2.3平方根

合集下载

初中数学教案:平方根的计算与应用——掌握开平方的基本方法与应用技巧

初中数学教案:平方根的计算与应用——掌握开平方的基本方法与应用技巧

初中数学教案:平方根的计算与应用——掌握开平方的基本方法与应用技巧平方根是初中数学中的一个重要概念,它在解决实际问题、运用数学知识等方面具有广泛的应用。

本教案将着重介绍平方根的计算方法和应用技巧,帮助学生掌握开平方的基本方法,并能灵活运用于实际问题的解决中。

一、平方根的定义与性质1.1 平方根的定义首先,给出平方根的定义:对于非负实数 a,如果存在一个非负实数 x,使得 x 的平方等于 a,那么 x 称为 a 的平方根,记作x = √a。

1.2 平方根的性质平方根具有以下性质:(1)非负实数的平方根仍然是非负实数;(2)平方根可以是一个有理数,也可以是一个无理数;(3)对于两个非负实数 a 和 b,若 a > b,则√a > √b。

二、开平方的基本方法2.1 直接开平方对于一个完全平方数,直接开平方就是将其平方根提取出来。

例如,√25 = 5,√100 = 10。

2.2 近似开平方对于一个非完全平方数,我们需要使用近似开平方的方法来计算。

其中,最常用的方法是不断试探的方法。

例如,要求解的数为 a,我们可以从 1 开始试探 x 的平方等于 a,如果 x 的平方小于 a,则增大 x,如果 x 的平方大于 a,则减小 x,直到找到一个 x,使得 x 的平方与 a 的差值足够小。

2.3 开平方的算法开平方的算法中,最常用且简便的是牛顿迭代法。

牛顿迭代法的基本思想是:选择一个初始的近似值,并通过不断迭代来逼近精确值。

具体步骤如下:(1)选择初始值 x,通常选择 a 的一个近似值;(2)计算 x 的平方与 a 的差值 delta;(3)将 delta 除以 2x,得到一个新的近似值 x1;(4)重复步骤(2)和(3),直到 x 和 x1 差值足够小。

三、平方根的应用技巧3.1 勾股定理勾股定理是三角形中一条重要的定理,涉及到平方根的运算。

根据勾股定理,一个直角三角形的斜边的平方等于两个直角边的平方和。

2.3 平方根(第2课时)

2.3 平方根(第2课时)
b 1 4

=0,则
a b
的平方根
• 6、 64 36 的平方根是 ,算术平方 根是 。 • 7、已知△ABC的三边分别是a、b、c, • 且 a 1 b² -4b+4=0,求c的取值范围。


• 8、已知y= x 2 + 2 x +3,求xy的算 术平方根。 • 9、在△ABC中,∠C=90°. • (1)如果AC=5,BC=12,求AB; • (2)如果AC=2,BC=1,求AB; • (3)如果AB=25,BC=24,求AC; • (4)如果AC=5,AB=12,求BC;


1.16的算术平方根的平方根是什么? 5的算术平方根是什么? 2、0的算术平方根是什么? 0的算术平方根有几个? 3、-2、-5、-6有算术平方根吗?为什么?

• • • •

例1:求下列各数的算术平方根: (1)625; (2)0.81; (3)6; (4)(-2)² (5) 256 (6) ( 0 . 25 ) 2
初中数学八年级上册 (苏科版)
2.3平方根


正数a有2个平方根,其 中正数a的正的平方根,也叫 做a的算术平方根。 例如,4的平方根是±2, 2叫做4的算术平方根。


• 4的平方根是±2,2叫做4的算术 平方根,记作 4 =2, • 2的平方根是“± 2 ”, 2 叫做 2的算术平方根, • 0只有一个平方根,0的平方根也叫 做0的算术平方根,即 0 =0
h
d


• 例2:“欲穷千里目,更上一层楼”。说的是登 的高看得远。若观测点的高度为h,观测者视线 能达到的最远距离为d≈2 hR ,其中R是地球半 径(通常取6400km),小丽站在海边一块岩石 上,眼睛离地面的高度为20M,她观测到远处一 艘船刚露出海平面,此时该小船离小丽有多远?

§2.3平方根1研究课

§2.3平方根1研究课

平方根(1)—— 研究课班级________姓名____________学习目标:1.了解平方根的概念,会用根号表示数的平方根.2.了解开平方与平方互为逆运算,会用平方根的概念求某些非负数的平方根.学习重点:了解开方与乘方互为逆运算,能熟练地用平方根求某些非负数的平方根. 学习难点:平方根的意义 自主学习(一)回顾旧知:1.填空:5的平方是 ;34的平方是 ;0的平方是 ;(-3)2= ;(-35)2= .总结:观察上述结果,发现:任意有理数.....的平方是 数. 2.我们知道:4的平方是16, 的平方也是16,所以 的平方是16.类似的: 的平方是25; 的平方是121; 的平方是2549;的平方是179; 的平方是0; 的平方是-4.3.一个正方形的边长为3 cm ,则它的面积为 cm 2,计算面积的过程是 运算.4. “如图①,已知这个正方形的面积为225,你能求出这个正方形的边长吗?”小明拿到这个问题后感觉很新鲜..,思考之后, (1)提出了一个问题:知道正方形面积求正方形边长的过程与上面第3题的过程有何关系?你能回答吗?(2)提供了一种思路:(3)小明解决上面问题之后,提出了一个新问题,“如图②,已知这个正方形的面积为2,你能求出这个正方形的边长吗?”,你能解决吗?初步感悟:225(图①) 2(图②)① 因为25= , 2)5(-= ,所以 ±5是 的平方根 . ② 平方得81的数是 ,因此81的平方根是 . ③ 9的平方根是 ;49的正的平方根是 ;1.44的负的平方根是 .讨论提高:① 3有 个平方根,它们互为 数,记作 . ② 0有 个平方根,0的平方根是 . ③ -4、-8、-36有平方根吗?为什么? 总结:一个数的平方根有几个?应用:1.如果 a 的一个平方根是 4,则它的另一个平方根是 .2.若 1+a 平方根是 ±5 ,则 a = ; 若 1+a 平方根是 0 ,则 a = ; 若1+a 没有平方根,那么 a .3.明辨是非:下列叙述正确的打“√” ,错误的打“×”:①4是16的平方根; ( ) ② 16的平方根是4; ( ) ③ 0的平方根是0; ( ) ④1的平方根是1; ( ) ⑤9的平方根是3; ( ) ⑥ 只有一个平方根的数是0;( ) ⑦2)3(-的平方根是3. ( ) (二)例题研讨例1.求下列各数的平方根: (1)0.25; (2)8116; (3)15; (4)()22- (5)210-.例2.求下列各式中的x 的值⑴1962=x ; ⑵01052=-x ; ⑶()2336-x -25=0.例3.下列各数有平方根吗?若有,求出它们的平方根;若没有,请说明理由. (1)64- ; (2) 2)4(-; (3)25-- ; (4)81.四.课堂反馈1.121的平方根是11±的数学表达式是………………………………………………( ) A.11121= B.11121±= C. 11121=± D.11121±=±2.下列说法中正确的是…………………………………………………………………( ) A.24-的平方根是 4± B.把一个数先平方再开平方得原数 C.a -没有平方根 D.正数a 的平方根是a ±3.能使5-x 有平方根的是………………………………………………………………( ) A.0≥x B.0>x C. 5>x D. 5≥x4.一个数如果有两个平方根,那么这两个平方根之和是………………………………( ) A.大于0 B.等于0 C.小于0 D.大于或等于0 5.749±=±的意义是 .6.正数a 的两个平方根的商为 ;若正数a 的两个平方根的积为-259,则a = .7.下列各数:-8,()23-,25-,4.0-,52,0,()2--中有平方根的数有 个.8.平方为16的数是 ,将16开平方得 ,因此平方与 互为逆运算. 9.289的平方根是 ,2)4(-的平方根是 ,7的平方根是 .10.若223=y ,则=y ;若22)7(-=x ,则=x .五、课后练习1. 下列各数:-8,()23-,25-,4.0-,52,0,()2--中有平方根的数有 个2.如果一个数的平方根等于它本身,那么这个数是 .3.-9是数a 的一个平方根,那么数a 的另一个平方根是 ,数a 是 . 4.如果一个数的平方根是1+a 与132-a ,那么这个数是 . 5. 225±= ,2516±= ,=-972,=---)3)(27( .6.若-b 是a 的平方根,则下列各式中正确的是………………………………………( )A. 2a b = B. 2b a = C.2a b -= D.2b a -= 7.已知 5x -1的平方根是 ±3 ,4x +2y +1的平方根是 ±1,求4x -2y 的平方根8.求下列各式中的x .(1)492=x ; ⑵25)1(42=-x ; (3)09)12(42=-+x17.教室的地面面积为722m ,地面恰由800块相同的正方形地转铺成,每块地转的边长是多少?18.已知:()()7233=-+++y x y x ,求y x +的值.。

