凸集与凸函数

合集下载

线性规划 凸集凸函数

线性规划 凸集凸函数
k
β 也是凸集,Βιβλιοθήκη 推论: 是凸集, 推论:设 Di是凸集,i = 1,2,L, k ,则∑ i Di也是凸集, i =1 其中 βi ∈ R 。
定义2 凸组合: 维欧式空间中的k 定义 2. 凸组合 : 设 X(1) , X(2) , …, X(k) 是 n 维欧式空间中的 k 个 , 满足0 点,若存在μ1, μ2,…, μk满足0≤μi≤1,( i=1,2,…,k), 若存在μ , 使 X=μ1X(1)+μ2 X(2)+…μk X(k), μ 则称X为X(1),X(2),…,X(k)的凸组合。 则称X , 的凸组合。
凸函数的判断
f (x ) 存在一阶偏导数,x∈R n,向量 存在一阶偏导数, 设函数
∂f ∂f ∂f ∇ f (x ) = , ,…, ∂x ∂x ∂xn 1 2
为 f (x ) 在点x处的梯度。 处的梯度。
T
n 存在二阶偏导数, 定义 设函数 f (x ) 存在二阶偏导数,x∈R ,则称矩阵 ∂2 f ∂2 f ∂x1∂x2 ∂x12 2 ∂2 f ∂ f ∇2 f (x) = ∂x ∂x 2 ∂x2 2 1 L L ∂2 f ∂2 f ∂ ∂ xn x1 ∂xn ∂x2 处的Hesse矩阵。 矩阵。 矩阵 为 f (x ) 在点x处的 ∂2 f … ∂x1∂xn ∂2 f … ∂x2 ∂xn L ∂2 f … 2 ∂xn
α
f (x)
x
性质4: 是凸集D上的凹函数的充要条件是 性质 : f(x)是凸集 上的凹函数的充要条件是 是凸集 上的凹函数的充要条件是-f(x) 是D上 上 的凸函数。 的凸函数。
定理1: 定义在凸集D上 ∀ 定理 :设f(x)定义在凸集 上, x, y ∈ D ,令 定义在凸集

最优化方法(凸集与凸函数)

最优化方法(凸集与凸函数)

{ {
} }
{
}
+ D1 ⊂ H 0 = x ∈ R n | a T x > β
− D2 ⊂ H 0
{ = {x ∈ R
n
| aT
} x < β}
+ − 则称超平面 H 严格分离 D1 和 D2 ,其中 H 0 和 H 0 分别表示
H + 和 H − 的内部
7
点到凸集的投影
是凸集, 设 D ⊂ R n 是凸集, y ∈ R n 但是 y ∉ D ,则 的距离最小, (1)存在唯一的点 x ∈ D ,使得集合 D 到点 y 的距离最小,即 x − y = inf { x − y , x ∈ D} (2) x ∈ D 是点 y 到集合 D 的最短距离点的充分必要条件为
α 1 x (1) + α 2 x ( 2 ) ――― α 1 x (1) + α 2 x ( 2 ) + α 3 x ( 3 )
α 1 x (1) + α 2 x ( 2 ) ――― α 1 x (1) + α 2 x ( 2 ) + α 3 x ( 3 )
4
是凸集, 设 D ⊂ R n 是凸集,则任意 m 个点 x ( i ) ∈ D( i = 1,2,⋯ , m ) 的凸组合仍 即有: 属于 D , 即有:
( x − x )T ( x − y ) ≥ 0 , ∀x ∈ D
证明: (1) 证明: ) ( 令 S = x ∈ R n | x ≤ 1 则取充分大的 µ > 0 使得
Ds = D ∩ ( y + µS ) ≠ φ
因此连续函数 f ( x ) = x − y 在 D s 上必定可以取到极小点 存在性证明完毕

