哈工程通信原理软件仿真实验报告
通信原理软件仿真实验报告-实验3-模拟调制系统—AM系统

成绩西安邮电大学《通信原理》软件仿真实验报告实验名称:实验三模拟调制系统——AM系统院系:通信与信息工程学院专业班级:通工学生姓名:学号:(班内序号)指导教师:报告日期:2013年5月15日实验三模拟调制系统——AM系统●实验目的:1、掌握AM信号的波形及产生方法;2、掌握AM信号的频谱特点;3、掌握AM信号的解调方法;4*、掌握AM系统的抗噪声性能。
●仿真设计电路及系统参数设置:图1 模拟调制系统——AM系统仿真电路建议时间参数:No. of Samples = 4096;Sample Rate = 20000Hz1、记录调制信号与AM信号的波形和频谱;调制信号为正弦信号,Amp= 1V,Freq=200Hz;直流信号Amp = 2V;余弦载波Amp = 1V,Freq= 1000Hz;频谱选择|FFT|;2、采用相干解调,记录恢复信号的波形和频谱;接收机模拟带通滤波器Low Fc = 750Hz,Hi Fc = 1250Hz,极点个数6;接收机模拟低通滤波器Fc = 250Hz,极点个数为9;3、采用包络检波,记录恢复信号的波形和频谱;接收机包络检波器结构如下:其中图符0为全波整流器Zero Point = 0V;图符1为模拟低通滤波器Fc = 250Hz,极点个数为9;4、在接收机模拟带通滤波器前加入高斯白噪声;建议Density in 1 ohm = 0.00002W/Hz;观察并记录恢复信号波形和频谱的变化;5*、改变高斯白噪声的功率谱密度,观察并记录恢复信号的变化。
仿真波形及实验分析:1、记录调制信号与AM信号的波形和频谱;图1-1 调制信号波形图1-2 AM已调信号波形图1-3 调制信号的频谱图1-4 AM——已调制信号的频谱分析:AM信号的波形包络包含基带信号信息,频率是载波频率,频谱有边带分量和载波分量。
2、采用相干解调,记录恢复信号的波形和频谱;图2-1 AM——相干解调信号的波形图2-2 AM——相干解调信号的频谱分析:相干解调恢复出来的信号和原始信号相同,其频谱波形跟原始信号频谱波形基本相同。
通信系统建模与仿真实验报告

实验报告哈尔滨工程大学教务处制实验一:低通采样定理和内插与抽取实现一、实验目的用Matlab 编程实现自然采样与平顶采样过程,根据实验结果给出二者的结论;掌握利用MATLAB 实现连续信号采样、频谱分析和采样信号恢复的方法。
二、实验原理1.抽样定理若)(t f 是带限信号,带宽为m ω, )(t f 经采样后的频谱)(ωs F 就是将)(t f 的频谱 )(ωF 在频率轴上以采样频率s ω为间隔进行周期延拓。
因此,当s ω≥m ω时,不会发生频率混叠;而当 s ω<m ω 时将发生频率混叠。
2.信号重建经采样后得到信号)(t f s 经理想低通)(t h 则可得到重建信号)(t f ,即:)(t f =)(t f s *)(t h其中:)(t f s =)(t f ∑∞∞--)(s nT t δ=∑∞∞--)()(s s nT t nT f δ,)()(t Sa T t h c csωπω= 所以:)(t f =)(t f s *)(t h =∑∞∞--)()(s s nT t nT f δ*)(t Sa T c csωπω =πωcs T ∑∞∞--)]([)(scsnT t Sa nT f ω上式表明,连续信号可以展开成抽样函数的无穷级数。
利用MATLAB 中的t t t c ππ)sin()(sin =来表示)(t Sa ,有 )(sin )(πt c t Sa =,所以可以得到在MATLAB 中信号由)(s nT f 重建)(t f 的表达式如下:)(t f =πωcs T ∑∞∞--)]([sin )(s cs nT t c nT f πω 我们选取信号)(t f =)(t Sa 作为被采样信号,当采样频率s ω=2m ω时,称为临界采样。
我们取理想低通的截止频率c ω=m ω。