§2.3平方根2研究课

§2.3平方根2研究课

§2.3平方根(2)—— 研究课班级________姓名____________学习目标:1.了解算术平方根的概念,会用根号表示数的算术平方根; 2. 会用平方运算求某些非负数的算术平方根;3.能运用算术平方根解决一些简单的实际问题. 学习重点:会用平方运算求某些非负数的算术平方根,能运用算术平方根解决一些简单的实际问题. 教学过程(一)回顾旧知1.下列说法正确的是…………………………………………………………………( ) A .81-的平方根是9±B .任何数的平方是非负数,因而任何数的平方根也是非负数C .任何一个非负数的平方根都不大于这个数D .2是4的平方根2.一个数的平方根是它本身,则这个数是…………………………………………( )A .1B .0C .±1D .1或0 3.若a 的一个平方根是b ,则它的另一个平方根是 . 4.已知3612=x ,则=x ;已知22)41(-=x ,则=x .探索新知:阅读书本52页最后一段,完成下列问题 1.填空:(1) 0的平方根是_______,算术平方根是______. (2) 25的平方根是_______,算术平方根是______. (3)641的平方根是_______,算术平方根是______.[拓展]⑴25的算术平方根是_______,平方根是_______;(-4)2的平方根是_________⑵若0|5|)12(2=-+-y x ,则y x 516-的算术平方根___________2.判断下列说法是否正确:(1)6是36的平方根;( ) (2)36的平方根是6;( ) (3)36的算术平方根是6;( ) (4)()23-的算术平方根是3;( ) (5)0.01是0.1的算术平方根;( ) (5)3-的算术平方根是3;( ) (二)例题研讨例1. 求下列各数的平方根和算术平方根: ⑴225 ⑵1.69 ⑶412 ⑷16 ⑸30例2. 求下列各式的值: ⑴10000 ⑵225121- ⑶8149±⑷()23- ⑸25.004.0-例3.(1)=2)01.0( ;=2)5( ;=2)7( ;(2)=23 ;=25 ;=216 ;(3)=-2)3( ;=-2)5( ;=-2)16( .思考:① =2)(a ,其中a 0.②发现:当a >0时,2a = ;当a <0,2a = ;当a = 0时,2a =即2a =()()()⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<-=>=0000a a a a a a四.课堂反馈1.判断下列说法是否正确:(1)任意一个有理数都有两个平方根.( ) (2)(-3)2的算术平方根是3.( ) (3)-4的平方根是-2.( ) (4)16的平方根是4.( ) (5)4是16的一个平方根.( ) (6)416±= ( )2.填空:⑴169的平方根是______,算术平方根是_______. ⑵1691的平方根是_______,算术平方根是_______.⑶()29-的平方根是________,算术平方根是_______. ⑷64的平方根是________,算术平方根是________.3.计算:____144=-;____0=;____625=±;_____0001.0= ;____94=-; 499±=______;______416=-.4.2)4(= ;.2)(π= ;_____432=⎪⎭⎫⎝⎛-;()_____22=-.5.若42=x ,则x =________;若()412=+x ,则x =________.五.课后延伸1. 在0、-4、3、(-2)2、-22中,有平方根的数的个数为…………………………( ) A.1 B.2 C.3 D.42.4表示…………………………………………………………………………………( ) A.4的平方根 B.4的算术平方根 C.±2 D.4的负的平方根3.-0.1是______的平方根,______是9的平方根.4.5的平方根是________,7的算术平方根是_______,81的平方根是 ; 5.若x 的平方根是±2,则x =______;6.若数a 有平方根,则a 的取值范围是______,若4-m 没有算术平方根,则m 的取值范围是_______.7.代数式-3-b a +的最大值是 ,这时a 、 b 之间的关系是8.2)5(= ;.2)3(-π= ;_____432=⎪⎭⎫⎝⎛-;_____)3(2=-π.9. 下列各数有没有平方根?若有,请求出它的平方根和算术平方根;若没有,请说明理由. (1)256 (2)()21- (3)91- (4)1.21 (5)2 (6)23-10.求下列各式中的x :⑴012=-x ⑵2122=x ⑶()3632=-x ⑷()01001252=--x11.已知411+=-+-y x x ,求y x -的值12.已知a+b -1与(a -2b +3)2互为相反数,求a 2+b 2+59..13.某玩具厂要制作一批体积为100000cm 3的长方体包装盒,其高为40cm ,按设计需要,底面应做成正方形,试问底面边长应是多少?。

2.3 平方根(第1课时)

2.3 平方根(第1课时)
理解了吗?
你真棒!