八凸集与凸函数

八凸集与凸函数

hj ( x ) 是线性函数。 其中 f ( x ) , gi ( x ) 是凸函数,
D { x | f ( x ) , x X , f 是凸函数}。 水平集:
性质:水平集一定是凸集。 3. 凸函数的性质 定理. 凸函数的局部极小点就是全局极小点。 4. 凸函数的判断条件 定理1. f ( x ) 是凸集X上的凸函数的充要条件是 x1 , x 2 X ,有 f ( x 2 ) f ( x1 ) f ( x1 )T ( x 2 x1 ) .
k
k : k 1 ; (4)令 x k 1 x k k d k ,
k (5)判断 x 是否满足停止条件。是则停止,否则转第2步。
搜索步长确定方法:
f ( x k k d k ) min f ( x k d k )

称 k 为最优步长,且有 f ( x k k d k )T d k 0 。
2 f ( x ) x 例子:
5. 凸规划 (1) min
s .t . f ( x) x D
其中 f ( x ) 是凸函数, D 是凸集。
(2) min
f ( x)
s .t .
g1 ( x ) 0 gl ( x ) 0 h1 ( x ) 0 hk ( x ) 0
八. 凸集与凸函数
1.凸集 (1)凸组合:已知 X R n ,任取k个点 x i X , 如果存在常数 k k ai 0 (i 1 , 2 ,, k ) , ai 1 ,使得 ai x i x ,则称 x 为 x i i 1 i 1
(i 1 , 2 ,, k ) 的凸组合。
定理2.设 f ( x ) 在凸集X上有二阶连续偏导数,则 f ( x ) 是凸

