热分析边界条件的施加
热分析(ansys教程)

1. 对流边界条件:需要提供对流 系数、流体温度和表面传热系数 等信息。
3. 初始条件:确保初始温度等初 始条件设置合理,不会导致求解 过程不稳定。
求解收敛问题
•·
1. 迭代方法:选择合适的迭代方 法,如共轭梯度法、牛顿-拉夫森 法等。
2. 松弛因子调整:根据求解过程, 适时调整松弛因子,以提高求解 收敛速度。
稳态热分析的步骤
建立模型
使用ANSYS的几何建模工具创建分析对象 的几何模型。
后处理
使用ANSYS的后处理功能,查看和分析结 果,如温度云图、等温线等。
网格化
对模型进行网格化,以便进行数值计算。 ANSYS提供了多种网格化工具和选项,可 以根据需要进行选择。
求解
运行求解器以获得温度分布和其他热分析 结果。
电子设备散热分析
研究电子设备在工作状态下的散热性能,提高设备可靠性和 使用寿命。
06 热分析的常见问题与解决 方案
网格划分问题
网格划分是热分析中重要 的一步,如果处理不当, 可能导致求解精度和稳定 性问题。
•·
1. 网格无关性:确保随着 网格数量的增加,解的收 敛性得到改善,且解不再 发生大的变化。
03 稳态热分析
稳态热分析的基本原理
01
稳态热分析是用于确定物体在稳定热载荷作用下的温度分布。在稳态条件下, 物体的温度场不随时间变化,热平衡状态被建立,流入和流出物体的热量相等 。
02
稳态热分析基于能量守恒原理,即流入物体的热量等于流出物体的热量加上物 体内部热量的变化。
03
稳态热分析通常用于研究物体的长期热行为,例如散热器的性能、电子设备的 热设计等。
热分析的基本原理基于能量守恒定律,即物体内部的能量变化应满足能量守恒关系。
Workbench瞬态热分析

Workbench瞬态热分析问题描述:将一个温度为900摄氏度的钢球放在空气中冷却,分别查看钢球和外部空气的温度变化。
分析类型:瞬态热分析分析平台:ANSYS Workbench 17.0分析人:技术邻一无所有就是打拼的理由研究模型:自定义一、引言结构热分析主要包括热传导、热对流、热辐射,热分析遵循热力学第一定律,即能量守恒。
传热即是热量传递,凡是有温差存在的地方,必然有热量的传递。
传热现象在现实生活中普遍存在,比如食物的加热,冷却,有相变存在的蒸发冷凝换热等。
热分析类型主要有稳态热分析和瞬态热分析。
稳态热分析中,我们只关心物体达到热平衡状态时的热力条件,而不关心达到这种状态所用的时间。
在稳态热分析中,任意节点的温度不随时间的变化而变化。
一般来说,在稳态热分析中所需要的唯一材料属性是热导率。
在瞬态热分析中,我们只关心模型的热力状态与时间的函数关系,比如对水的加热过程。
在瞬态热分析中,需要对材料赋予热导率,密度,比热容等材料属性及初始温度,求解时间和时间增量这些边界条件。
在装配体的热分析中,我们还要考虑到接触区域传热,由于接触面可能存在表面粗糙度,接触压力等情况存在,导致存在接触热阻。
接触面存在两种传热方式,一种是附体间的热传递,另一种是通过空隙层的热传导,但因为气体的热导率比较低,所以接触热阻不利于传热。
由于钢球散热与时间有关,我们选择瞬态热分析进行钢球的散热分析。
二、分析思路及流程在分析中,我们忽略空气的流动。
先进行稳态热分析,获得瞬态热分析的初始条件,然后将其传递到瞬态热分析中;在瞬态热分析中添加空气对流换热,来求解随时间变化的温度场。
分析流程如下图所示:三、模型建立及网格划分:由于选取模型比较简单,我们在DM中建立一个钢球,选择钢球的半径为30mm,然后在外侧包络一层空气,包络厚度选择30mm,由于模型是对称的,为了节省计算时间,减少计算量,选取1/4模型进行研究(也可以选取1/8)。
由于模型较为简单,网格采用自动划分,模型及网格如下图所示:四、边界条件施加及结果分析:因为该问题为瞬态热分析,我们需要先进行稳态热分析获得瞬态热分析所需要的初始条件,对钢球设置初始温度为900摄氏度,空气初始温度为22摄氏度,将稳态热分析的结果作为瞬态分析的初始条件,对空气对流换热系数为10W/m2K。
有限元技术在热分析中的应用

Thank you
热分析常用的三类边界条件 第一类边界条件:物体边界上的温度函数已知;
第二类边界条件:物体边界上的热流密度已知;