1.9的平方根是什么?25的平方
根是什么? 2、0的平方根是什么?0的平方 根有几个? 3、-4、-8、-36有平方根吗?为 什么?
结论
一个正数有两个平方根,它 们互为相反数; 0只有一个平方根,它是0本 身; 负数没有平方根。 求一个数a的平方根的运算, 叫做开平方.

熟记
一个正数的平方根有2个,它们互为相反
数。一个正数a的正的平方根, 记作“ ”一个正数a的负的平方根 a 记作“- a ”,这两个平方根合起来 记作“± a ”,读作“正负根号a”。 例如,2的平方根记作“± 2 ”,读作 “正负根号2”。81的平方根记作 “± 81 ”,读作“正负根号81”

求下列各数的平方根: (1)25; (3)15;

(2)0.81; (4)(-2)² (6)0 (8) 10² ² (10)
16 (5) 81
1 (7) 2 4



(9)
9
(4)
2

(1)∵ (±5)² =25; 即± (2)

= ±5;
∴25的平方根等于±5;



如果一个数的平方等于9,这 个数是几?
一个数的平方等于2呢? 想知道这个数的结果吗? 我们来学习——平方根
新 知
一般地,如果一个数的平方等于a,那么这个
数叫做a的平方根,也称为二次方根。 也就是说,如果x² =a,那么x叫做a的平方根。
例如,2² =4,(-2)² =4,±2叫做4的平方根。 =100,(-10)² =100,±10叫做100的平方根 10² 13² =169,(--13)² =169,±13叫做169的平方根。

算术平方根

算术平方根

《算术平方根》教学设计教材分析本节课——《算术平方根》(青岛版数学教科书)是对数的运算的深入学习和研究。

教与学的形式应以学生的自主学习与合作探索学习为主,通过解决现实生活中的真问题,让学生充分经历探求算术平方根的历程,并能深刻体味算术平方根的涵义,为今后更好的研究数学运算提供又一种强有力的工具。

教学理念利用“345”教学模式进行组织教学;让学生最大限度的进行“课前延伸(预习)、课内探究(经历)、课后提升”这一学习流程;使学生的双基从中得到最大幅度的加强和提高,同时关注学生在学习中表现出的情感与态度。

教学目标理解算术平方根的概念,能用根号表示一个非负数的算术平方根;会求非负数的算术平方根并能进行简单的应用;领会平方运算与求算术平方根的互逆关系;能总结生成处理问题的思路和程序;体验“345”教学模式对高效教学带来的帮助.教学重点理解算术平方根的概念;能用根号表示一个非负数的算术平方根;会求非负数的算术平方根并能进行简单的应用;体验“345”教学模式对高效教学带来的帮助.教学难点理解算术平方根的概念;领会平方运算与求算术平方根的互逆关系;能自主总结生成处理问题的思路和程序.教学流程一、预习效果检测教师:发放检测卷,检测课前预习效果.1、算术平方根的定义为2、正数a 的算术平方根表示为 ,读作3、规定:0的算术平方根是 ,负数 算术平方根.4、思考:(1)若a 有意义,则a 的取值范围是(2)a ·a =(a )2= (a ≥0) 5、求下列各式的值:①121 ②494 6、求下列各数的算术平方根: ① 0.64 ②4981 ③ 25111 7、一个正方形场地的面积是729平方米,求它的边长.学生:自主答题.教师:板书课题:《算数平方根》.【设计意图】该环节设计,顺应了“345”教学模式的要求,既能考察学生的课前延伸即课前预习情况,又能考查各类学生的自主学习能力,还激发了学生"要我学"的学习热情,充分体现了当前教学改革的精神要求.教师:让学生回答预习检测的解答结果,并矫正反馈.教师:针对预习存在的问题,展示下一阶段学习目标,并对目标进行有的放矢的训练.学生:认真阅读记忆学习目标.(1)理解算术平方根的概念,会求非负数的算术平方根并能进行简单的应用;(2)领会平方运算与求算术平方根的互逆关系;(3)能总结生成处理问题的思路和程序;体验新的教学模式对高效学习的帮助.【设计意图】磨刀不误砍柴工,及时反馈小结,明确预习中存在的疑难困惑,然后有针对性的去学习探究,是顺利完成教学目标的关键所在.二、课内探究,经历体验(一)关注困惑,合作探究教师:针对预习检测暴露的问题,设计如下探究习题,让学生在交流合作中解决.学生:带着困惑自主学习与合作探究下列学案中的题目1、求下列各式的值: ① 0025.0 ② -256169 ③ 16 - 25 2、求下列各数的算术平方根:①0.64 ②1691③ 252 ④ 24)( 【设计意图】本环节把学生的学习热情再次推向高潮,学生们采用了自主解题与合作探究等方式,来解决预习中的疑难,再次证实了小组学习是数学教学和提高学生学习数学兴趣的重要途径和必要方式,顺应了把课堂还给学生的教学革新要求.(二)精讲点拨,解惑释疑教师:解惑释疑,对疑难问题的再巩固、再强化【设计意图】该环节充分体现了课堂教学“三讲三不讲”的教学原则,大大减少了低效环节,增加了学生学习与探究的时间,这是当前大力倡导的课堂教学模式.(三)有的放矢,强化巩固学生:自主训练1、求下列各式的值: ①4925 ② -01.0 ③25-8 2、求下列各数的算术平方根:① 0 ② 49151③ 0.09 教师: 屏幕展示:课本: P 127 A.3、B 2.【设计意图】这一环节是在解决预习疑难后的跟踪巩固训练,体现了重难点问题强化练的教学要求;练习:课本: P 127 A.3、B 2是在教师发现不少学生完成上面练习情况下,适时屏幕展示该题目,以确保优等生能吃的饱,这是既不加重学生课外负担,又能进行优生优培的重要举措.学生:总结学习反思一:(四)拓展探究,应用建构教师:师生合作完成学案例题.【活学巧用】用大小完全相同的240块正方形地板砖,铺一间面积为60平方米的会议室的地面,每块地面砖的边长是多少?学生:“提示”老师解决的问题思路. 教师:按照学生“提示”,板书例题.学生:跟踪训练:一个正方形运动场地的面积是625平方米,它的边长是多少?【设计意图】本环节师生互动,学生“指导”教师应用数学建模思想,解决应用探究例题,并进行强化巩固训练,体现了教学相长,螺旋上升的学习理念.学生:学习反思二:(五)交流合作,升华提高教师:精心设计拓展探究题型,让学生在合作学习中拓展视野,升华所学知识学生:依学案独立探究与合作学习1、算术平方根等于它本身的数是2、若2-x 有意义,则x 的取值范围是3、若2x =6,则x 的值是4、若m ≥0, (m 2)2= 5、若( x-2)2+5-+y x =0,则3+xy =学生:学习反思三:【设计意图】这一环节,是本节课的又一精彩之处,是在学生掌握双基的基础上,怀着浓厚的兴趣去进行深层次知识的合作探究与体验经历,使所学知识得到升华,是教学的精髓所在.(六)评课小结,梳理知识教师:投影问题:1、本节课学习了哪些知识,运用了怎样的学习方式和途径?2、你认为学习的效果如何?你还有什么困惑和见解?学生:学生回答,并指定自同学好友学生进行评析.教师:总结知识生成与建构策略,并着重强调:1、通过自主学习和亲身经历体验,是获取知识的重要途径。

