陶瓷与金属焊接技术
陶瓷与金属的焊接技术

陶瓷与金属的焊接技术王仲礼山东济南山东轻工业学院(250100) 摘要 陶瓷与金属的焊接是扩大陶瓷应用领域的关键技术之一。
本文介绍了陶瓷与金属焊接的技术方法及其最新进展,阐述了陶瓷与金属焊接技术的应用前景。
关键词 陶瓷 金属 焊接技术 近几年发展起来的高性能陶瓷具有金属材料无法比拟的耐热、耐腐蚀、耐磨等优良性能,其应用范围日益扩大。
但陶瓷的塑性较差,难以制作复杂结构件,且冷加工困难。
因此,在许多场合下,陶瓷材料不能单独使用,而是同其它类型的材料(如金属材料)组合在一起,以连接体的形式使用,更好地发挥陶瓷作为结构材料及电绝缘材料的优越性能。
为此,提供牢固而可靠的连接技术是十分必要的,这一领域已成为当今世界各国研究的热点课题。
大部分陶瓷性脆质硬,熔点比金属的高,其线膨胀系数与金属的相差较大,使焊后接头中的残余应力很高。
加之陶瓷与金属的相容性差,因此金属与陶瓷的焊接性很差,用电弧焊或电阻焊不能获得满意的焊接接头,粘接和机械连接的应用范围也很小,生产中通常采用钎焊和扩散焊。
随着研究的不断深入,又出现了许多新方法。
1 工业上陶瓷与金属焊接的方法111 钎焊钎焊可分为两步法钎焊和一步法钎焊。
两步法是先在陶瓷表面预金属化,然后再进行钎焊,关键是陶瓷表面的预金属化,目前有如下方法:(1)M n 2M o 法。
将M nO 2与M o 的粉末(颗粒大小约1~2Λm )用粘接剂粘到陶瓷表面,随后在1000~1800℃的氮或氢气氛中烧结,在表面形成玻璃相,并且部分金属氧化物得到还原,产生金属表面层。
然后在预金属化的表面涂一层金属(一般涂镍)。
(2)使用活性金属及难熔金属盐,将金属盐如碳酸银等涂在陶瓷表面,最终还原成金属。
(3)PVD 法。
通常在真空中于陶瓷表面镀上一层钛,再用银铜钎料(如A g 230Cu 210Sn )将镀钛的陶瓷与金属钎焊起来。
这种方法也称为活化基材法(A SP 法)。
(4)CVD 法。
使用化学方法在陶瓷表面沉积一层钛,然后用银铜钎料将镀钛的陶瓷与金属钎焊起来,这也是A SP 法的一种。
陶瓷与金属焊接的难点,解决方案,以及常见焊接方法

陶瓷与金属焊接的难点,解决方案,以及常见焊接方法
陶瓷和金属这两种材料具有不同的物理和化学性质,因此它们之间的焊接难度较大。
传统的焊接方法在这种情况下并不适用,因此需要采取一些特殊的措施来解决问题。
难点:
1.热膨胀系数:陶瓷和金属的热膨胀系数不同,这可能会导致焊接后出现应力和裂纹。
2.不同的熔点:陶瓷和金属的熔点不同,这可能会导致焊接时一种材料熔化而另一种材料未熔化的情况。
3.陶瓷易碎:陶瓷是一种非常脆弱的材料,它容易在焊接时破裂。
解决方案:
1.使用中间材料:中间材料具有较低的熔点和较高的热膨胀系数,可以作为陶瓷和金属之间的“粘合剂”。
常用中间材料包括玻璃、石墨和钨。
2.使用激光焊接:激光焊接是一种精确度和可控性非常高的焊接方法,可以避免陶瓷破裂和金属未熔化的问题。
3.使用电子束焊接:电子束焊接也是一种高精度的焊接方法,可以在不加热周围材料的情况下加热焊接区域,从而避免破裂和未熔化的问题。
常见焊接方法:
1.钎焊:钎焊是一种将金属焊接到陶瓷上的常见方法,它使用
