-x)=f(4-x),即f[10+(4-x)]=f(4-x),所以f(x+10)=f(x),即函数f(x)的周期为10.对于区间[7,10],令7+x∈[7,10],则x∈[0,3],7-x∈[4,7],又f(7-x)=f(7+x),f(x)在[4,7]内无零点,所以f(x)在[7,10]内无零点.又因为f(1)=f(3)=0,所以f(1)=f(1+10n)=0(n∈Z),f(3)=f(3+10n)=0(n∈Z),即只有x=1+10n和x=3+10n(n∈Z)是方程f(x)=0的根.由-2 018≤1+10n≤2 018及n∈Z可得n=0,±1,±2,±3,…,±201,共403个;由-2 018≤3+10n≤2 018及n∈Z可得n=0,±1,±2,±3,…,±201,-202,共404个;所以方程f(x)=0在闭区间[-2 018,2 018]上的根共有807个.第7节函数的图象一、选择题1.函数f(x)=的图象大致为( A )解析:因为f(x)=,所以f(0)=0,排除选项C,D;当0<x<π时,sin x>0,所以当0<x<π时,f(x)>0,排除选项B.2.(2016·浙江卷)函数y=sin x2的图象是( D )解析:因为y=sin x2为偶函数,所以它的图象关于y轴对称,排除A,C 选项;当x=时,y=sin ≠1,排除B选项,故选D.3.函数y=的图象大致是( C )解析:由题意得,x≠0,排除A;当x<0时,x3<0,3x-1<0,所以>0,排除B;又因为x→+∞时,→0,所以排除D.4.函数f(x)=的图象如图所示,则下列结论成立的是( C )(A)a>0,b>0,c<0(B)a<0,b>0,c>0(C)a<0,b>0,c<0(D)a<0,b<0,c<0解析:函数定义域为{x|x≠-c},结合图象知-c>0,所以c<0.令x=0,得f(0)=,又由图象知f(0)>0,所以b>0.令f(x)=0,得x=-,结合图象知->0,所以a<0.5.已知函数y=f(x)及y=g(x)的图象分别如图所示,方程f(g(x))=0和g(f(x))=0的实根个数分别为a和b,则ab等于( A )(A)24 (B)15 (C)6 (D)4解析:由图象知,f(x)=0有3个根,分别为0,±m(m>0),其中1<m<2, g(x)=0有2个根n,p,-2<n<-1,0<p<1,由f(g(x))=0,得g(x)=0或±m,由图象可知当g(x)所对应的值为0,±m时,其都有2个根,因而a=6;由g(f(x))=0,知f(x)=n或p,由图象可以看出当f(x)=n时,有1个根,而当f(x)=p时,有3个根,即b=1+3=4.所以ab=24.6.如图所示,在△ABC中,∠B=90°,AB=6 cm,BC=8 cm,点P以1 cm/s 的速度沿A→B→C的路径向C移动,点Q以2 cm/s的速度沿B→C→A 的路径向A移动,当点Q到达A点时,P,Q两点同时停止移动.记△PCQ的面积关于移动时间t的函数为S=f(t),则f(t)的图象大致为( A )解析:当0≤t≤4时,点P在AB上,点Q在BC上,此时PB=6-t,QC=8-2t,则S=f(t)=QC×BP=(8-2t)×(6-t)=t2-10t+24;当4≤t≤6时,点P 在AB上,点Q在CA上,此时AP=t,P到AC的距离为t,QC=2t-8,则S=f(t)=QC×t=(2t-8)×t=(t2-4t);当6≤t≤9时,点P在BC上,点Q在CA上,此时CP=14-t,QC=2t-8,则S=f(t)=QC×CPsin ∠ACB= (2t-8)·(14-t)×=(t-4)·(14-t).综上,函数f(t)对应的图象是三段抛物线,依据开口方向得图象是A.二、填空题7.若函数y=f(x)的图象过点(1,1),则函数y=f(4-x)的图象一定经过点.解析:由于函数y=f(4-x)的图象可以看作y=f(x)的图象先关于y轴对称,再向右平移4个单位长度得到.点(1,1)关于y轴对称的点为(-1,1),再将此点向右平移4个单位长度,可推出函数y=f(4-x)的图象过定点(3,1).答案:(3,1)8.函数f(x)的图象是曲线OAB,其中点O,A,B的坐标分别为(0,0), (1,2),(3,1),则f()= .解析:由已知f(3)=1,所以=1.所以f()=f(1)=2.答案:29.给定min{a,b}=已知函数f(x)=min{x,x2-4x+4}+4,若动直线y=m与函数y=f(x)的图象有3个交点,则实数m的取值范围为.