第三类边界条件:与物体相接触的流体介质的温度和换热系数已知。 初始条件:传热过程开始时,物体在整个区域中所具有的温度为已知值。
热分析的三种热传递方式 热传导:两个良好接触的物体之间的能量交换或一个物体内由于温度梯度引起的内部能 量交换。当物体内部存在温差,即存在温度梯度时,热量从物体的高温部分传递到低温部分; 而且不同温度的物体相互接触时热量会从高温物体传递到低温物体。 热传导计算家指出:热分析用于计算一个系统或者部件的温度分布及其他物理参数, 如热量的获取或损失、热梯度、热流密度(热通量)等。 采用有限元方法进行热分析计算,一般采用能量守恒原理的热平衡方程,用有限元法 计算物体内部各节点的温度,并导出其他热物理参数。一般的有限元热分析软件可以进行 热传导、热对流、热辐射等问题的分析求解。
热对流:由于流体的宏观运动,从而流体的各部分之间发生相对位移、冷热流体相互 掺混所引起的热传递过程。固体的表面与它周围接触的液体或气体(统称流体)之间,由 于温差引起热量交换。 对流换热计算公式:
高温物体表面常常发生对流现象,这是因为高温物体表面附近的空气因受热而膨胀, 密度降低并向上流动。与此同时,密度较大的冷空气下降并代替原来的受热空气。 热对流可以分为两类:自然对流和强制对流。 热辐射:一个物体或两个物体之间通过电磁波进行的能量交换。热辐射是物体发射电 磁能,并被其他物体吸收转变为热能的热量交换过程。物体温度越高,单位时间辐射的热 量越多。热传导和热辐射均需要有传热介质,而热辐射无须任何介质。
热分析类型
稳态热分析:如果系统的净热流率为0,即流入系统的热量加上系统自身产生的热量等于流出 系统的热量,则系统处于热稳态。在稳态热分析中任一节点的温度都不随时间变化。 瞬态热分析:瞬态传热过程一般是指一个系统的加热或冷却过程。在这个过程中,系统的温度、 热流率、热边界条件以及系统内能随时间都有明显变化。 另外,热分析还分析线性及非线性传热分析,如果材料热性能或边界条件随温度变化,或者是 考虑辐射传热等都会使得热分析成为非线性分析。
2024年hypermesh基础培训教程

Hypermesh基础培训教程一、引言Hypermesh是一款功能强大的有限元前处理器,广泛应用于结构分析、热分析、流体分析等领域。
本教程旨在帮助初学者快速掌握Hypermesh的基础操作,为后续的高级应用打下坚实基础。
通过本教程的学习,读者将能够熟练地进行几何建模、网格划分、材料属性定义、边界条件施加等基本操作。
二、Hypermesh界面及基本操作1.启动Hypermesh在安装完Hypermesh软件后,双击桌面图标启动程序。
初次启动时,系统会提示设置工作目录,选择一个便于管理的路径即可。
2.界面介绍Hypermesh界面主要包括菜单栏、工具栏、主窗口、状态栏等部分。
菜单栏包含文件、编辑、视图、网格、工具等菜单,通过菜单可以执行各种操作。
工具栏提供了常用的快捷操作按钮,方便用户快速执行命令。
主窗口用于显示几何模型、网格、分析结果等。
状态栏位于界面底部,显示当前操作的状态信息。
3.基本操作(1)打开模型:通过菜单栏“文件”→“打开”命令,选择相应的几何文件(如iges、stp等格式),打开模型。
(2)缩放、旋转、平移视图:通过工具栏的相应按钮,可以调整视图的显示。
同时,鼠标滚轮可以控制视图的缩放。
(3)选择元素:鼠标左键单击选择单个元素,按住Ctrl键同时单击可以选择多个元素。
(4)创建集合:通过菜单栏“编辑”→“创建集合”命令,可以将选中的元素创建为一个集合,便于后续操作。
(5)撤销与重做:通过菜单栏“编辑”→“撤销”或“重做”命令,可以撤销或重做上一步操作。
三、几何建模1.几何清理在实际工程中,导入的几何模型往往存在冗余面、重叠边等问题,需要进行几何清理。
Hypermesh提供了丰富的几何清理工具,如合并顶点、删除线、删除面等。
2.创建几何元素Hypermesh支持创建点、线、面、体等几何元素。
通过菜单栏“几何”→“创建”命令,选择相应的几何元素创建工具,如创建点、创建线、创建面等。
3.几何编辑Hypermesh提供了丰富的几何编辑功能,如移动、旋转、缩放、镜像、复制等。
【免费】ANSYS热分析边界条件06[10]
![【免费】ANSYS热分析边界条件06[10]](https://img.taocdn.com/s3/m/42d655d43186bceb19e8bb13.png)