一种称为钎料的中间材料来连接两个表面。
2.熔焊:熔焊是一种将金属和陶瓷直接焊接在一起的方法。
在熔焊中,金属和陶瓷的熔点相似或者采用中间材料。
3.粘接:粘接是一种将金属和陶瓷粘在一起的方法。
这种方法需要使用一种特殊的粘合剂来连接两个表面。
以上是陶瓷与金属焊接的难点、解决方案和常见焊接方法的概述。
在实际生产中,焊接方法的选择将取决于具体的应用和要求。
陶瓷与金属的连接技术

陶瓷与金属的连接技术1. 引言陶瓷和金属是两种不同性质的材料,它们在物理、化学和力学特性上存在明显差异。
由于这种差异,将陶瓷与金属进行有效连接是一个具有挑战性的任务。
然而,随着科技的发展和工程需求的增加,陶瓷与金属之间的连接技术变得越来越重要。
本文将介绍几种常见的陶瓷与金属连接技术,并对其优缺点进行探讨。
2. 黏结剂连接黏结剂连接是一种常见且简单的方法,用于将陶瓷与金属材料连接在一起。
该方法通过使用黏合剂或粘合剂来实现连接。
黏结剂可以是有机或无机材料,如环氧树脂、聚酰亚胺等。
2.1 优点•黏结剂连接方法简单易行。
•可以实现大面积接触。
•黏结剂具有一定的柔韧性,可以缓解因材料差异而引起的应力集中问题。
2.2 缺点•黏结剂连接的强度受到黏结剂本身性能的限制。
•黏结剂可能会受到温度、湿度等环境因素的影响而失效。
•黏结剂连接需要进行精确的表面处理和涂覆工作,增加了制造成本和复杂度。
3. 焊接连接焊接是一种常用的金属连接技术,它也可以用于将陶瓷与金属材料连接在一起。
在焊接过程中,通过加热和冷却来实现材料之间的结合。
3.1 激光焊接激光焊接是一种高能量密度焊接方法,适用于陶瓷与金属之间的连接。
激光束可以在非常短的时间内加热材料,从而实现快速焊接。
3.1.1 优点•激光焊接可以实现高强度连接。
•焊接区域小,对周围区域影响小。
•可以实现高精度、无损伤的焊接。
3.1.2 缺点•激光设备昂贵且操作复杂。
•对材料表面质量要求较高。
•需要进行精确的焊接参数控制。
3.2 电子束焊接电子束焊接是一种利用高速电子束加热材料并实现连接的方法。
它可以在真空或低压环境下进行,适用于陶瓷与金属之间的连接。
3.2.1 优点•电子束焊接可以实现高强度连接。
•焊接区域小,对周围区域影响小。
•可以实现高精度、无损伤的焊接。
3.2.2 缺点•电子束设备昂贵且操作复杂。
•对材料表面质量要求较高。
•需要进行精确的焊接参数控制。
4. 氧化铝陶瓷与金属连接技术氧化铝陶瓷是一种常见的工程陶瓷材料,具有优异的耐磨、耐腐蚀和绝缘性能。
一种陶瓷金属钎焊方法是

一种陶瓷金属钎焊方法是
电弧焊接方法,在此方法中,一个电弧通过两个导电材料之间的间隙产生,从而将金属钎料熔化,并使其与被修复的陶瓷表面接触。
这种方法通常在高温环境中进行,以确保钎焊点的完全熔化和结合。
具体步骤如下:
1. 准备工作:清洁和准备要钎焊的陶瓷表面,以确保没有油脂和杂质。
切割或清除任何破损的部分,以便后续修复。
2. 安装电弧焊接设备和配件:将电弧焊接装置与适当的电源连接,同时根据需要安装导电电极和其他配件。
3. 调整焊接参数:根据陶瓷和金属钎料的性质,调整焊接参数,例如电流、电压和焊接时间。
4. 焊接:将导电电极对准要修复的陶瓷表面,激活电弧,并将焊料在电弧下熔化,涂覆在陶瓷表面上。