解析:设g(x)=min{x,x2-4x+4},则f(x)=g(x)+4,故把g(x)的图象向上平移4个单位长度,可得f(x)的图象,函数f(x)=min{x,x2-4x+4}+4的图象如图所示,由于直线y=m与函数y=f(x)的图象有3个交点,数形结合可得m的取值范围为(4,5).答案:(4,5)10.函数f(x)是定义在[-4,4]上的偶函数,其在[0,4]上的图象如图所示,那么不等式<0的解集为.解析:在[0,)上y=cos x>0,在(,4]上y=cos x<0.由f(x)的图象知在(1,)上<0,因为f(x)为偶函数,y=cos x也是偶函数,所以y=为偶函数,所以<0的解集为(-,-1)∪(1,).答案:(-,-1)∪(1,)11.如图,函数f(x)的图象为折线ACB,则不等式f(x)≥log2(x+1)的解集为.解析:令g(x)=log2(x+1),作出函数g(x)的图象如图.由得所以结合图象知不等式f(x)≥log2(x+1)的解集为{x|-1≤x≤1}.答案:{x|-1≤x≤1}12.若当x∈(1,2)时,函数y=(x-1)2的图象始终在函数y=log a x的图象的下方,则实数a的取值范围是.解析:如图,在同一平面直角坐标系中画出函数y=(x-1)2和y=log a x的图象.由于当x∈(1,2)时,函数y=(x-1)2的图象恒在函数y=log a x的图象的下方,则解得1<a≤2.答案:(1,2]三、解答题13.讨论方程|1-x|=kx的实数根的个数.解:可以利用函数图象确定方程实数根的个数.设y1=|1-x|,y2=kx,则方程的实根的个数就是函数y1=|1-x|的图象与y2=kx的图象交点的个数.由图象可知:当-1≤k<0时,方程没有实数根;当k=0或k<-1或k≥1时,方程只有一个实数根;当0<k<1时,方程有两个不相等的实数根.14.已知函数f(x)=x|m-x|(x∈R),且f(4)=0.(1)求实数m的值;(2)作出函数f(x)的图象;(3)根据图象指出f(x)的单调递减区间;(4)若方程f(x)=a只有一个实数根,求a的取值范围.解:(1)因为f(4)=0,所以4|m-4|=0,即m=4.(2)f(x)=x|x-4|=f(x)的图象如图所示.(3)f(x)的单调递减区间是[2,4].(4)从f(x)的图象可知,当a<0或a>4时,f(x)的图象与直线y=a只有一个交点,即方程f(x)=a只有一个实数根,所以a的取值范围是(-∞,0)∪(4,+∞).15.设函数f(x)=x+的图象为C1,C1关于点A(2,1)的对称图象为C2,C2对应的函数为g(x).(1)求函数g(x)的解析式;(2)若直线y=b与C2有且仅有一个公共点,求b的值,并求出交点的坐标.解:(1)设曲线C2上的任意一点为P(x,y),则P关于A(2,1)的对称点P′(4-x,2-y)在C1上,所以2-y=4-x+,即y=x-2+=,。

高三一轮复习函数综合提高资料练习题

高三一轮复习函数综合提高资料练习题

第一轮复习函数复习训练题一、选择题:1、若集合{}||A x x x ==,{}20B x x x =+≥,则A B =( )A .[1,0]-B .[0,)+∞C .[1,)+∞D .(,1]-∞-2、设函数)(1)(R x x x x f ∈+-=,区间M=],[b a (b a <),集合}),({M x x f y y N ∈==,则使M=N 成立的实数对),(b a 有( )A .0个B .1个C .2个D .无数多个3、已知函数()()⎩⎨⎧∈-⋅==*Nn n f n n n f ,10,1 , 则()6f 的值是( ) A . 6 B . 24 C . 120 D . 7204、若不等式x x a 42-≤对任意]1,0(∈x 恒成立,则a 的取值X 围是( )A .4-≥aB .3-≥aC .03≤<-aD .3-≤a5、设二次函数c bx ax x f ++=2)(,如果))(()(2121x x x f x f ≠=,则)(21x x f +等于( )A .a b 2-B .a b -C .cD .a b ac 442-6、已知时且当时当是偶函数]1,3[,4)(,0,)(--∈+=>=x xx x f x x f y ,m x f n ≤≤)(恒成立,则n m -的最小值是( )A .31B .32C .1D .34 7、偶函数))((R x x f ∈满足:0)1()4(==-f f ,且在区间[0,3]与),3[+∞上分别递减和递增,则不等式0)(3<x f x 的解集为( )A .),4()4,(+∞⋃--∞B .)4,1()1,4(⋃--C .)0,1()4,(-⋃--∞D .)4,1()0,1()4,(⋃-⋃--∞8、定义在R 上的偶函数)(x f 在(-∞,0]上单调递增,若21x x >,021>+x x ,则( )A .)