下面程序实现对信号)(t f =)(t Sa 的采样及由该采样信号恢复重建)(t Sa :三、 实验内容已知信号()()990(1)cos 2(10050)m x t m m t π==++∑,试以以下采样频率对信号采样:(a) 20000s f Hz =; (b) 10000s f Hz =; (c)30000s f Hz =,求x(t)信号原信号和采样信号频谱,及用采样信号重建原信号x’(t)时序图。
哈工程通信原理软件仿真实验报告

实验报告哈尔滨工程大学教务处制实验一基带码型仿真(一)单、双极性归零码仿真一、实验原理1.1归零码归零码,是信号电平在一个码元之内都要恢复到零的编码方式,它包括曼彻斯特编码和差分曼彻斯特编码两种编码方式。
1.2单、双极性归零码对于传输数字信号来说,最常用的方法是用不同的电压电平来表示两个二进制数字,即数字信号由矩形脉冲组成。
A)单极性不归零码,无电压表示”0”,恒定正电压表示” 1”,每个码元时间的中间点是采样时间,判决门限为半幅电平。
单极性归零码(RZ)即是以高电平和零电平分别表示二进制码1和0,而且在发送码1时高电平在整个码元期间T只持续一段时间T其余时间返回零电平. 在单极性归零码中,T /T 称为占空比•单极性归零码的主要优点是可以直接提取同步信号,因此单极性归零码常常用作其他码型提取同步信号时的过渡码型.也就是说其他适合信道传输但不能直接提取同步信号的码型,可先变换为单极性归零码,然后再提取同步信号|B)双极性不归零码,” 1”码和” 0”码都有电流,”1”为正电流,” 0”为负电流,正和负的幅度相等,判决门限为零电平。
双极性归零码是二进制码0和1分别对应于正和负电平的波形的编码,在每个码之间都有间隙产生.这种码既具有双极性特性,又具有归零的特性•双极性归零码的特点是:接收端根据接收波形归于零电平就可以判决1比特的信息已接收完毕,然后准备下一比特信息的接收,因此发送端不必按一定的周期发送信息.可以认为正负脉冲的前沿起了起动信号的作用,后沿起了终止信号的作用.因此可以经常保持正确的比特同步. 即收发之间无需特别的定时,且各符号独立地构成起止方式,此方式也叫做自同步方式.由于这一特性,双极性归零码的应用十分广泛。
1.3功率谱密度求信号的功率谱,功率谱=信号的频率的绝对平方/传输序列的持续时间,求得的功率谱进行单位换算以dB值表示1.4占空比(Duty Ratio)在电信领域中有如下含义:例如:脉冲宽度1ys,信号周期4 s 的脉冲序列占空比为 0.25。
(精编)哈工大通信原理实验报告

(精编)哈工大通信原理实验报告H a r b i n I n s t i t u t e o f T e c h n o l o g y通信原理实验报告课程名称:通信原理院系:电子与信息工程学院班级:姓名:学号:指导教师:倪洁实验时间:2015年12月哈尔滨工业大学实验二帧同步信号提取实验一、实验目的1.了解帧同步的提取过程。
2.了解同步保护原理。
3.掌握假同步,漏同步,捕捉动态和维持态的概念。
二、实验原理时分复用通信系统,为了正确的传输信息,必须在信息码流中插入一定数量的帧同步码,帧同步码应具有良好的识别特性。
本实验系统帧长为24比特,划分三个时隙,每个时隙长度8比特,在每帧的第一时隙的第2至第8码元插入七位巴克码作为同步吗。
第9至24比特传输两路数据脉冲。
帧结构为:X11100101010101011001100,首位为无定义位。
本实验模块由信号源,巴克码识别器和帧同步保护电路三部分构成,信号源提供时钟脉冲和数字基带脉冲,巴克码识别器包裹移位寄存器、相加器和判决器。
其余部分完成同步保护功能。
三、实验内容1.观察帧同步码无错误时帧同步器的维持状态。
2.观察帧同步码有一位错误时帧同步器的维持态和捕捉态3.观察帧同步器假同步现象和同步保护器。
四、实验步骤1.开关K301接2.3脚。
K302接1.2脚。
2.接通电源,按下按键K1,K2,K300,使电路工作。