凸集与凸函数

凸集与凸函数

凸集与凸函数在数学中,凸集和凸函数是两个非常重要的概念。

它们在优化、几何、经济学等领域中都有广泛的应用。

本文将介绍凸集和凸函数的定义、性质和应用。

凸集凸集是指在一个向量空间中,如果对于任意两个点x和y,它们的线段上的所有点都在该集合内,那么这个集合就是凸集。

简单来说,凸集就是一个“凸起来”的集合,它的内部没有凹陷的部分。

凸集有很多重要的性质。

其中最重要的是:凸集的交集仍然是凸集。

这个性质在优化问题中非常有用,因为它可以帮助我们证明一些最优化问题的解是凸集。

凸函数凸函数是指在一个实数域上,如果对于任意两个点x和y,它们的线段上的所有点都在函数图像的上方,那么这个函数就是凸函数。

简单来说,凸函数就是一个“凸起来”的函数,它的图像没有凹陷的部分。

凸函数也有很多重要的性质。

其中最重要的是:凸函数的下凸壳是一个凸函数。

这个性质在优化问题中非常有用,因为它可以帮助我们求解一些最优化问题的解。

应用凸集和凸函数在优化、几何、经济学等领域中都有广泛的应用。

其中最常见的应用是在最优化问题中。

凸集和凸函数的性质可以帮助我们证明一些最优化问题的解是凸集或凸函数,从而简化问题的求解过程。

凸集和凸函数还可以用于解决一些几何问题。

例如,我们可以使用凸包算法来求解一个点集的凸包,从而得到一个凸集。

同样地,我们也可以使用凸函数来求解一些几何问题,例如最小二乘法。

在经济学中,凸集和凸函数也有广泛的应用。

例如,在市场经济中,供求关系可以被视为一个凸函数,从而帮助我们预测市场价格的变化。

总结凸集和凸函数是数学中非常重要的概念。

它们在优化、几何、经济学等领域中都有广泛的应用。

凸集和凸函数的性质可以帮助我们证明一些最优化问题的解是凸集或凸函数,从而简化问题的求解过程。

同时,它们也可以用于解决一些几何问题和经济学问题。

1-2凸集与凸函数

1-2凸集与凸函数
值.
所以一元凸函数表示连接函数图形上任意两点的线段
总是位于曲线弧的上方.
2020/3/1
12
2020/3/1
13
凸函数的性质
(1)设 f x 是凸集 D Rn 上的凸函数,实数 k 0 ,则 kf x 也
是 D 上的凸函数.
(2)设 f1 x , f2 x 是凸集 D Rn 上的凸函数,实数 , 0 , 则 f1 x f2 x 也是 D 上的凸函数.
则称 f x 为凸集 D 上的凸函数。
定义1.5 严格凸函数
注:将上述定义中的不等式反向,可以得到凹函数的定义。
例: 设 f x x 12 ,试证明 f x 在 , 上是严格凸
函数.
2020/3/1
9
证明: 设 x, y R ,且 x y, 0,1 ,都有
a2
不等式要取等号,必须 y z a ,
且 y, z y z , 容易证明 y z x ,
根据定义可知 x 为极点.
2020/3/1
8
三、凸函数
定义 1.4: 设函数 f x 定义在凸集 D Rn 上,若对任意的
x, y D, 0,1,都有:
f x 1 y f x 1 f y,
元函数 t 在0,1 上为凸函数. (2) 设 x, y D, x y , 若 t 在 0,1 上 为 严 格 凸 函 数 , 则 f x 在 D 上为严格凸函数.
2020/3/1
16
该定理的几何意义是:凸函数上任意两点 之间的部分是一段向下凸的弧.
2020/3/1
L

x2 xn

凸集与凸函数的性质与应用

凸集与凸函数的性质与应用

凸集与凸函数的性质与应用凸集与凸函数是数学中两个非常重要的概念,它们在各个领域都有广泛的应用。

本文将围绕凸集与凸函数的性质展开讨论,并探讨它们在实际问题中的应用。

一、凸集的定义及性质1. 凸集的定义在数学中,一个集合称为凸集,如果对于集合中的任意两点,连接这两点的线段上的所有点也在该集合内部。

2. 凸集的性质(1)凸集的交集仍然是凸集。

即若集合A和集合B都是凸集,则它们的交集A∩B也是凸集。

(2)凸集的闭包仍然是凸集。

即若集合A是凸集,则它的闭包A 也是凸集。

(3)凸集的仿射变换仍然是凸集。

即若集合A是凸集,线性变换T将A的元素变换到B,B上的任意两点通过T来自A的元素,B也是凸集。

二、凸函数的定义及性质1. 凸函数的定义在实数域上,如果一个函数的定义域是凸集,并且满足对于任意一对定义域内的点x₁和x₂以及任意的x∈ [0,1],都有凸函数性质:x(xx₁+(1−x)x₂) ≤ xx(x₁)+(1−x)x(x₂)则该函数被称为凸函数。