2.3 平方根(2)

2.3  平方根(2)

初二数学教案(编号:J ) 主备人:郎飞翔一.课题:2.3平方根(2)二.教学目标:1、了解算术平方根的概念,会用根号表示数的算术平方根。

2、会用平方运算求某些非负数的算术平方根。

3、能运用算术平方根解决一些简单的实际问题。

三.教学重难点:理解算术平方根的意义,能运用算术平方根解决一些简单的实际问题能运用算术平方根解决一些简单的实际问题四.教学过程:(一)自学展示反馈1、小明家装修新居,计划用100块地板砖来铺设面积为25平方米的客厅地面,请帮他计算:每块正方形地板砖的边长为多少时,才正好合适(不浪费)?2、求4个直角边长为10厘米的等腰直角三角形纸片拼合成的正方形的边长?(二)合作交流讨论正数a 有2个平方根,其中正数a 的正的平方根,也叫做a 的算术平方根。

例如,4的平方根是±2,2叫做4的算术平方根• 4的平方根是±2,2叫做4的算术平方根,记作 2 =2,• 2的平方根是“±2 ”, 2叫做2的算术平方根,• 0只有一个平方根,0的平方根也叫做0的算术平方根,• 即 ±0 =01. 16的算术平方根的平方根是什么?5的算术平方根是什么?2、 0的算术平方根是什么?0的算术平方根有几个?3、 -2、-5、-6有算术平方根吗?为什么?(三)点拨精讲例1:求下列各数的算术平方根:• (1)625; (2)0.81;• (3)6; (4)(-2)²(5)0例2:求下列各式中的x(1) 264x = (2) 215x =(3) 23649x = (4) 230x =例3.已知110a b ++-=,求20092009a b +的值。

例4.已知△ABC 的三边长分别为a,b,c 且a,b,c 满()23450a b c -+-+-=,试判断△ABC 的形状。

应用:“欲穷千里目,更上一层楼”。

说的是登的高看得远。

若观测点的高度为h ,观测者视线能达到的最远距离为d ≈ hR ,其中R 是地球半径(通常取6400km ),小丽站在海边一块岩石上,眼睛离地面的高度为20M ,她观测到远处一艘船刚露出海平面,此时该小船离小丽有多远?探 究:正数a 的算术平方根的取值范围?(由学生交流讨论)(四)小结提升平方根与算术平方根的区别与联系(五):板书设计:(六):教学反思:初二数学课课练(编号:N )课题:2.3平方根(2)命题: 郎飞翔 做题: 审核: 班级: 姓名: 编制日期: 2012/9/12得分:一.选择题:1、下列说法正确的是 ( )A 、-8是64的平方根,即864-=B 、8是()28-的算术平方根,即()882=-C 、±5是25的平方根,即±525=D 、±5是25的平方根,即525±=2、下列计算正确的是 ( ) A 、451691= B 、212214= C 、05.025.0= D 、525=--3、81的算术平方根是 ( )A 、±9B 、9C 、±3D 、34、下列说法错误的是 ( )A 、3是3的平方根之一B 、3是3的算术平方根C 、3的平方根就是3的算术平方根D 、3-的平方是3 5、若()2130x y y +-++=,则x y -的值为 ( )A 、1B 、-1C 、7D 、-7二、填空题:6、若式子x -3的平方根只有一个,则x 的值是 。

2022-2023学年江苏省苏州市吴中区、吴江区、相城区八年级(上)期中数学试卷(附答案详解)

2022-2023学年江苏省苏州市吴中区、吴江区、相城区八年级(上)期中数学试卷(附答案详解)