()(21x f x f >B .)()(21x f x f >-C .)()(21x f x f -<D .)(1x f ,)(2x f 的大小与1x ,2x 的取值有关9、函数)(x f 为奇函数,)5(),2()()2(,21)1(f f x f x f f 则+=+==( )A .0B .1C .25D .510、对于实数x ,符号[x]表示不超过x 的最大整数,例如,2]08.1[,3][-=-=π定义函数],[)(x x x f -=则下列命题中正确的是( )A .1)3(=fB .方程21)(=x f 有且仅有一个解C .函数)(x f 是周期函数D .函数)(x f 是增函数11、定义在R 上的函数()y f x =的值域为[,]a b ,则(1)y f x =+的值域为( )A.[,]a bB.[1,1]a b ++C.[1,1]a b --D.无法确定12、已知函数⎩⎨⎧≥+-<=)0(4)3(),0()(x a x a x a x f x 满足对任意0)()(,212121<--≠x x x f x f x x 都有成立,则a 的取值X 围是( )A .⎥⎦⎤⎝⎛41,0 B .(0,1) C .⎪⎭⎫⎢⎣⎡1,41 D .(0,3)13、若函数)2,2()(21)(-++=在为常数,a x ax x f 内为增函数,则实数a 的取值X 围() A .),21(+∞ B .),21[+∞ C .)21,(-∞ D .]21,(-∞14、已知二次函数()()()2f x x a x b =---,m 、n 是方程f(x) =0的两根,则a 、b 、m 、n 的大小关系可能是( )A .m<a<b<nB .a<m<n<bC .a<m<b<nD .m<a<n<b15、已知方程210ax bx +-=(,a b ∈R 且0a >)有两个实数根,其中一个根在区间()1,2内,则a b -的取值X 围为 ( )A .()1,-+∞B .(),1-∞-C .(),1-∞D .()1,1-16、已知方程a b x x x x ba x a x 则且的两根为2121210,,01)2(<<<=+++++的取值 X 围( )A .)32,2(--B .)21,2(--C .]32,2(--D .]21,2(-- 17、定义在R 上的函数)1(+=x f y 的图象如图1所示,它在定义域上是 减函数,给出如下命题:①)0(f =1;②1)1(=-f ;③若0>x ,则0)(<x f ;④若0<x ,则0)(>x f ,其中正确的是( ) A .②③ B .①④ C .②④ D .①③18、不等式2()0f x ax x c =-->的解集为{|21}x x -<<,则函数()y f x =-的图象为( )二、填空题:19、不等式)1,0()24()3(2∈-<-a x a x a 对恒成立,则x 的取值X 围是20、不等式056)5(2>++--a x x a 对任意实数x 恒成立,则实数a 的取值X 围是.21、设函数a a a f x xx x x f 则实数若,)(,)0(10(121)(>⎪⎪⎩⎪⎪⎨⎧<≥-=的取值X 围是.22、定义在()+∞∞-,上的偶函数()x f 满足()()x f x f -=+1,且在[]0,1-上是增函数,下面是关于()x f 的判断: ①()x f 是周期函数; ②()x f 的图像关于直线x =1对称③()x f 在[0,1]上是增函数 ④()()02f f = 其中正确的判断是(把你认为正确的判断都填上)xyO11-。

高三第一轮复习04----函数图像及综合应用训练题

高三第一轮复习04----函数图像及综合应用训练题

函数图像及综合应用训练题知识归纳:一、图象变换:①、平移变换:(1)水平平移:函数()y f x a =+的图像可以把函数()y f x =的图像沿x 轴方向向左(0)a >或向右(0)a <平移||a 个单位即可得到;(2)竖直平移:函数()y f x a =+的图像可以把函数()y f x =的图像沿x 轴方向向上(0)a >或向下(0)a <平移||a 个单位即可得到.②、对称变换:(1)函数()y f x =-的图像与函数()y f x =的图像关于y 轴对称; (2)函数()y f x =-的图像与函数()y f x =的图像关于x 轴对称; (3)函数()y f x =--的图像与函数()y f x =的图像关于原点对称; (4)函数1()y f x -=的图像与函数()y f x =的图像关于直线y x =对称; (5)函数()y f x =的图像与函数)2(x a f y -=的图像关于直线a x =称.