确保金属钎焊料充分融化并与陶瓷表面接触。
5. 冷却和处理:当焊料冷却后,对修复区域进行处理,例如研磨、打磨和清洁。
6. 检查和测试:对修复的陶瓷部分进行检查和测试,确保钎焊点的质量和稳定性。
需要注意的是,陶瓷金属钎焊是一项精细的任务,要求操作者具备合适的技能和经验。
此外,选择合适的钎焊材料和参数对于获得良好的焊接效果也是至关重要的。
陶瓷与金属的焊接方法大全,深度解析,值得收藏

陶瓷与⾦属的焊接⽅法⼤全,深度解析,值得收藏 Ti(C,N)基⾦属陶瓷是⼀种颗粒型复合材料,是在TiC基⾦属陶瓷的基础上发展起来的新型⾦属陶瓷。
Ti(C,N)基⾦属陶瓷具有⾼硬度、耐磨、耐氧化、耐腐蚀等⼀系列优良综合性能,在加⼯中显⽰出较⾼的红硬性和强度,它在相同硬度时耐磨性⾼于WC Co硬质合⾦,⽽其密度却只有硬质合⾦的1/2。
因此,Ti(C,N)基⾦属陶瓷⼑具在许多加⼯场合下可成功地取代WC基硬质合⾦⽽被⼴泛⽤作⼯具材料,填补了WC基硬质合⾦和Al2O3陶瓷⼑具材料之间的空⽩。
我国⾦属钴资源较为贫乏,⽽作为⼀种战略性贵重⾦属,近年来钴的价格持续上扬,因此,Ti(C,N)基⾦属陶瓷⼑具材料的研制开发和⼴泛应⽤,不仅可推动我国硬质合⾦材料的升级换代,⽽且在提⾼国家资源保障程度⽅⾯也具有重要的意义。
常⽤的连接陶瓷与⾦属的焊接⽅法有真空电⼦束焊、激光焊、真空扩散焊和钎焊等。
在这些连接⽅法中,钎焊、扩散焊连接⽅法⽐较成熟、应⽤较⼴泛,过渡液相连接等新的连接⽅法和⼯艺正在研究开发中。
本⽂在总结各种陶瓷与⾦属焊接⽅法的基础上,对⾦属陶瓷与⾦属的焊接技术进⾏初步探讨,在介绍各种适⽤于⾦属陶瓷与⾦属焊接技术⽅法的同时,指出其优缺点和有待研究解决的问题,以期推动⾦属陶瓷与⾦属焊接技术的研究,进⽽推⼴这种先进⼯具材料在⼯业领域的应⽤。
1 熔化焊 熔化焊是应⽤最⼴泛的焊接⽅法,该⽅法利⽤⼀定的热源,使连接部位局部熔化成液体,然后再冷却结晶成⼀体。
焊接热源有电弧、激光束和电⼦束等。
⽬前Ti(C,N)基⾦属陶瓷熔化焊主要存在以下两个问题有待解决:⼀是随着熔化温度的升⾼,流动性降低,有可能促进基体和增强相之间化学反应(界⾯反应)的发⽣,降低了焊接接头的强度;另⼀问题是缺乏专门研制的⾦属陶瓷熔化焊填充材料。
1) 电弧焊 电弧焊是熔化焊中⽬前应⽤最⼴泛的⼀种焊接⽅法。
其优点是应⽤灵活、⽅便、适⽤性强,⽽且设备简单。
但该⽅法对陶瓷与⾦属进⾏焊接时极易引起基体和增强相之间的化学反应(界⾯反应)。
陶瓷与金属间的焊接技术研究

随着现代科学技术的发展,陶瓷与金属异质材料的复合利用在航空航天、电子信息等领域具有广阔的应用前景。
但由于陶瓷与金属在热膨胀系数、热传导率、界面结合力等方面存在明显差异,直接焊接两种材料存在困难。
为实现陶瓷与金属的可靠连接,开展异种材料间的连接与界面控制技术研究具有重要意义。
陶瓷和金属之间存在显著的化学组成和原子排列结构的差异。
陶瓷主要由共价键和离子键组成,具有脆性断裂特点;而金属主要由金属键组成,可实现塑性变形。
陶瓷氧化铝的化学式为Al2O3,化学计量比为2:3;而金属铝的化学式为Al,不含氧原子,这两种完全不同的化学组成和结构导致陶瓷与金属间原子结合强度存在明显差异,直接焊接时,必须克服这种结构和组成差异,否则会导致连接强度不足。