• •
•
6-11
ANSYS APDL 数组复习
• 对于 ARRAY 类型,所有数都按照下标存储和引用。所有下标为整 数。一个典型的 5x3 数组如下。
j 1
234来自5 column index numbers
L1,1 M 2,1 M M 3,1 N
1,2 1,3 1,4 1,5 i 1 2,2 2,3 2,4 2,5 i 2 row index numbers 3,2 3,3 3,4 3,5 i 3
6-33
例子: 换热系数是长度的函数 [HF = f(x)](续)
• 使用 GUI在线上施加对 流,出现下面的对话框 。 选择“existing table” 为换热系数, “constant value” 为 介质温度 (因为没有用 表格定义)。 输入 TBULK 数值并单 击 OK。
•
•
6-34
6-15
2-D 表格例子
2-D 表格 PQ 可以解释如下: PQ(1,1.5) 表示 3.5 (2.8 和4.2的中间数值) PQ(3.5,1.3) 表示 14.88 (42.0 和-4.5平均, 9.7 和2.0平均,然后 乘上 30% 加到 42.0和-4.5的平均值上)。
1.0 2.0 1.0 2.8 4.2 2.0 -9.6 -12.3 PQ = 3.0 42.0 9.7 4.0 -4.5 2.0
1 2
6-20
使用外部模板定义 APDL表格 (如, EXCEL)
• 在EXCEL中定义表格元素,包括 “0”号行, “0”号列 。用户可以 使用空行将数据平面分割开,数据会可读性更强。一个3-D表格的例 子见下,注意y平面变量有两个元素 :
•
在EXCEL中用tab-delimited文本格式写出,使用菜单 File>Save As>change Save As Type to text (tab delimited)
ANSYS Workbench 热分析教程

传热学上机实验指导书ANSYS Workbench 热分析基础教程编制:杨润泽汽车工程系热能教研室2012年7月1.大平板一维稳态导热问题1.1. 问题描述长500mm,宽300mm,厚度30mm的大钢板,钢板上下表面的温度分别为200℃和60℃,钢的导热率为30W/(m·K),试分析钢板温度分布和热流密度。
图1-1 大平板一维稳态导热模型1.2. 问题分析该问题为稳态导热问题,分析思路如下:1.选择稳态热分析系统。
2.确定材料参数:稳态导热问题,仅输入平板导热率。
3.【DesignModeler】建立钢板的几何模型。
4.进入【Mechanical】分析程序。
5.网格划分:采用系统默认网格。
6.施加边界条件:钢板上下表面施加温度载荷,四周对称面无热量交换,为绝热边界,系统默认无需输入。
7.设置需要的结果:温度分布和热流密度。
8.求解及结果显示。
1.3. 数值模拟过程1、选择稳态热分析系统1)工程图解中调入稳态热分析系统Steady-State Thermal(ANSYS)2)工程命名Conduction Thermal Analysis3)保存工程名为Conduction Heat Transfer2、确定材料参数1)编辑工程数据模型,添加材料的导热率,右击鼠标选择【Engineering Data】【Edit】2)选择钢材料属性【Properties of Outline Row 3: Structure Steel】【Isotropic ThermalConductivity】3)出现【Table of Properties Row 2: Thermal Conductivity】材料属性表,双击鼠标,点击每个区域输入材料属性参数:温度20℃,导热率30W/(m·℃)。
4)参数输完后,工程数据表显示导热率-温度图表。
3、DM建立模型1)选择【Geometry】【New Geometry】,出现【DesignModeler】程序窗口,选择尺寸单位【Millimeter】。
[adina]CFD流体热分析
![[adina]CFD流体热分析](https://img.taocdn.com/s3/m/fd6dc453fab069dc502201a9.png)
划分网格