③、翻折变换:(1)函数|()|y f x =的图像可以将函数()y f x =的图像的x 轴下方部分沿x 轴翻折到x 轴上方,去掉原x 轴下方部分,并保留()y f x =的x 轴上方部分即可得到;(2)函数(||)y f x =的图像可以将函数()y f x =的图像右边沿y 轴翻折到y 轴左边替代原y 轴左边部分并保留()y f x =在y 轴右边部分即可得到. ④、伸缩变换:(1)函数()y af x =(0)a >的图像可以将函数()y f x =的图像中的每一点横坐标不变纵坐标伸长(1)a >或压缩(01a <<)为原来的a 倍得到;(2)函数()y f ax =(0)a >的图像可以将函数()y f x =的图像中的每一点纵坐标不变横坐标伸长(1)a >或压缩(01a <<)为原来的1a倍得到.二.对称性与周期性①、函数()x f y =与函数()x f y -=的图像关于直线0=x (y 轴)对称.推广一:如果函数()x f y =对于一切x ∈R ,都有()()f a x f b x +=-成立,那么()x f y =的图像关于直线2a b x +=(由“x 和的一半()()2a x b x x ++-=确定”)对称.推广二:函数()x a f y +=,()y f b x =-的图像关于直线2b ax -=(由a x b x +=-确定)对称. ②、函数()x f y =与函数()x f y -=的图像关于直线0=y (x 轴)对称.推广:函数()x f y =与函数()y A f x =-的图像关于直线2A y =对称(由“y 和的一半[()][()]2f x A f x y +-=确定”).③、函数()x f y =与函数()y f x =--的图像关于坐标原点中心对称.推广:函数()x f y =与函数()y m f n x =--的图像关于点(,)22n m 中心对称.特别地:若()()(0)f x a f x a +=-≠恒成立,则2T a =.若1()(0)()f x a a f x +=≠恒成立,则2T a =.若1()(0)()f x a a f x +=-≠恒成立,则2T a =.一、选择题:1.函数)32(-x f 的图象,可由)32(+x f 的图象经过下述变换得到( )A .向左平移6个单位B .向右平移6个单位C .向左平移3个单位D .向右平移3个单位2.函数(21)y f x =-是偶函数,则函数(2)y f x =的对称轴是( ) A 、0x = B 、1x =- C 、12x =D 、12x =- 3.下述函数中,单调递增区间是]0,(-∞的是( ) A .y=-x1B .y=-(x -1)C .y=x 2-2D .y=-|x |4.函数f (x )、f (x +2)均为偶函数,且当x ∈[0,2]时,f (x )是减函数,设),21(log 8f a =b= f (7.5),c= f (-5),则a 、b 、c 的大小是( ) A .a >b>c B .a > c > b C .b>a > c D .c> a >b5.已知函数24()log (3)f x x ax a =-+在区间[)2,+∞上是增函数,则实数a 的取值范围是( )A 、(),4-∞B 、(]4,4-C 、()[),42,-∞-+∞ D 、[)4,2-6.设{}{}(,),,(,)20U x y xR y R A x y x ym =∈∈=-+>,{}(,)0B x y x y n =+-≤,那么点23U P A C B ∈(,)()的充要条件是( ) 1,51,51,51,5A m n B m n C m n D m n >-<<-<<->>->、、、、 7.设2()|2|f x x =-,若0a b <<,且()()f a f b =,则ab 的取值范围是( )A .(0,2)B .(0,2]C .(0,4] D.(0,8.偶函数 ()||a f x log x b =-在 (,0)-∞上单调递增,则 (1)f a +与(2)f b +的大小 关系是 ( ) A .)2()1(+≥+b f a f B .)2()1(+<+b f a f C .)2()1(+≤+b f a f D .)2()1(+>+b f a f 9.已知函数)(x f y =满足:①是偶函数)1(+=x f y ;②在[)+∞,1上为增函数.