2. 凸函数的性质(1)凸函数上的割线位于函数图像的下方或与之切线重合。

(2)凸函数的上、下半级集都是凸集。

即对于凸函数x(x),有以下性质:- x∈ℝ且x∈ℝ,x(x) ≤ x≤ x(x) 成立,则对于该函数来说,有x(x) ≤ x,其中x∈ [x, x]。

- 若x(x) ≤ x,则x(x) ≤ x,其中x∈ℝ。

三、凸集与凸函数的应用1. 最优化问题凸集与凸函数在最优化问题中有着广泛的应用。

凸函数的性质保证了在一定条件下的最优解存在且唯一。

在优化问题中,我们可以将目标函数设为凸函数,将约束条件设为凸集,从而利用凸函数的性质来求解最优解,简化了问题的求解过程。

2. 经济学凸集与凸函数在经济学中也有重要的应用。

例如,生产函数、效用函数等都是凸函数,它们描述了在一定约束下的最优决策。

同时,凸集与凸函数也被应用在市场均衡理论、优化分配问题等经济学中的重要概念和工具中。

3. 机器学习凸集与凸函数在机器学习中也占据重要地位。

凸集与凸函数ppt课件

凸集与凸函数ppt课件
多面体(polyhedral set)是有限闭半空间的交. (可表为 Axb ). x1
x5
x
x2
x4
y
x3
14
2. 凸集与凸函数
命题2.3若集合S ¡ n为凸集,则它的闭包S也是凸集。 Df 2.10设有集合C ¡ n,若对每一点x C,当取 任何非负数时,都有x C,称C为锥,又若C为凸 集,则称C为凸锥.
24
2. 凸集与凸函数
(2)pT (y x) pT (y x x x) pT (y x) pT (x x) = (y x)(x x)
推论2.1设C为¡ n中的非空闭凸锥集,y C,则 存在p( 0)S,使得pTy 0 pTx
| | 1 1,因否则导出y S,矛盾。
21
2. 凸集与凸函数
Th2.6.设S ¡ n的非空闭凸集,y S,则点x S为极小化问题 (2.4)的最优解当且仅当( y - x)T (x x) 0
设S为闭凸集,y S,H {x | pTx }为超平面。 H分离点y 若pTy ,则pTx ,x S. 令pTy ,则y与S分离可表为
6
2. 凸集与凸函数
命题2.1 下述断言相互等价. (1) ¡ n中的向量组{x0 , x1 ,..., xm}仿射无关;
(2)¡ n中的向量组{x1 x 0 ,..., xm x 0 }线性无关;
(3)¡ n1中的向量组{(x0 ,1),(x1 ,1),...(xm,1)}线性无关.
设仿射集M aff {x0, x1,...xm},L是平行于M的子空间,则
7
2. 凸集与凸函数
仿射无关向量组{x0, x1,..., xm}称为仿射集M的一个 重心坐标系. Df 2.6 设S ¡ n是非空集合, x S, N (x)表示x的 - 邻域。 若N (x) I affS S,则x称为S的一个相对内点.S的相对 内点的全体称为它的相对内部,记为riS