3.观察同步器的同步状态将信号源中的SW001,SW002,SW003设置为11110010,10101010,11001100(其中第2-8位为帧同步码),SW301设置为1110,示波器1通道接TP303,2通道接TP302,TP304,TP305,TP306,观察上述信号波形,使帧同步码(SW001的2-8位)措一位,重新做上述观察,此时除了TP303外,个点波形不变,说明同步状态仍在维持。
4.观察同步器的失步状态。
关闭电源,断开K302,在开电源(三个发光二极管全亮)。
通信原理软件实验

实验报告哈尔滨工程大学教务处制通信原理软件仿真实验一、实验题目1、基带码型仿真1)通过仿真观察占空比为50%、75%以及100%的单、双极性归零码波形以及其功率谱,分析不同占空比对仿真结果的影响。
2)通过仿真产生一随机消息码序列,将其分别转换为AMI码和HDB码,观察3它们的波形及其功率谱密度。
2、数字带通调制仿真设计一个采用2DPSK调制的数字通信系统:产生二进制随机数据,并仿真其对应的2DPSK调制波形,分析其频谱。
所产生的调制波形加入不同信噪比的白噪声,选取合适的接收方案,画出系统误码率曲线,并与理论误码率进行对比。
二、实验基本原理1、基带码型仿真想要产生不同占空比的单、双极性归零码波形,首先要确定码元序列,其次要对码元序列进行采样并输出到图表上。
确定码元序列的原理很简单,对于单极性码元,只需要产生一系列随机数并判断随机数是否大于零即可。
若大于等于零则码元为1,若小于零则码元为0。
对于双极性码元,可以通过判断随机数的极性来产生码元。
AMI码为传号交替反转码,为1反转,否则归零。
而HDB3码则是在AMI的基础上进行变换。
通过检测4个及以上的连零来插入破坏符号(V)。
倘若两个相邻破坏符号间的非零符号有偶数个时,还要插入B 符号。
2、数字带通调制仿真2DPSK数字调制系统的调制过程可以认为成差分双极性非归零矩形脉冲与高频载波的乘积。
至于解调过程,我在本次实验中选取的为相位比较法。
基本原理是将接收到的调制波形延迟一个码元周期,再与未延迟的调制波形相乘,分析该信号,从而解调码元。
三、仿真方案1、基带码型仿真1)占空比为0.5占空比为0.75占空比为1分析:由实验结果可知,随着占空比的增大,码元信号的直流分量会逐渐增多,频谱变窄。
而且,相较于单极性,双极性的功率谱要更宽一些。
2)(参数:HDB3码中V为1.5,B为2)分析:通过以上实验结果可见,AMI和HDB3码波形正确,而二者的功率谱在如此有限的码元数量内看不出来太多的区别。
哈工程通信原理软件仿真实验报告材料

实验报告哈尔滨工程大学教务处制实验一基带码型仿真(一)单、双极性归零码仿真一、实验原理1.1归零码归零码,是信号电平在一个码元之内都要恢复到零的编码方式,它包括曼彻斯特编码和差分曼彻斯特编码两种编码方式。
1.2单、双极性归零码对于传输数字信号来说,最常用的方法是用不同的电压电平来表示两个二进制数字,即数字信号由矩形脉冲组成。
A)单极性不归零码,无电压表示”0”,恒定正电压表示”1”,每个码元时间的中间点是采样时间,判决门限为半幅电平。
单极性归零码(RZ)即是以高电平和零电平分别表示二进制码1 和0,而且在发送码1 时高电平在整个码元期间T 只持续一段时间τ,其余时间返回零电平.在单极性归零码中,τ/T 称为占空比.单极性归零码的主要优点是可以直接提取同步信号,因此单极性归零码常常用作其他码型提取同步信号时的过渡码型.也就是说其他适合信道传输但不能直接提取同步信号的码型,可先变换为单极性归零码,然后再提取同步信号B)双极性不归零码,”1”码和”0”码都有电流,”1”为正电流,”0”为负电流,正和负的幅度相等,判决门限为零电平。
双极性归零码是二进制码0 和1 分别对应于正和负电平的波形的编码,在每个码之间都有间隙产生.这种码既具有双极性特性,又具有归零的特性.双极性归零码的特点是:接收端根据接收波形归于零电平就可以判决1 比特的信息已接收完毕,然后准备下一比特信息的接收,因此发送端不必按一定的周期发送信息.可以认为正负脉冲的前沿起了起动信号的作用,后沿起了终止信号的作用.因此可以经常保持正确的比特同步.即收发之间无需特别的定时,且各符号独立地构成起止方式,此方式也叫做自同步方式.由于这一特性,双极性归零码的应用十分广泛。