2022-2023学年江苏省苏州市吴中区、吴江区、相城区八年级(上)期中数学试卷1.下面四个图形分别是绿色食品、低碳、节能和节水标志,是轴对称图形的是( )A. B.C. D.2.3的平方根是( )A. 3或−3B. 3C. √3D. √3或−√33.到三角形三边距离相等的点是( )A. 三边垂直平分线的交点B. 三条高所在直线的交点C. 三条角平分线的交点D. 三条中线的交点4.以下数组中,其中是勾股数的是( )A. 2.5,6,6.5B. 9,40,41C. 1,√2,1D. 2,3,45.已知二次根式√1−a,则下列各数中能满足条件的a的值是( )A. 4B. 3C. 2D. 16.工人师傅常用角尺平分一个任意角,做法是:如图在∠AOB的边OA、OB上分别取OM=ON,移动角尺,使角尺的两边相同的刻度分别与M、N重合,得到∠AOB的平分线OP,做法中用到三角形全等的判定方法是( )A. SSSB. SASC. ASAD. HL7.△ABC的三边a,b,c满足a2+b2+c2=ab+bc+ac,则△ABC是( )A. 等边三角形B. 腰底不等的等腰三角形C. 直角三角形D. 等腰直角三角形8.如图,圆柱形玻璃容器高20cm,底面圆的周长为48cm,在外侧距下底1cm的点A处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口外侧距上口1cm的点B处有一只苍蝇,则蜘蛛捕获苍蝇所走的最短路线长度是( )A. 52cmB. 6√73cmC. 60cmD. 30cm9.有下列说法:①有理数和数轴上的点一一对应;②不带根号的数一定是有理数;③负数没有立方根;④−√17是17的平方根.其中正确的有( )A. 0个B. 1个C. 2个D. 3个10.如图,在边长为6的正方形ABCD内作∠EAF=45∘,AE交BC于点E,AF交CD于点F,连接EF.若DF=3,则BE的长为( )A. 2B. 3C. 4D. 511.四个实数−2,0,√2,3中,最小的实数是______.12.有理数12.6013精确到百分位的结果为______.13.有一个英语单词,其四个字母都关于直线l对称,如图是该单词各字母的一部分,请写出补全后的单词所指的物品______.14.12的平方根为______.)−2−(3−π)0=______.15.计算:√12−(−1216.如图,在△ABC中,AB=AC=10cm,DE垂直平分AB,垂足为E,交AC于D,若△DBC的周长为18cm,则BC的长为______.17.如图,在矩形内有两个相邻的正方形,面积分别为2和4,则图中阴影部分的面积是______ .18.如图,在△ABC中,∠BAC=30∘,且AB=AC,P是△ABC内一点,若AP+BP+CP的最小值为4√2,则BC2=______.19.求满足下列各式的未知数x的值.(1)4(x−1)2=100;(2)(x+2)3=−27.20.计算:(1)12√12−(3√13+√6÷√3);(2)(3+√2)(2−√2)+(1+√2)2.21.正数x的两个平方根分别为6−a和2a+3.(1)求a的值;(2)求9−x的立方根.22.如图1,将长为2a+3,宽为2a的矩形分割成四个全等的直角三角形,拼成如图2所示的“赵爽弦图”,得到大小两个正方形.(1)用关于a的代数式表示图2中小正方形的边长;(2)已知图2中小正方形面积为36,求大正方形的面积?23.如图,在△ABC中,D是BC边上的一点,AB=DB,BE平分∠ABC,交AC边于点E,连接DE.(1)求证:△ABE≌△DBE;(2)若∠A=100∘,∠C=50∘,求∠AEB的度数.24.如图,△ABC中,AD是BC边上的中线,E,F为直线AD上的点,连接BE,CF,且BE//CF.(1)求证:△BDE≌△CDF;(2)若AE=13,AF=7,试求DE的长.25.在正方形网格中,小正方形的顶点称为“格点”,每个小正方形的边长均为1,内角均为直角,△ABC的三个顶点均在“格点”处.(1)将△ABC平移,使得点B移到点B′的位置,画出平移后的△A′B′C′;(2)利用正方形网格画出△ABC的高AD;(3)连接BB′、CB′,利用全等三角形的知识证明BB′⊥AC.26.在△ABC中,AB=20cm,BC=16cm,点D为线段AB的中点,动点P以2cm/s的速度从B点出发在射线BC上运动.(1)若∠B=60∘,求出发几秒后,△BDP为等边三角形?(2)若∠B=60∘,求出发几秒后,△BDP为直角三角形?(3)若AB=AC,点Q与点P同时出发,其中点Q以acm/s(a>0且a≠2)的速度从C点出发在线段CA上运动,当a为何值时,△BPD和△CQP全等?27.(1)如图,河道上A,B两点(看作直线上的两点)相距200米,C,D为两个菜园(看作两个点),AD⊥AB,BC⊥AB,垂足分别为A,B,AD=80米,BC=70米,现在菜农要在AB 上确定一个抽水点P,使得抽水点P到两个菜园C,D的距离和最短.请在图中作出点P,保留作图痕迹,并求出PC+PD的最小值.(2)借助上面的思考过程,请直接写出当0<x<15时,代数式√x2+9+√(15−x)2+25的最小值=______.28.如图1.等腰△ABC中,AB=AC.点D是AC上一动点,点E在BD延长线上.且AB=AE.CF= EF.(1)在图1中,证明:∠BFC=∠BAC;(2)若∠BAC=60∘,如图2.探究线段AF、BF、EF之间的数量关系,并证明;(3)若∠BAC=90∘且BD平分∠ABC,如图3.求EF的值.BD答案和解析1.【答案】A【解析】解:由题意知,A选项是轴对称图形,BCD选项中的图形都不是轴对称图形,故选:A.根据轴对称的概念得出结论即可.本题主要考查轴对称的知识,熟练掌握轴对称的概念是解题的关键.2.【答案】D【解析】解:3的平方根是±√3.故选:D.利用平方根定义计算即可.此题考查算术平方根,以及平方根,熟练掌握各自的性质是解本题的关键.3.【答案】C【解析】解:∵OG⊥AB,OF⊥AC,OG=OF,∴O在∠A的平分线上,同理O在∠B的平分线上,O在∠C的平分线上,即O是三条角平分线的交点,故选:C.根据OG⊥AB,OF⊥AC,OG=OF,得出O在∠A的平分线上,同理得出O也在∠B、∠C的平分线上,即可得出O是三条角平分线的交点.本题考查了三角形的中线,角平分线,垂直平分线,高等知识点,注意:三角形的三个角的平分线交于一点,这点到三角形三边的距离相等.4.【答案】B【解析】解:A、2.5和6.5不是整数,不是勾股数,故此选项不符合题意;B、92+402=412,是勾股数,故此选项符合题意;C、√2不是整数,不是勾股数故此选项不符合题意;D、22+32≠42,不是勾股数,故此选项不符合题意.故选:B.根据勾股数的定义进行分析,从而得到答案.此题考查了勾股数,解答此题要用到勾股定理的逆定理和勾股数的定义,满足a2+b2=c2.5.【答案】D【解析】解:由题意可知:1−a≥0,解得:a≤1.故选:D.根据二次根式的被开方数是非负数解答即可.本题主要考查了二次根式有意义的条件,熟练掌握二次根式的被开方数是非负数是解答本题的关键.6.【答案】A【解析】【分析】本题考查全等三角形在实际生活中的应用有关知识,已知两三角形三边分别相等,可考虑SSS证明三角形全等,从而证明角相等.【解答】解:做法中用到的三角形全等的判定方法是SSS;证明如下:∵{OM=ON PM=PN OP=OP ,∴△ONP≌△OMP(SSS),所以∠NOP=∠MOP,故OP为∠AOB的平分线.故选A.7.【答案】A【解析】解:a2+b2+c2=ab+bc+ac,2a2+2b2+2c2=2ab+2bc+2ac,2a2+2b2+2c2−2ab−2bc−2ac=0,(a2−2ab+b2)+(a2−2ac+c2)+(b2−2bc+c2)=0,(a−b)2+(a−c)2+(b−c)2=0,a−b=0且a−c=0且b−c=0,即a=b=c,所以△BAC是等边三角形,故选:A.方程两边乘2,再移项后分组得出(a−b)2+(a−c)2+(b−c)2=0,求出a−b=0且a−c=0且b−c=0,求出a=b=c,再根据等边三角形的判定得出即可.