陶瓷与金属之间在热物理性质上存在明显差异。
与金属相比,陶瓷具有较低的热导率、较小的热膨胀系数以及较慢的热应力释放速率。
具体来说,陶瓷材料的热导率通常在2030W/(m·K)左右,远低于金属材料的50400W/(m·K);陶瓷的线膨胀系数约为(48)×10-6/°C,也明显低于金属的(1124)×10-6/°C;此外,陶瓷回散时间常为金属材料的10~100倍。
这些特性使陶瓷与金属直接焊接时,界面处会产生大量热应力。
另外,陶瓷与金属在熔点、热容量、密度等参数上也存在显著差异,这增加了选择合适焊接工艺参数的难度[1]。
陶瓷表面具有高度的化学稳定性和惰性,很难与活性金属实现良好的湿润。
陶瓷基体材料SiC的接触角可高达140°,而金属基体NiCrAl的接触角仅为30°左右,两种材料存在巨大的界面自由能差异,这会导致活性金属钎料与陶瓷基体之间的结合力较差。
Shi等研究表明,陶瓷表面存在的氧化硅等氧化物会降低其对钎料的湿润性。
此外,陶瓷表面的粗糙度也会影响其湿润性。
Ra约为1.5μm的陶瓷表面接触角显著高于0.18μm的光滑表面。
陶瓷与金属焊接的技术

一,概述陶瓷与金属的焊接中的陶瓷基本上指的是人工将各种金属、氧、氮、碳等合成的新型陶瓷。
其具有高强度、耐高温、耐磨损、耐腐蚀、超硬度等特性,而得到广泛应用;常用的有氧化铝、氮化硅、氧化错陶瓷等。
二,陶瓷与金属焊接的难点1,陶瓷的线膨胀系数小,而金属的线膨胀系数相对很大,导致接易开裂。
一般要很好处理金属中间层的热应力问题。
2,陶瓷本身的热导率低,耐热冲击能力弱。
焊接时尽可能减小焊接部位及周围的温度梯度,焊后控制冷却速度。
3,大部分陶瓷导电性差,甚至不导电,很难用电焊的方法。
为此需采取特殊的工艺措施。
4,由于陶瓷材料具有稳定的电子配位,使得金属与陶瓷连接不太可能。
需对陶瓷金属化处理或进行活性钎料钎焊。
5,由于陶瓷材料多为共价晶体,不易产生变形,经常发生脆性断裂。
目前大多利用中间层降低焊接温度,间接扩散法进行焊接。
6,陶瓷与金属焊接的结构设计与普通焊接有所区别,通常分为平封结构、套封结构、针封结构和对封结构,其中套封结构效果最好,这些接头结构制作要求都很高。
三,陶瓷与金属焊接的通用工艺1,清洗:金属和钎料的表面必须清洗干净,陶瓷常用洗净剂加超声清洗。
2,涂膏:膏剂大多由纯金属粉末和适当的金属氧化物粉末组成,颗粒度大都在l~5um之间,用有机粘结剂调制成具有一定粘度的膏剂。
然后用粉刷工具将膏剂均匀涂在陶瓷待金属化表面上,涂层厚度一般为30~60un‰3,金属化:将涂好膏剂伪陶瓷件送入氢炉中,在1300~1500°C的温度下保温Ih04,镀银:为了更好的钎料润湿,在金属化层上再电镀一层厚约5um的银层。
当钎焊温度低于IoOerC时,则电镀层还需在100OC氢炉中预烧结15~20min05,装架:把处理好的金属件和陶瓷件用不锈钢、石墨、陶瓷模具装配成整体,并在接缝处装上钎科;在整个操作过程中待焊接件应保持清洁,不得用裸手触摸。
6,钎焊:在通有氨气的炉中或通有氢气的炉中或真空炉中进行钎焊,其温度选择,升温速度选择等要根据所使用的钎料特性决定,特别注意的是降温速度不得过快,以防止陶觉件由于温度应力而开裂。