若0,021><x x ,且221-<+x x ,则)(1x f -与)(2x f -的大小关系是( )A . )()(21x f x f ->-B . )()(21x f x f -<-C . )()(21x f x f -=-D .不能确定10.已知函数22()1(,)f x x ax b b a R b R =-++-+∈∈,对任意实数x 都有(1)(1)f x f x -=+成立,若当[]1,1x ∈-时,()0f x >恒成立,则b 的取值范围是( )A .10b -<<B .2b >C .1b <-或 2b >D .不能确定11.已知21[1,0)()1[0,1]x x f x x x +∈-⎧=⎨+∈⎩,,,则下列函数的图象错误..的是( )12.某工厂六年来生产某种产品的情况是:前三年年产量的增长速度越来越快,后三年年产量保持不变,则该厂六年来这种产品的总产量C 与时间t 的函数关系可用图象表示的是( )A 、B 、C 、D 、13.已知函数()x f 是定义域为R 的偶函数,且()()x f x f =+2.若()x f 在[]0,1-上是减函数,则()x f 在[]3,2上是( )A .增函数B .减函数C .先增后减的函数D .先减后增的函数二、填空题:14.将下列变换的结果填在横线上:(1)将函数x y -=3的图象向右平移2个单位,得到函数 的图象; (2)将函数||tan x y =的图象向右平移3个单位,得到函数 的图象; (3)将函数)13(log 2-=x y 的图象向左平移2个单位,得到函数 的图象;(4)将函数3)2(-=x y 的图象各点的横坐标伸长到原来的3倍(纵坐标不变)得到函数 的图象;15. {}{}2(),|()()()6,()246,()(),|()()g x x x f x g x f x x g x x x h x f x x x f x g x ⎧∈≥⎪=-+=-++=⎨∈<⎪⎩,则()h x 的最大值为 . 16.已知f (x )与g (x )的定义域是{x|x ∈R ,且x ≠±1},若f (x )是偶函数,g(x )是奇函 数,且f (x )+g(x )=x-11,则f (x )= ,g(x )= . 17.已知定义域为(-∞,0)∪(0,+∞)的函数f (x )是偶函数,并且在(-∞,0)上是增函数,若f (-3)=0,则不等式)(x f x<0的解集是 18.已知定义域为R 的函数()f x 满足:对任意实数,a b 有()()()f a b f a f b ⋅+=,且()0f x >,若1(1)2f =,则(2)f -=_ ___. 19.定义在R 上的函数()f x 满足11()()222f x f x ++-=,则127()()()888f f f +++=__ _.20.若关于x 的方程22x +2x a +a +1=0有实根,则实数a 的取值范围是____三、解答题:21.作出下述函数图象:(1)1|2|2+-=x x y ;(2)32--=x x y ;(3)|)1|(|log |2-=x y ;(3)xy -=21lg ; 22. 作出下述函数图象:(1).|12|2--=x x y (2).1||1-=x y (3).|1)21(|1||-=-x y(4)y =10|lg x |; (5)y =x -|x -1|; (6)y = |x 2-4x +3|.函数图像及综合应用训练题参考答案一、 选择题:二、7.保留函数22x y -=在x 轴上方的图像,将其在x 轴下方的图像翻折到x 轴上方区即可得到函数2()|2|f x x =-的图像。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一轮复习函数复习训练题
一、选择题:
1、若集合{}||A x x x ==,{}20B x x x =+≥,则A B =( )
A .[1,0]-
B .[0,)+∞
C .[1,)+∞
D .(,1]-∞-
2、设函数)(1)(R x x x x f ∈+-=,区间M=],[b a (b a <),集合}),({M x x f y y N ∈==,则使M=N 成立的实数对),(b a 有( )
A .0个
B .1个
C .2个
D .无数多个
3、已知函数()()⎩
⎨⎧∈-⋅==*N n n f n n n f ,10,1 , 则()6f 的值是( ) A . 6 B . 24 C . 120 D . 720
4、若不等式x x a 42-≤对任意]1,0(∈x 恒成立,则a 的取值范围是( )
A .4-≥a
B .3-≥a
C .03≤<-a
D .3-≤a
5、设二次函数c bx ax x f ++=2)(,如果))(()(2121x x x f x f ≠=,则)(21x x f +等于( )