1.3 功率谱密度求信号的功率谱,功率谱 = 信号的频率的绝对平方 / 传输序列的持续时间,求得的功率谱进行单位换算以dB值表示1.4占空比(Duty Ratio)在电信领域中有如下含义:例如:脉冲宽度1μs ,信号周期4μs 的脉冲序列占空比为0.25。
通原软件实验报告

信息与通信工程学院通信原理软件实验报告班级:201121xxxx姓名:xxx学号:序号:目录实验八 (4)一、实验内容 (4)二、实验原理 (4)三、仿真设计 (6)1. 仿真思路 (6)2. 程序框图 (6)3. 源程序 (7)四、实验结果及分析 (10)1.实验仿真结果 (10)2. 结果分析 (12)五、实验总结 (12)实验九 (13)一、实验内容 (13)二、实验原理 (13)三、仿真设计 (13)1. 仿真思路 (13)2. 程序框图 (14)3. 源代码 (14)四、实验结果及分析 (16)1. 实验仿真结果 (16)2. 结果分析 (17)五、实验总结 (17)实验十一 (18)一、实验内容 (18)二、实验原理 (18)1、单极性归零码 (18)2、双极性归零码 (18)3、各种码的比较 (19)三、仿真设计 (19)1. 仿真思路 (19)2. 程序框图 (20)3. 源代码 (20)四、实验结果及分析 (23)1. 实验仿真结果 (23)2. 结果分析 (24)五、实验总结 (24)实验十二 (25)一、实验内容 (25)二、实验原理 (25)三、仿真设计 (26)1. 仿真思路 (26)2. 程序框图 (26)3. 源程序 (26)四、实验结果及分析 (28)1. 实验仿真结果 (28)2. 结果分析 (29)五、实验总结 (29)实验八一、实验内容假设基带信号为()sin(2000)2cos(1000)m t t t ππ=+,载波频率为20kHz ,请仿真出AM 、DSB-SC 、SSB 信号,观察已调信号的波形及频谱。
二、实验原理1. 具有离散大载波的双边带幅度调制信号AM该幅度调制是由DSB-SC AM 信号加上离散的大载波分量得到,其表达式及时间波形图为:应当注意的是,m(t)的绝对值必须小于等于1,否则会出现下图的过调制:AM 信号的频谱特性如下图所示:由图可以发现,AM信号的频谱是双边带抑制载波调幅信号的频谱加上离散的大载波分量。
《通信原理》软件仿真实验指导与报告

第一章Systemview软件仿真环境概述1.1 Systemview系统设计窗口:1、第一行“菜单栏”有几个下拉式菜单,通过菜单可以实现相应的功能。
2、第二行“工具栏”是由图标按钮组成的动作条:(01) 清屏幕(02) 删除元件(03) 断线(04) 连线(05) 复制元件(06) 图标翻转(07) 注释(08) 创建子系统(09) 察看子系统结构(10) 根轨迹(11) 波特图(12) 画面重画(13) 中止(14) 运行(15) 打开时间参数窗口(16) 打开系统分析窗3、左侧竖栏为“基本元件库”:(01) 信源库(02) 子系统(03) 加法器(04) 子系统I/O接口(05) 操作库(06) 函数库(07) 乘法器(08) 信宿库●信源库:●操作库:操作库是本软件最核心的部分之一,它把很多复杂的功能集成为一个小模块,其中的每一个算子都把输入的数据作为运算自变量,以实现对用户数据的操作,包括“滤波器/系统”、“采样/保持”、“逻辑运算”、“积分/微分”、“延迟器”、“增益”六大选项,每种选项又包含若干子选项。
函数库:函数库也是本软件最核心的部分之一,它把很多复杂的函数集成为一个小模块,其中的每一个算子都把输入的数据作为运算自变量,以实现对用户数据的函数运算,包括“非线性函数”、“函数”、“复数运算函数”、“代数函数”、“相位/频率”、“合成/提取”六大选项,每种选项又包含若干子选项。
信宿库●通常系统采样频率“Sample Rate [Hz]”约为系统中所有模块最高频率的五至十倍。