陶瓷与金属焊接

陶瓷与金属焊接技术:金属陶瓷材料发展应用的关键(Jul 31 2007 03:37PM )Ti(C,N)基金属陶瓷是一种颗粒型复合材料,是在TiC基金属陶瓷的基础上发展起来的新型金属陶瓷。
Ti(C,N)基金属陶瓷具有高硬度、耐磨、耐氧化、耐腐蚀等一系列优良综合性能,在加工中显示出较高的红硬性和强度,它在相同硬度时耐磨性高于WCCo硬质合金,而其密度却只有硬质合金的1/2。
因此,Ti(C,N)基金属陶瓷刀具在许多加工场合下可成功地取代WC基硬质合金而被广泛用作工具材料,填补了WC基硬质合金和Al2O3陶瓷刀具材料之间的空白。
我国金属钴资源较为贫乏,而作为一种战略性贵重金属,近年来钴的价格持续上扬,因此,Ti(C,N)基金属陶瓷刀具材料的研制开发和广泛应用,不仅可推动我国硬质合金材料的升级换代,而且在提高国家资源保障程度方面也具有重要的意义。
我们研制的是添加TiN的Ti(C,N)基金属陶瓷。
由于TiC比WC具有更高的硬度和耐磨性,TiN的加入可起到细化晶粒的作用,故Ti(C,N)基金属陶瓷可表现出比WC基或TiC基硬质合金更为优越的综合性能。
这种新型金属陶瓷刀具材料的广泛应用是以其成功的连接技术为前提的,国内外对陶瓷与金属的连接开展了不少的研究,但对于金属陶瓷与金属连接的技术研究较少,以致于限制了Ti(C,N)基金属陶瓷材料在工业生产中的广泛应用。
常用的连接陶瓷与金属的焊接方法有真空电子束焊、激光焊、真空扩散焊和钎焊等。
在这些连接方法中,钎焊、扩散焊连接方法比较成熟、应用较广泛,过渡液相连接等新的连接方法和工艺正在研究开发中。
本文在总结各种陶瓷与金属焊接方法的基础上,对金属陶瓷与金属的焊接技术进行初步探讨,在介绍各种适用于金属陶瓷与金属焊接技术方法的同时,指出其优缺点和有待研究解决的问题,以期推动金属陶瓷与金属焊接技术的研究,进而推广这种先进工具材料在工业领域的应用。
Ti(C,N)基金属陶瓷性能特点及应用现状Ti(C,N)基金属陶瓷是在TiC基金属陶瓷基础上发展起来的一类新型工模具材料。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
陶瓷与金属焊接技术陶瓷与金属焊接技术Ti(C,N)基金属陶瓷是一种颗粒型复合材料,是在TiC基金属陶瓷的基础上发展起来的新型金属陶瓷。
Ti(C,N)基金属陶瓷具有高硬度、耐磨、耐氧化、耐腐蚀等一系列优良综合性能,在加工中显示出较高的红硬性和强度,它在相同硬度时耐磨性高于WCCo硬质合金,而其密度却只有硬质合金的1/2。
因此,Ti(C,N)基金属陶瓷刀具在许多加工场合下可成功地取代WC基硬质合金而被广泛用作工具材料,填补了WC基硬质合金和Al2O3陶瓷刀具材料之间的空白。
我国金属钴资源较为贫乏,而作为一种战略性贵重金属,近年来钴的价格持续上扬,因此,Ti(C,N)基金属陶瓷刀具材料的研制开发和广泛应用,不仅可推动我国硬质合金材料的升级换代,而且在提高国家资源保障程度方面也具有重要的意义。
我们研制的是添加TiN的Ti(C,N)基金属陶瓷。