点击菜单Meshing →create mesh →body,body7划分网格
点击菜单Meshing →create mesh →body,body1,2,3,4, 5,6划分网格
定义求解控制
点击菜单control→ solution process 选择multigrid求解器和牛顿平衡迭代策略
提交计算
点击菜单ution→data file/run 提交计算
Define points
定义如表所示的points 1001 到1008 用于定义Polyline 1
Define polylines
选择geometry → lines →polyline 输入如表列出的点编号和顺序
Define sheet and sweep body
如前面步骤介绍定义sheet 用于sweep body 选择前面定义的ployline 1 定义sheet 7 使用sheet 7 定义sweep body 7
布尔运算(subtract)
点击菜单adina_m → boolean operate→substract 从body7中减去body 1 2 3 4 5 6 注意:红的框标志的两个选项打钩
后续定义facelink需要用到 imprinted edges
Define facelink
点击菜单geometry →face →facelink 下的 create for all faces/surface 目的:建立facelink为了保证不同的零件结合 面节点连续性。 create for all faces/surface:AUI 按照给定容 差自动搜索相关连得face建立facelink
几何模型建立
机床丝杠进给系统有限元热分析的热边界条件修正方法

Ma c h i ne To ol s’ Ba l l - S c r e w Fe e di ng Sy s t e m
WANG Wa n — j i n,WANG L i n g ,L I U Xi n g — y e ,Y I N G u o - f u
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
热分析边界条件的施加
稳态热分析可以直接在实体模型或单元模型上施加5种载荷(边界条件)。
1)恒定温度(TEMP)
恒定温度作为自由度约束施加在温度已知的边界上。
命令:D。
GUI路径:Main menu→Solution→Define Loads→Apply→Thermal→Temperature。
2)热流率(HEAT)
热流率作为节点集中载荷,主要用于线单元模型中,(通常,在线单元模型上不能施加对流或热流密度载荷);如果输入的值为正,代表热流流入节点,即单元获取热量。
如果温度与热流率同时施加在一节点上则ANSYS将仅考虑温度。
命令:F。
GUI路径:Main menu→Solution→Define Loads→Apply→Thermal→Heat Flow。
3)对流(CONV)
对流边界条件作为面载荷施加于实体的外表面,它仅可施加于实体单元和壳单元模型上,对于线模型,可以通过对流线单元LINK34施加对流载荷。
命令:SF。
GUI路径:Main menu→Solution→Define Loads→Apply→Thermal→Convection。
4)热流密度(HFLUX)
热流密度也是一种面载荷。
如果通过单位面积的热流率已知,或能通过计算得到时,可以在模型相应的外表面施加热流密度载荷。
输入的值为正时,代表热流流入单元。
热流密度也仅适用于实体单元和壳单元。
热流密度与对流可以施加在同一外表面,但ANSYS仅读取最后施加的面载荷进行计算。
命令:SF。
GUI路径:Main menu→Solution→Define Loads→Apply→Thermal→Heat Flux。
5)热量生成速率
热量生成速率可以作为体载荷施加于单元上,可以模拟化学反应生成热或电流生热。
它的单位是单位体积的热流率。
命令:BF,BFE。
GUI路径:Main menu→Solution→Define Loads→Apply→Thermal→Heat Generat。
可以直接在实体模型或有限元模型上施加载荷和边界条件,这些载荷和边界条件是单值的,也可以用表格或函数的方式来定义复杂的边界条件。