●按钮“Set Power of 2”用来控制系统波形采样点数“No. of Samples”;波形采样点数越多波形越精细,系统运行时间也越长,波形采样点数过多也会导致波形过于紧密而不利于观察,故波形采样点数应该与系统采样频率相结合,灵活调整。
●设置完系统采样频率“Sample Rate [Hz]”和系统波形采样点数“No. ofSamples”之后,必须通过按钮“Update”进行确认。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验报告哈尔滨工程大学教务处制实验一基带码型仿真(一)单、双极性归零码仿真一、实验原理1.1归零码归零码,是信号电平在一个码元之内都要恢复到零的编码方式,它包括曼彻斯特编码和差分曼彻斯特编码两种编码方式。
1.2单、双极性归零码对于传输数字信号来说,最常用的方法是用不同的电压电平来表示两个二进制数字,即数字信号由矩形脉冲组成。
A)单极性不归零码,无电压表示”0”,恒定正电压表示”1”,每个码元时间的中间点是采样时间,判决门限为半幅电平。
单极性归零码(RZ)即是以高电平和零电平分别表示二进制码1 和0,而且在发送码1 时高电平在整个码元期间T 只持续一段时间τ,其余时间返回零电平.在单极性归零码中,τ/T 称为占空比.单极性归零码的主要优点是可以直接提取同步信号,因此单极性归零码常常用作其他码型提取同步信号时的过渡码型.也就是说其他适合信道传输但不能直接提取同步信号的码型,可先变换为单极性归零码,然后再提取同步信号B)双极性不归零码,”1”码和”0”码都有电流,”1”为正电流,”0”为负电流,正和负的幅度相等,判决门限为零电平。
双极性归零码是二进制码0 和1 分别对应于正和负电平的波形的编码,在每个码之间都有间隙产生.这种码既具有双极性特性,又具有归零的特性.双极性归零码的特点是:接收端根据接收波形归于零电平就可以判决1 比特的信息已接收完毕,然后准备下一比特信息的接收,因此发送端不必按一定的周期发送信息.可以认为正负脉冲的前沿起了起动信号的作用,后沿起了终止信号的作用.因此可以经常保持正确的比特同步.即收发之间无需特别的定时,且各符号独立地构成起止方式,此方式也叫做自同步方式.由于这一特性,双极性归零码的应用十分广泛。
1.3 功率谱密度求信号的功率谱,功率谱= 信号的频率的绝对平方/ 传输序列的持续时间,求得的功率谱进行单位换算以dB值表示1.4占空比(Duty Ratio)在电信领域中有如下含义:例如:脉冲宽度1μs ,信号周期4μs 的脉冲序列占空比为0.25。
在一段连续工作时间内脉冲占用的时间与总时间的比值。
二、仿真方案2.1程序流程图2.2参数设计分别设置占空比为0.5、0.75、1.0 采样点数为2^k ,k 取正整数 每码元采样点数为64 码元速率为2Mb/s3.实验程序global dt t df Nclose allk=14;Rt=0.5; %占空比N=2^k; %采样点数L=64; %每码元的采样点数M=N/L; %码元数Rb=2; %码速率为2Mb/sTs=1/Rb; %码元间隔dt=Ts/L; %时域采样间隔df=1/(N*dt); %频域采样间隔T=N*dt; %截短时间Bs=N*df/2; %系统带宽t=linspace(-T/2,T/2,N); %时域横坐标f=linspace(-Bs,Bs,N); %频域横坐标EP=zeros(1,N);for jj=1:100a=round(rand(1,M)); %产生M个取值0,1等概的随机码s=zeros(1,N); %产生一个N个元素的零序列for ii=1:Rt*Ts/dts(ii+[0:M-1]*L)=a; %产生单极性归零码endQ=t2f(s); %傅氏变换P=Q.