由于TiC比WC具有更高的硬度和耐磨性,TiN的加入可起到细化晶粒的作用,故Ti(C,N)基金属陶瓷可表现出比WC基或TiC基硬质合金更为优越的综合性能。
这种新型金属陶瓷刀具材料的广泛应用是以其成功的连接技术为前提的,国内外对陶瓷与金属的连接开展了不少的研究,但对于金属陶瓷与金属连接的技术研究较少,以致于限制了Ti(C,N)基金属陶瓷材料在工业生产中的广泛应用。
常用的连接陶瓷与金属的焊接方法有真空电子束焊、激光焊、真空扩散焊和钎焊等。
在这些连接方法中,钎焊、扩散焊连接方法比较成熟、应用较广泛,过渡液相连接等新的连接方法和工艺正在研究开发中。
本文在总结各种陶瓷与金属焊接方法的基础上,对金属陶瓷与金属的焊接技术进行初步探讨,在介绍各种适用于金属陶瓷与金属焊接技术方法的同时,指出其优缺点和有待研究解决的问题,以期推动金属陶瓷与金属焊接技术的研究,进而推广这种先进工具材料在工业领域的应用。
Ti(C,N)基金属陶瓷性能特点及应用现状Ti(C,N)基金属陶瓷是在TiC基金属陶瓷基础上发展起来的一类新型工模具材料。
按其组成和性能不同可分为:①成分为TiCNiMo的TiC基合金;②添加其它碳化物(如WC、TaC等)和金属(如Co)的强韧TiC基合金;③添加TiN的TiCTiN(或TiCN)基合金;④以TiN为主要成分的TiN基合金。
Ti(C,N)基金属陶瓷的性能特点如下:(1)高硬度,一般可达HRA91~93.5,有些可达HRA94~95,即达到非金属陶瓷刀具硬度水平。
(2)有很高的耐磨性和理想的抗月牙洼磨损能力,在高速切削钢料时磨损率极低,其耐磨性可比WC基硬质合金高3~4倍。
(3)有较高的抗氧化能力,一般硬质合金月牙洼磨损开始产生温度为850~900℃,而Ti(C,N)基金属陶瓷为1100~1200℃,高出200~300℃。
TiC氧化形成的TiO2有润滑作用,所以氧化程度较WC基合金低约10%。
(4)有较高的耐热性,Ti(C,N)基金属陶瓷的高温硬度、高温强度与高温耐磨性都比较好,在1100~1300℃高温下尚能进行切削。
一般切削速度可比WC基硬质合金高2~3倍,可达200~400m/min。
(5)化学稳定好,Ti(C,N)基金属陶瓷刀具切削时,在刀具与切屑、工件接触面上会形成Mo2O3、镍钼酸盐和氧化钛薄膜,它们都可以作为干润滑剂来减少摩擦。
Ti(C,N)基合金与钢不易产生粘结,在700~900℃时也未发现粘结情况,即不易产生积屑瘤,加工表面粗糙度值较低。
Ti(C,N)基金属陶瓷在具有良好综合性能的同时还可以节约普通硬质合金所必需的Co、Ta、W等贵重稀有金属材料。
随着人类节约资源推行“绿色工业”进程的加快,Ti(C,N)基金属陶瓷必会成为一种大有前途的工具材料。
目前,Ti(C,N)基金属陶瓷材料得到世界各国尤其是日本的广泛深入研究,一些国家已在积极应用和推广这种刀具材料,世界各主要硬质合金生产厂家都推出了商品牌号的含氮金属陶瓷。
如日本三菱综合材料公司开发的NX2525牌号超细微粒金属陶瓷的硬度达到92.2HRA,抗弯强度达2.0GPa,兼具高硬度和高韧性。
我国在“八五”期间也成功研制出多种牌号的Ti(C,N)基金属陶瓷刀具,并批量上市,现已发展成为独立系列的一类刀具材料。