本题考查了等边三角形的判定,直角三角形的判定和等腰三角形的判定,能正确根据完全平方公式进行变形是解此题的关键.8.【答案】D【解析】解:把圆柱沿过B点的母线剪开,然后展开如图,A′点为点A展开后的对应点,×48=24(cm),MH=1cm,作BH⊥MN于H,BH=12A′N=1cm,∴A′H=20−1−1=18(cm),在Rt△A′BH中,A′B=√A′H2+BH2=30(cm).故选:D.先把圆柱沿过B点的母线剪开,然后展开如图,A′点为点A展开后的对应点,根据两点之间线段最短得到最短路线长度为A′B的长度,然后根据勾股定理计算A′B的长即可.本题考查了平面展开-最短路径问题:先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.9.【答案】B【解析】解:①实数和数轴上的点一一对应,故①说法错误;②不带根号的数不一定是有理数,如π,故②说法错误;③负数有立方根,故③说法错误;④∵17的平方根±√17,∴−√17是17的一个平方根.故④说法正确.故选:B.①根据有理数与数轴上的点的对应关系即可判定;②根据无理数的定义即可判定;③根据立方根的定义即可判定;④根据平方根的定义即可解答.此题主要考查了实数的定义和计算.有理数和无理数统称为实数,要求掌握这些基本概念并迅速做出判断.10.【答案】A【解析】解;如图,把△ADF绕A逆时针旋转90∘得到△ABG,∴△ADF≌△ABG,∴∠ADF=∠ABG=∠ABE=90∘,∴∠ABG+∠ABE=180∘,∴G、B、E三点共线,∴DF=BG,∠DAF=∠BAG,∵∠DAB=90∘,∠EAF=45∘,∴∠DAF+∠EAB=45∘,∴∠BAG+∠EAB=45∘,∴∠EAF=∠EAG,在△EAG和△EAF中,{AG=AF∠EAG=∠EAF AE=AE,∴△EAG≌△EAF(SAS),∴GE=FE,设BE=x,∵CD=6,DF=3,∴CF=3,则GE=BG+BE=3+x,CE=6−x,∴EF=3+x,∵∠C=90∘,∴(6−x)2+32=(3+x)2,解得,x=2,∴BE的长为2.故选:A.如图,首先把△ADF旋转到△ABG,然后利用全等三角形的性质得到DF=BG,∠DAF=∠BAG,然后根据题目中的条件,可以得到△EAG≌△EAF,再根据DF=3,AB=6和勾股定理,可以求出BE的长,本题得以解决.本题考查旋转的性质、全等三角形的判定和性质、勾股定理,解答本题的关键是明确题意,利用数形结合的思想解答11.【答案】−2【解析】解:∵四个实数−2,0,√2,3中,−2是负数,∴最小的实数是−2.故答案为:−2.根据负数都小于0即可得出结论.本题考查的是实数的大小比较,熟知负数都小于0是解题关键.12.【答案】12.60【解析】解:有理数12.6013精确到百分位的结果为12.60.故答案为:12.60.把千分位上的数字1进行四舍五入即可.本题考查了近似数:“精确到第几位”是精确度的常用的表示形式.13.【答案】书【解析】解:补全字母,如图所示:故这个单词所指的物品是书.故答案为:书.结合题意可知,题中的四个字母均是轴对称图形,所以直线l是四个字母的对称轴;将残缺的字母关于直线对称,即可得到完整字母,通过字母组成的单词即可知道所指物品了.本题侧重考查生活中的轴对称现象,掌握轴对称的性质是解决此题的关键.14.【答案】±√12【解析】解:12的平方根为±√12,故答案为:±√12.由平方根的概念即可求解.本题考查平方根的概念,关键是掌握:如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根,一个正数有两个平方根,这两个平方根互为相反数.15.【答案】2√3−5【解析】解:原式=2√3−4−1=2√3−5.故答案为:2√3−5.分别进行二次根式的化简、零指数幂、负整数指数幂的运算,然后按照实数的运算法则计算即可.本题考查了实数的运算,涉及了二次根式的化简、零指数幂、负整数指数幂等知识点,属于基础题.16.【答案】8cm【解析】解:∵△DBC的周长=BC+BD+CD=18cm,又∵DE垂直平分AB,∴AD=BD,故BC+AD+CD=18cm,∵AC=AD+DC=10cm,∴BC=18−10=8(cm).故答案为:8cm.利用线段垂直平分线的性质得AD=BD,再利用已知条件结合三角形的周长计算.此题考查了等腰三角形的性质,线段垂直平分线的性质.此题比较简单,注意掌握数形结合思想的应用.17.【答案】2√2−2【解析】解:由相邻两个正方形的面积分别为2和4,得到边长为√2和2,则阴影部分面积S=√2×(2−√2)=2√2−2,故答案为2√2−2.根据两个正方形的面积,利用算术平方根定义求出各自的边长,即可确定出阴影部分即可.此题考查了算术平方根,熟练掌握算术平方根的定义是解本题的关键.18.【答案】32−16√3【解析】解:如图将△ABP绕点A顺时针旋转60∘得到△AMG.连接PG,CM,则AB=AC=AM,MG=PB,AG=AP,∠GAP=60∘,∴△GAP是等边三角形,∴PA=PG,∴PA+PB+PC=CP+PG+GM,∴当M,G,P,C共线时,PA+PB+PC的值最小,最小值为线段CM的长,∵AP+BP+CP的最小值为4√2,∴CM=4√2,∵∠BAM=60∘,∠BAC=30∘,∴∠MAC=90∘,∴AM=AC=4,作BN⊥AC于N.则BN=12AB=2,AN=2√3,CN=4−2√3,∴BC2=BN2+CN2=22+(4−2√3)2=32−16√3,故答案为:32−16√3.如图将△ABP绕点A顺时针旋转60∘得到△AMG.连接PG,CM.首先证明当M,G,P,C共线时,PA+PB+PC的值最小,最小值为线段CM的长,由等腰直角三角形求得AC的长,进而求得BN、CN,由勾股定理求得结果.本题考查轴对称-最短问题,等腰三角形的性质,等边三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用两点之间线段最短解决问题,属于中考常考题型.19.【答案】解:(1)∵4(x−1)2=100,∴(x−1)2=25.∴x−1=±5.∴x=6或−4(2)∵(x+2)3=−27,∴x+2=−3.∴x=−5.【解析】(1)根据等式的性质解决此题.(2)根据立方根的定义解决此题.本题主要考查解一元一次方程、立方根,熟练掌握一元一次方程的解法、立方根的定义是解决本题的关键.20.【答案】解:(1)12√12−(3√13+√6÷√3)=√3−(√3+√2)=√3−√3−√2=−√2;(2)(3+√2)(2−√2)+(1+√2)2=6−3√2+2√2−2+1+2√2+2=7+√2.【解析】(1)先化简,进行乘法与除法运算,最后算加减即可;(2)利用二次根式的乘法的法则及完全平方公式进行运算,最后算加减即可.本题主要考查二次根式的混合运算,解答的关键是对相应的运算法则的掌握与运用.21.【答案】解:(1)∵正数x 的两个平方根分别为6−a 和2a +3,∴6−a +2a +3=0,∴a =−9;(2)∵6−a =15,2a +3=−15,∴x =(±15)2=225,∴√9−x 3=√−2163=−6∴求9−x 的立方根为−6.【解析】(1)正数的平方根互为相反数;(2)求出9−x 的值,再求立方根.本题考查了学生对正数的平方根和立方根的理解,正数的有两个平方根,且互为相反数,这时解本题的突破口,学生要充分把握.22.【答案】解:(1)∵直角三角形较短的直角边=12×2a =a ,较长的直角边=2a +3,∴小正方形的边长=2a +3−a =a +3;(2)小正方形的面积=(a +3)2=36,∴a =3(负值舍去),∴大正方形的面积=92+32=90.【解析】(1)观察图形,用直角三角形较长的直角边减去较短的直角边即可;(2)根据正方形的面积=边长的平方列出代数式,把a =3代入求值即可.本题考查了勾股定理的证明,列代数式,代数式求值,观察图形,用直角三角形较长的直角边减去较短的直角边求出小正方形的边长是解题的关键.23.