*conj(Q)/T; %P为单极性归零码的功率EP=(EP*(ii-1)+P)/ii; %累计平均aa=30+10*log10(EP+eps); %加eps以避免除以零endsubplot(2,2,2)plot(f,aa,'r')title('单极性归零码的功率谱')xlabel('f/MHZ')ylabel('Ps(f)/MHZ')axis([-15,+15,-50,50])gridsubplot(2,2,1)plot(t,s,'g')title('单极性归零码')xlabel('t(ms)')ylabel('s(t)(V)')axis([-5,5,-0.5,1.5])gridfor jj=1:100a=round(rand(1,M)); %产生M个取值0,1等概的随机码a=1-2*a;s=zeros(1,N); %产生一个N个元素的零序列for ii=1:Rt*Ts/dts(ii+[0:M-1]*L)=a; %产生双极性归零码endQ=t2f(s); %付氏变换P=Q.*conj(Q)/T; %P为双极性归零码的功率EP=(EP*(ii-1)+P)/ii; %累计平均aa=30+10*log10(EP+eps); %加eps以避免除以零endsubplot(2,2,4)%set(2,'position',[10,50,750,350]) %设定窗口位置及大小plot(f,aa,'r')title('双极性归零码的功率')xlabel('f(MHZ)')ylabel('Ps(f)(MHZ)')axis([-15,+15,-50,50])gridsubplot(2,2,3)plot(t,s,'g')title('双极性归零码')xlabel('t(ms)')ylabel('s(t)(V)')axis([-5,5,-1.5,1.5])grid子程序function X=t2f(x)global dt df N t f T%X=t2f(x)%X与x长度相同,并为2的整幂。
%本函数需要一个全局变量dt(时域取样间隔)H=fft(x);X=[H(N/2+1:N),H(1:N/2)]*dt;end图一占空比为0.5的波形图二占空比为0.75的波形图三占空比为1.0的波形(二)AMI码和HDB3码仿真一、实验原理1.1 AMI码1码通常称为传号,0码则叫空号,这是沿用了早期电报通信中的叫法。
从形态上看,它已是三状态信号,所以AMI码是伪三进制码。
(1)编码规则:消息代码中的0 传输码中的0消息代码中的1 传输码中的+1、-1交替例如:消息代码:1 0 1 0 1 0 0 0 1 0 1 1 1AMI码: +1 0 -1 0 +1 0 0 0 -1 0 +1 -1 +1(2)AMI码的特点:1 由AMI码确定的基带信号中正负脉冲交替,而0电位保持不变;所以由AMI码确定的基带信号无直流分量,且只有很小的低频分量;2 在接收端不易提取定时信号,由于它可能出现长的连0串;3 具有检错能力,如果在整个传输过程中,因传号极性交替规律受到破坏而出现误码时,在接收端很容易发现这种错误。
(3)解码规则从收到的符号序列中将所有的-1变换成+1后,就可以得到原消息代码1.2 HDB3码三阶高密度双极性码(英语:High Density Bipolar of Order 3,简称:HDB3码)是一种适用于基带传输的编码方式,它是为了克服AMI码的缺点而出现的,具有能量分散,抗破坏性强等特点。
三阶高密度双极性码用于所有层次的欧洲E-carrier系统,HDB3码将4个连续的“0”位元取代成“000V”或“B00V”。
这个做法可以确保连续的violations are of differing polarity,即是相隔单数的一般B记号。
1 先将消息代码变换成AMI码,若AMI码中连0的个数小于4,此时的AMI码就是HDB3码;2 若AMI码中连0的个数大于3,则将每4个连0小段的第4个0变换成与前一个非0符号(+1或-1)同极性的符号,用表示(+1+,-1-);3 为了不破坏极性交替反转,当相邻V符号之间有偶数个非0符号时,再将该小段的第1个0变换成+B或-B,符号的极性与前一非零符号的相反,并让后面的非零符号从符号开始再交替变化。