A .a b 2-
B .a b -
C .c
D .a
b a
c 442
- 6、已知时且当时当是偶函数]1,3[,4)(,0,)(--∈+=>=x x
x x f x x f y ,m x f n ≤≤)(恒成立,则n m -的最小值是( )
A .31
B .32
C .1
D .3
4 7、偶函数))((R x x f ∈满足:0)1()4(==-f f ,且在区间[0,3]与),3[+∞上分别递减和递增,则不等式0)(3<x f x 的解集为( )
A .),4()4,(+∞⋃--∞
B .)4,1()1,4(⋃--
C .)0,1()4,(-⋃--∞
D .)4,1()0,1()4,(⋃-⋃--∞
8、定义在R 上的偶函数
)(x f 在(-∞,0]上单调递增,若21x x >,021>+x x ,则( ) A .)()(21x f x f >
B .)()(21x f x f >-
C .)()(21x f x f -<
D .)(1x f ,)(2x f 的大小与1x ,2x 的取值有关
9、函数)(x f 为奇函数,)5(),2()()2(,21)1(f f x f x f f 则+=+=
=( )
A .0
B .1
C .25
D .5
10、对于实数x ,符号[x]表示不超过x 的最大整数,例如,2]08.1[,3][-=-=π定义
函数],[)(x x x f -=则下列命题中正确的是( )
A .1)3(=f
B .方程21
)(=x f 有且仅有一个解
C .函数)(x f 是周期函数
D .函数)(x f 是增函数
11、定义在R 上的函数()y f x =的值域为[,]a b ,则(1)y f x =+的值域为( )
A.[,]a b
B.[1,1]a b ++
C.[1,1]a b --
D.无法确定
12、已知函数⎩⎨⎧≥+-<=)0(4)3(),0()(x a x a x a x f x 满足对任意0
)
()(,2
12121<--≠x x x f x f x x 都有成立,则a 的取值范围是( )
A .⎥⎦⎤
⎝⎛41,0 B .(0,1) C .⎪⎭⎫⎢⎣⎡1,41
D .(0,3)
13、若函数)2,2()(21
)(-++=在为常数,a x ax x f 内为增函数,则实数a 的取值范围(

A .),21
(+∞ B .),21
[+∞ C .)21
,(-∞ D .]21
,(-∞
14、已知二次函数()()()2f x x a x b =---,m 、n 是方程f(x) =0的两根,则a 、b 、
m 、n 的大小关系可能是( )
A .m<a<b<n
B .a<m<n<b
C .a<m<b<n
D .m<a<n<b
15、已知方程210ax bx +-=(,a b ∈R 且0a >)有两个实数根,其中一个根在区
间()1,2内,则a b -的取值范围为 ( )
A .()1,-+∞
B .(),1-∞-
C .(),1-∞
D .()1,1-
16、已知方程a b
x x x x b a x a x 则且的两根为2121210,,01)2(<<<=+++++的取值
范围( )
A .)32
,2(-- B .)21,2(-- C .]32,2(-- D .]21
,2(--
17、定义在R 上的函数)1(+=x f y 的图象如图1
减函数,给出如下命题:①)0(f =1;②1)1(=-f ;③若0>x ,则
0)(<x f ;④若0<x ,则0)(>x f ,其中正确的是( ) A .②③ B .①④ C .②④ D .①③
18、不等式2()0f x ax x c =-->的解集为{|21}x x -<<,则函数()y f x =-的图象为( )
二、填空题:
19、不等式)1,0()24()3(2∈-<-a x a x a 对恒成立,则x 的取值范围是
20、不等式056)5(2>++--a x x a 对任意实数x 恒成立,则实数a 的取值范围是 .
21、设函数a a a f x x
x x x f 则实数若,)(,)0(10(121)(>⎪⎪⎩⎪⎪⎨⎧<≥-=的取值范围
是 .
22、定义在()+∞∞-,上的偶函数()x f 满足()()x f x f -=+1,且在[]0,1-上是增函数,
下面是关于()x f 的判断: ①()x f 是周期函数; ②()x f 的图像关于直线x =
1对称 ③()x f 在[0,1]上是增函数 ④()()02f f = 其中正确的判断是 (把你认为正确的判断都填上)。

相关文档
最新文档