【答案】(1)证明:∵BE 平分∠ABC ,∴∠ABE =∠DBE ,在△ABE 和△DBE 中,{AB =DB ∠ABE =∠DBE BE =BE ,∴△ABE≌△DBE(SAS);(2)解:∵∠A=100∘,∠C=50∘,∴∠ABC=30∘,∵BE平分∠ABC,∴∠ABE=∠DBE=12∠ABC=15∘,在△ABE中,∠AEB=180∘−∠A−∠ABE=180∘−100∘−15∘=65∘.【解析】本题考查了全等三角形的判定与性质、角平分线的定义、三角形内角和定理;熟练掌握三角形内角和定理和角平分线定义,证明三角形全等是解题的关键.(1)由角平分线定义得出∠ABE=∠DBE,由SAS证明△ABE≌△DBE即可;(2)由三角形内角和定理得出∠ABC=30∘,由角平分线定义得出∠ABE=∠DBE=12∠ABC=15∘,在△ABE中,由三角形内角和定理即可得出答案.24.【答案】(1)证明:∵AD是BC边上的中线,∴BD=CD,∵BE//CF,∴∠DBE=∠DCF,在△BDE和△CDF中,{∠DBE=∠DCF BD=CD∠BDE=∠CDF,∴△BDE≌△CDF(ASA);(2)解:∵AE=13,AF=7,∴EF=AE−AF=13−7=6,∵△BDE≌△CDF,∴DE=DF,∵DE+DF=EF=6,∴DE=3.【解析】(1)利用中点性质可得BD=CD,由平行线性质可得∠DBE=∠DCF,再由对顶角相等可得∠BDE=∠CDF,即可证得结论;(2)由题意可得EF=AE−AF=6,再由全等三角形性质可得DE=DF,即可求得答案.本题考查了全等三角形的判定和性质,难度较小,熟练掌握全等三角形的判定和性质是解题关键.25.【答案】解:(1)如图,△A′B′C′即为所求;(2)如图,线段AD即为所求;(3)设AC交BB′于点J.在△ADC和△BCB′中,{AD=BC∠ADC=∠BCB′=90∘DC=CB′,∴△ADC≌△BCB′(SAS),∴∠DAC=∠CBB′,∵∠ACD+∠DAC=90∘,∴∠CBB′+∠ACB=90∘,∴∠BJC=90∘,∴BB′⊥AC.【解析】(1)利用平移变换的性质分别作出A,B,C的对应点A′,B′,C′即可;(2)根据三角形的高的定义画出图形即可;(3)证明△ADC≌△BCB′(SAS),可得结论.本题考查作图-平移变换,全等三角形的判定和性质等知识,解题的关键是掌握平移变换的性质,正确寻找全等三角形解决问题.26.【答案】解:(1)∵∠B=60∘,∴当BD=BP时,△BDP为等边三角形,∵AB=20cm,点D为线段AB的中点,∴BD=10cm,∴BP=10cm,∴动点P的运动时间为:102=5(秒),即出发5秒后,△BDP为等边三角形;(2)设运动时间为x秒,①当∠BPD=90∘时,∵∠B=60∘,∴∠BDP=30∘,∴2BP=BD=10cm,∴BP=5cm,即2x=5,∴x=2.5;②当∠BDP=90∘时,∵∠B=60∘,∴∠BPD=30∘,∴BP=2BD=20cm,即2x=20cm,∴x=10;∴当P出发2.5秒或10秒后,△BPD为直角三角形;(3)设运动时间为t秒,∵AB=AC,∴∠B=∠C,∵AB=20cm,D是AB的中点,∴BD=10cm,①当BD=QC,BP=CP时,△BDP≌△CQP,∵BC=16cm,∴BP=CP=8cm,∵BP=2t,∴t=4,∴CQ=at=4a=10,∴a=5,2②当BD=PC,BP=CQ时,△BDP≌△CPQ,∴CP=16−2t=10,∴t=3,∴BP=6,CQ=at=3a=6,∴a=2,或2时,△BPD和△CQP全等.综上所述,当a=52【解析】(1)根据等边三角形的判定求解即可;(2)分两种情况;①当∠BPD=90∘时,由∠B=60∘,得到∠BDP=30∘,求得2BP=BD=10,求出x=2.5;②当∠BDP=90∘时,根据三角形的内角和得到∠BPD=30∘,求出x=10;即可得到当P出发2.5秒或10秒后,△BPD为直角三角形;(3)根据全等三角形应满足的条件探求边之间的关系,再根据路程=速度×时间公式,先求得点P 运动的时间,再求得点Q的运动速度.本题是三角形综合题,考查了全等三角形的判定和性质,等边三角形的判定,三角形的内角和,直角三角形的判定,熟练掌握全等三角形的判定、等边三角形的判定、直角三角形的判定是解题的关键.27.【答案】17【解析】解:(1)作点C关于AB的对称点F,连接DF交AB于点P,连接PC,点P即为所求;作DE⊥BC交BC的延长线于E.在Rt△DEF中,∵DE=AB=200米,EF=AD+BC=80+70=150米,∴DF=√DE2+EF2=√2002+1502=250(米),∴PD+PC的最小值为250米;(2):先作出点C关于AB的对称点F,连接DF,作DE⊥BC交BC的延长线于E.使AB=15,AD=5,BC=BF=3,DF就是代数式√x2+9+√(15−x)2+25的最小值,∵DF=√DE2+EF2=√152+82=17,∴代数式√x2+9+√(15−x)2+25的最小值为17.故答案为:17.(1)作点C关于AB的对称点F,连接DF交AB于点P,连接PC,点P即为所求;根据勾股定理可得DF的长,从而解答即可;(2)先作出点C关于AB的对称点F,连接DF,使AB=15,AD=5,BC=BF=3,DF就是代数式√x2+9+√(15−x)2+25的最小值,本题考查轴对称-最短问题,勾股定理等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.28.【答案】(1)证明:如图1中,∵AB=AC,AB=AE,∴AC=AE,在△AFC和△AFE中,{AC=AE CF=EF AF=AF,∴△CAF≌△EAF(SSS),∴∠E=∠ACF,又∵AB=AE,∴∠E=∠ABE,∴∠ABE=∠ACF,又∵∠ADB=∠FDC,∴∠BFC=∠BAC;(2)解:结论:AF+EF=BF.理由:如图2中,在BF上取点G,使FG=FC,连接CG.∴∠BFC=60∘,∵FG=FC,∴△GFC为等边三角形,又∵AB=AC,∠BAC=60∘,∴△ABC为等边三角形,∴∠ACB=∠GCF=60∘,∴∠BCG=∠ACF,又∵BC=AC,GC=FC,∴△BGC≌△AFC(SAS),∴AF=BG,由(1)得△ACF≌△AEF.EF=CF,∵CF=GF,∴EF=GF.∵BF=BG+GF,∴BF=AF+EF;(3)如图3中,延长BA,CF交于点H.∵∠BFC=∠BAC=90∘,∴∠BFC=∠BFH=90∘,BD平分∠ABC,∴∠ABF=∠CBF,又∵BF=BF,∴△HBF≌△CBF(ASA),∴CF=HF=1CH,2又∵∠BAC=∠HAC=90∘,AB=AC,∠ABD=∠ACH,∴△ABD≌△ACH(ASA),∴BD=CH=2CF,∵CF=EF,∴EF BD =12.【解析】(1)证明△CAF≌△EAF(SSS),利用全等三角形的性质即可解决问题;(2)结论:AF+EF=BF.如图2中,在BF上取点G,使FG=FC,连接CG.证明△BGC≌△AFC(SAS),推出AF=BG,可得结论;(3)如图3中,延长BA,CF交于点H.证明△HBF≌△CBF(ASA),△ABD≌△ACH(ASA),可得结论.本题属于三角形综合题,考查了等腰三角形的性质,全等三角形的判定和性质,等边三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.3 平方根
班级姓名学号
学习目标:
1、了解平方根、算术平方根的概念,会用根号表示一个数的平方根和算术平方根.
2、了解开方与乘方是互逆的运算,会用开平方运算求解某些非负数的平方根和算术
平方根.
3、能运用算术平方根解决一些简单的实际问题.
学习难点
1、平方根与算术平方根的区别、联系.
2、开方与乘方的互逆关系,会用开平方运算求解某些非负数的平方根和算术平方
根.
教学过程:
课时1:
问题1:设图中的小方格的边长为1,你能说出两个长方形的对角线AB、A′B′的长吗?
设疑:由勾股定理可知AB²=12²+5²=169,AB=13,A’B’=1²+2²=5,那么A’B’=?
猜猜:如果一个数的平方等于9,这个数是几?一个数的平方等于2呢?想知道这个数的结果吗?我们来学习——
新知:一般地,如果一个数的平方等于a,那么这个数叫做a的平方根,也称为二次方根。