例如:消息代码: 1 0 0 0 0 10 0 0 01 1 0 0 0 0 1 1AMI码: +1 0 0 0 0 -10 0 0 0+1 -1 0 0 0 0 +1 -1HDB3码:+1 0 0 0 +V -10 0 0 -V+1 -1 +B 0 0 +V -1 +1二、实验程序global dt df t f Nclose allN=2^14; %采样点数L=64; %每码元的采样点数M=N/L; %码元数Rb=2;Ts=0.5; %码元宽度是0.5usdt=Ts/L;df=1/(N*dt); %MHzRT=0.5; %占空比T=N*dt ; %截短时间Bs=N*df/2; %系统带宽t=[-T/2+dt/2:dt:T/2]; %时域横坐标f=[-Bs+df/2:df:Bs]; %频域横坐标EPAMI=zeros(size(f));EPHDB=zeros(size(f));for ii=1:8ami=zeros(1,M);hdb=zeros(1,M);a=round(rand(1,M));b=3;%表示0000之间循环个数c=-1;%记载相邻V之间的1元素个数sign1=-1; %标志前一个信号sign2=-1; %标志前一个信号for ii=1:Mif a(ii)==1sign1=0-sign1;ami(ii)=sign1;endendfor ii=1:Mif b==3 %表示非0000if a(ii)==1sign2=0-sign2;hdb(ii)=sign2;if c>=0 %表示不是第一个0000c=c+1; %用来计算相邻v之间的非0元素个数endelseif ii<=M-3 & a(ii)+a(ii+1)+a(ii+2)+a(ii+3)==0 if mod(c,2)==1 %000Vhdb(ii+3)=sign2;else%B00Vsign2=0-sign2;hdb(ii)=sign2;hdb(ii+3)=sign2;endc=0;b=0;endelseif b<3 %对0000的循环b=b+1;endendfor i=[1:L]ami1(i+[0:M-1]*L)=ami;hdb1(i+[0:M-1]*L)=hdb;endAMI=t2f(ami1);PAMI=AMI.*conj(AMI)/T;HDB=t2f(hdb1);PHDB=HDB.*conj(HDB)/T;EPAMI=(EPAMI*(ii-1)+PAMI)/ii; EPHDB=(EPHDB*(ii-1)+PHDB)/ii;%画出RNZ、AMI、HDB3码波形figure(1)subplot(3,1,1)tt=[1:40];stem(a(1:40))axis([1,40,-1.5,1.5])title('原始RNZ信号')subplot(3,1,2)stem(tt,ami(1:40)')title('AMI码')subplot(3,1,3)stem(tt,hdb(1:40))title('HDB3码')%画出AMI的功率谱密度图figure(2)subplot(2,2,1)stem(tt,ami(1:40)','g')title('AMI码')subplot(2,2,3)stem(tt,hdb(1:40),'g')title('HDB3码')subplot(2,2,2)aa=30+10*log10(EPAMI+eps);%加eps以避免除以零bb=30+10*log10(EPHDB+eps);plot(f,aa,'r');gridaxis([-8,+8,-80,40])xlabel('f/MHz')ylabel('Ps(f)(dBm/MHz)')title('AMI功率谱密度')%画出HDB3的功率谱密度图subplot(2,2,4)plot(f,bb,'r');gridaxis([-8,+8,-80,40])xlabel('f/MHz')ylabel('Ps(f)(dBm/MHz)')title('HDB3功率谱密度')end实验2:采用2DPSK调制的数字通信系统一、实验原理1.1 2DPSK信号原理2DPSK方式即是利用前后相邻码元的相对相位值去表示数字信息的一种方式。