金属陶瓷与金属焊接的技术方法在工业加工生产中,切削加工刀具的刀片与刀杆的连接方式有两种:焊接式和机夹式。
刀具的刀片和刀杆连接的好坏直接影响刀具的使用寿命。
宋立秋等通过实验研究表明:选用焊接式连接刀片和刀杆时,刀具耐用度高;选用机夹式时,刀具耐用度低。
由于Ti(C,N)基金属陶瓷属于脆性材料,熔点比金属高,其线膨胀系数与金属相差较大,使得Ti(C,N)基金属陶瓷刀片与刀杆焊后接头中的残余应力很高,加之与金属的相容性较差,使得金属陶瓷与金属的焊接性较差,一般焊接方法和工艺很难获得满意的焊接接头,目前,采用钎焊和扩散焊对金属陶瓷与金属进行连接已获得成功。
随着研究的不断深入,又出现了许多新方法及工艺,以下在介绍各种适用于金属陶瓷与金属焊接技术方法的同时,指出其优缺点和研究方向。
1熔化焊熔化焊是应用最广泛的焊接方法,该方法利用一定的热源,使连接部位局部熔化成液体,然后再冷却结晶成一体。
焊接热源有电弧、激光束和电子束等。
目前Ti(C,N)基金属陶瓷熔化焊主要存在以下两个问题有待解决:一是随着熔化温度的升高,流动性降低,有可能促进基体和增强相之间化学反应(界面反应)的发生,降低了焊接接头的强度;另一问题是缺乏专门研制的金属陶瓷熔化焊填充材料。
1)电弧焊电弧焊是熔化焊中目前应用最广泛的一种焊接方法。
其优点是应用灵活、方便、适用性强,而且设备简单。
但该方法对陶瓷与金属进行焊接时极易引起基体和增强相之间的化学反应(界面反应)。
由于Ti(C,N)基金属陶瓷具有导电性,可以直接焊接,对Ti(C,N)基金属陶瓷与金属电弧焊的试验研究表明是可行的,但需要解决诸如界面反应、焊接缺陷(裂纹等)和焊接接头强度低等问题。
2)激光焊激光焊是特殊及难焊材料焊接的一种重要焊接方法。
由于激光束的能量密度大,因此激光焊具有熔深大、熔宽小、焊接热影响区小、降低焊件焊接后的残余应力和变形小的特点,能够制造高温下稳定的连接接头,可以对产品的焊接质量进行精确控制。
激光焊接技术已经成功应用于真空中烧结的粉末冶金材料。
据报道,Mittweida激光应用中心开发了一种双激光束焊接方法。
它用两束激光工作,一束激光承担工件的预热,另一束激光用于焊接。
用这种双激光束焊接方法可以实现各种几何体的连接,并且不会降低原材料的强度和高温性能,焊接时间仅需数分钟。
该方法可有效防止焊接过程中热影响区裂纹的产生,适用于Ti(C,N)基金属陶瓷与金属的焊接,但对工装夹具、配合精度及焊前准备工作要求较高,设备投资昂贵,运行成本较高,需要进一步提高其工艺重复性和可靠性。
3)电子束焊电子束焊是一种利用高能密度的电子束轰击焊件使其局部加热和熔化而焊接起来的方法。
真空电子束焊是金属陶瓷与金属焊接的有效焊接方法,它具有许多优点,由于是在真空条件下,能防止空气中的氧、氮等的污染;电子束经聚焦能形成很细小的直径,可小到Φ0. 1~1.0mm的范围,其功率密度可提高到107~109W/cm2。
因此电子束焊具有加热面积小、焊缝熔宽小、熔深大、焊接热影响区小等优点。
但这种方法的缺点是设备复杂,对焊接工艺要求较严,生产成本较高。
目前针对Ti(C,N)基金属陶瓷与金属的电子束焊接技术还处于实验阶段。
2钎焊钎焊是把材料加热到适当的温度,同时应用钎料而使材料产生结合的一种焊接方法。
钎焊方法通常按热源或加热方法来分类。