1-2凸集与凸函数解析

1-2凸集与凸函数解析

2018/12/15
10
例:试证线性函数是 Rn 上的凸函数
f x cT x c1 x1 c2 x2
证明 :设 x , y R, 0,1 ,则
T f x 1 y c x 1 y
cn x n
x 1 y 1 x 1 1 y 1
2 2
f x 1 y f x 1 f y
2
2
1 x y 0
因此 f x 在 , 上是严格凸函数.
若 x 是 S 中的一个极点,且有 x x1 1 x2 , 0,1 , 注:
x1 , x2 S ,则必有 x x1 x2 .
例3:D x R n x aa 0 , 则 x a
上的点均为极点.
2018/12/15
7
证:设 x a , 若存在 y , z D 及 0,1 , 使得 x y 1 z , 则:
T
y R 表示 y 轴上的点.
则 D1 D2 表示两个轴的所有点, 它不是凸集; 而 D1 D2 R 2 凸集.
2018/12/15
5
推论: 设 Di , i 1, 2,
, m 是凸集, 则
D
i 1 i
m
i
也是凸集, 其中 i 是实数.
定义1.2:设 xi D , i 1, 2,
2018/12/15
8
三、凸函数
定义 1.4: 设函数 f x 定义在凸集 D Rn 上 , 若对任意的
x , y D, 0,1 ,都有 :
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
M {x n | Ax b}(简记为Ax b) (2.2) 是 n中的一仿射集.反之, n中的每一仿射集 都可表成(2.2)式的形式,即一组超平面的交集.
2. 凸集与凸函数
•可验证,仿射集的交集仍是仿射集
若记 AT (a1, a2 ,..., am ),b (b1,b2,...,bm )T
Hi {x | aiT x bi}.i 1, 2,..., m, 则
M
H m
i1 i
Df2.3 给定Rn中集合S,包含S的所有仿射集的交集,
即包含S的最小仿射集称为S的仿射包,记为affS
可证, S的仿射包
k
k
affS { i xi | i 1,i R, xi S,i 1,.., k, k ¥ }
i1
i1
2. 凸集与凸函数
Df2.1 Rn中任一集合S的维数定义为它的仿射包 affS的维数,即包含S的仿射集的最小维数. Df 2.5 由m 1个向量组成的向量组x0 , x1 ,...xm 称为是仿射无关的,是指集合{x0 , x1 ,...xm}的维 数为m,即仿射包aff {x 0 , x1 ,...xm}维数是m. 一般,有限点集的仿射包aff {x0 , x1 ,...xm} L x0, L aff {0, x1 x 0 ,...xm x 0 } 是包含{x1 x0 ,...xm x 0 }的最小子空间. L的维数是m x1 x 0 ,...xm x 0线性无关.
空集, n,单点集{x},直线l(x, y)都是仿射集.
2. 凸集与凸函数
设M n,a n,M相对于a的平移为 M+a {x+a|x M}
则一个仿射集的平移也是仿射集
约定 M-a=M+(-a) 若a∈M,则M-a是子空间.
Th2.1 (1)Rn的子空间是包含原点的仿射集;
(2),对每一非空的仿射集M,存在唯一的子空 间L和向量a∈Rn,使得
2. 凸集与凸函数
Th2.2 给定向量p(≠0)∈Rn, ∈R,则
H {x n | pT x } (2.1)
是Rn中的一个超平面.反之,Rn任一超平面都可表 成上式的形式,且在相差一个非零常数的意义下, (p, )是唯一的. Th2.3 给定矩阵A mn ,向量b n ,则
2. 凸集与凸函数
•2.2 凸集与锥
Df 2.7 两点x(1),x(2) S及每个实数 [0,1],有
x(1)+(1-)x(2) S 则称S为凸集。x(1)+(1-)x(2)称为x(1)和x(2)的凸组合。
2. 凸集与凸函数
例2.3 超平面H={x pTx=}为凸集,其中p为n维列 向量,为实数。此外,下面相对于法向量p的半空 间都是凸集:
正的闭半空间H+ ={x pTx } 负的闭半空间H- ={x pTx } 正的开半空间H+ ={x pTx } 负的开半空间H- ={x pTx }
2. 凸集与凸函数
p
p
x-x0 x0 x
x-x0
x
x0
例2.4 集合L={x x=x(0) d, 0}为凸集,其中d为 给定的非零向量,x(0)为定点。 集合L={x x=x(0) d, 0}称为射线,x(0)为射线的顶点
2. 凸集与凸函数
m
Df 2.8 给定m个向量, x1,..., xm n,以及满足 i 1的 i1
非负实数i R,i 1,..,m,称向量 1x1 ... mxm为{x1,..., xm}的凸组合.
2. 凸集与凸函数
仿射无关向量组{x0, x1,..., xm}称为仿射集M的一个 重心坐标系. Df 2.6 设S n是非空集合, x S, N (x)表示x的 - 邻域。 若N (x) affS S,则x称为S的一个相对内点.S的相对 内点的全体称为它的相对内部,记为riS
若riS S,则S称为一个相对开集.集合clS \ riS称为S 的相对边界,记为rbS.
2. 凸集与凸函数
命题2.1 下述断言相互等价. (1) n中的向量组{x0 , x1 ,..., xm}仿射无关;
(2) n中的向量组{x1 x 0 ,..., xm x 0 }线性无关;
(3) n1中的向量组{(x0 ,1),(x1 ,1),...(xm,1)}线性无关.
设仿射集M aff {x0, x1,...xm},L是平行于M的子空间,则
M L a {x a | x L}
2. 凸集与凸函数
•若非空仿射集M=L+a,则a∈M,于是唯一子空间L
可表为 L M M {x y | x, y M}
Df2.2. 非空仿射集M的维数是指平行于仿射 集M的子空间的维数.
Rn中的n-1维仿射集称为超平面. 设H为一超平面,子空间L平行于H,则L的正交补 空间L是一维的.不妨设p 0是L的一个基,则 L={x n|xTp=0},a M,有 M L a {x a n | xTp 0} {y n | pTy pTa}
2. 凸集与凸函数
•2.1 仿射集
对n维欧氏空间中任意两点x≠y,则通过x和y的直线可表为
l(x,y)={(1-λ)x+λy|λ∈R }
Df 2.1 若集合M n包含所有的通过其内任意 两点的直线,即x, y M, ,有
(1-)x +y M 则称M为一个仿射集(仿射流形,仿射子空间)。
x M , x 1(x1 x0 ) ... m (xm x0 ) x0
m
=0x0 1x1 ... mxm (其中0 1 i ) i1
表示式唯一 x0, x1,..., xm仿射无关;此时,(0,1,...,m ) 称为x M 相对于向量组(x0, x1,..., xm )的重心坐标.
相关文档
最新文档