目前具有工业应用价值的钎焊方法有:(1)火焰钎焊;(2)炉中钎焊;(3)感应钎焊;(4)电阻钎焊;(5)浸渍钎焊;(6)红外线钎焊。
钎焊是Ti(C,N)基金属陶瓷与金属连接的一种主要焊接方法,钎焊接头的质量主要取决于选用合适的钎料和钎焊工艺。
李先芬等对Ti(C,N)基金属陶瓷与45号钢采用铜基、银基钎料分别进行了火焰钎焊试验和在氩气保护炉中钎焊试验。
火焰钎焊条件下,以H62为钎料的接头的平均剪切强度为37MPa,以BAg10CuZn为钎料的接头的剪切强度达114MPa,以BCuZnMn为钎料的接头的平均剪切强度49MPa;在氩气保护炉焊条件下,以H6 2为钎料的接头的平均剪切强度为37MPa,以Ag72Cu28为钎料的接头的平均剪切强度为51MPa。
通过观察和分析钎焊接头的结合情况及剪切试验,表明Ti(C,N)基金属陶瓷具有较好的钎焊性。
但由于接头界面处金属陶瓷中存在残余应力,导致剪切试验时均断在金属陶瓷上,且钎焊接头的剪切强度不高。
张丽霞等采用AgCuZn钎料实现了TiC基金属陶瓷与铸铁的钎焊连接。
近年来还利用非晶技术研制成功了新的含钛合金系,如CuTi、NiTi合金,可以直接用来钎焊陶瓷与金属,其接头的工作温度比用银铜钎料钎焊的要高得多。
目前,金属陶瓷钎焊需要解决如何降低或消除界面处金属陶瓷中的残余应力和提高接头强度的问题。
3压焊压焊时基体金属通常并不熔化,焊接温度低于金属的熔点,有的也加热至熔化状态,仍以固相结合而形成接头,所以可以减少高温对母材的有害影响,提高金属陶瓷与金属的焊接质量。
1)扩散焊扩散焊是压焊的一种,它是指在相互接触的表面,在高温压力的作用下,被连接表面相互靠近,局部发生塑性变形,经一定时间后结合层原子间相互扩散而形成整体的可靠连接过程。
扩散焊包括没有中间层的扩散焊和有中间层的扩散焊,有中间层的扩散焊是普遍采用的方法。
使用中间层合金可以降低焊接温度和压力,降低焊接接头中的总应力水平,从而改善接头的强度性能。
另外,为降低接头应力,除采用多层中间层外,还可使用低模数的补偿中间层,这种中间层是由纤维金属所组成,实际上是一块烧结的纤维金属垫片,孔隙度最高可达90%,可有效降低金属与陶瓷焊接时产生的应力。
扩散焊的主要优点是连接强度高,尺寸容易控制,适合于连接异种材料。
关德慧等对金属陶瓷刀刃与40Cr刀体的高温真空扩散焊接实验表明,金属陶瓷与40Cr焊接后,两种材料焊合相当好,再对40Cr进行调质处理,界面具有相当高的强度,焊接界面的抗拉强度达650MPa,剪切强度达到550MPa。
扩散焊主要的不足是扩散温度高、时间长且在真空下连接、设备昂贵、成本高。
近年来不断开发出了一些新的扩散焊接方法,如高压电场下的扩散焊,该方法借助于高压电场(10 00V以上)及温度的共同作用,使陶瓷内电介质电离,在与金属邻近的陶瓷材料内形成了一薄层充满负离子的极化区。
此外,由于材料表面的显微不平度,陶瓷与金属间只有个别小点相接触,大部分地区形成微米级的间隙。
集结在微小间隙两侧的离子使这些地区的电场急剧升高,此外加电场可增加3~4个数量级。
由于异性电荷相吸,使被连接的两种材料相邻界面达到紧密接触(其间距小于原子间距),随后借助于扩散作用,使金属与陶瓷得以连接。