也就是说,如果x²=a,那么x叫做a的平方根。

例如,2²=4,(-2)²=4,±2叫做4的平方根。

10²=100,(-10)²=100,±10叫做100的平方根
13²=169,(--13)²=169,±13叫做169的平方根。

交流:1.9的平方根是什么?5的平方根是什么?
2、0的平方根是什么?0的平方根有几个?
3、-
4、-8、-36有平方根吗?为什么?
结论:个正数a 的正的平方根,记作“ ” 一个正数a 的负的平方根记作“- ”,这两个平方根合起来 记作“± ”,读作“正负根号a ”。

例如,2的平方根记作“± ”,读作“正负根号2”。

81的平方根记作“± ”,读作“正负根号81”
总结:1、一个正数有两个平方根,它们互为相反数;
2、0只有一个平方根,它是0本身; 负数没有平方根。

3、求一个数a 的平方根的运算,叫做开平方.
例题:求下列各数的平方根:
(1)25; (2)0.81;
(3)15; (4)(-2)²
(6)0
(7) 2 (8) 10²²
(9) (10) 格式:(1)∵ (±5)²=25;
∴25的平方根等于±5;
即± = ±5; 练习:
1、一个数的平方等于它本身,这个数是 ;一个数的平方根等于它本身,这个数是 ;
2、若3a+1没有平方根,那么a 一定 ;
3、若4a+1的平方根是±5,则a= ;
4、一个数x 的平方根等于m+1和m-3,则m= ,x= 。

课堂总结:
a a a 2818116)5(92)4( 25
课时2:
回顾练习:
1、一个数的平方等于它本身,这个数是 ;一个数的平方根等于它本身,这个数是 ;
2、若3a +1没有平方根,那么a 一定 ;
3、若4a +1的平方根是±5,则a = ;
4、一个数x 的平方根等于m +1和m -3,则m = ,x = 。

5、若|a -9|+(b -4)²=0,则
的平方根是 。

求下列各式中的x : (1) x ²=16 (2) x ²= (3) x ²=15 (4) 4x ²=81
导入:正数a 有2个平方根,其中正数a 的正的平方根,也叫做a 的算术平方根。

例如,4的平方根是±2,2叫做4的算术平方根。

举例:4的平方根是±2,2叫做4的算术平方根,记作 =2,
2的平方根是“±
”, 叫做2的算术平方根, 0只有一个平方根,0的平方根也叫做0的算术平方根,即 =0
交流 :
1、16的算术平方根的平方根是什么?
5的算术平方根是什么? 2、0的算术平方根是什么?
0的算术平方根有几个?
3、-2、-5、-6有算术平方根吗?为什么?
例题:
• 例1:求下列各数的算术平方根:
• (1)625; (2)0.81;
• (3)6; (4)(-2)²
• (5) (6)
应用:例2:“欲穷千里目,更上一层楼”。

说的是登的高看得远。

若观测点的高度为h ,观测者视线能达到的最远距离为d ≈ ,其中R 是地球半径(通常取6400km ),小丽站在海边一块岩石上,眼睛离
b a 49
254202562)25.0( hR
2
地面的高度为20M ,她观测到远处一艘船刚露出海平面,此时该小船离小丽有多远?
巩固:
• 求下列各数的算术平方根:
• (1)25; (2)0.0081;
• (3)15²; (4)(-2)²
• (6)0
(7)( 强化:
• 1、一个数的算术平方根等于它本身,这个数是 。

• 2、若x ²=16,则5-x 的算术平方根是 。

• 3、若4a+1的平方根是±5,则a ²的算术平方根是 。

• 4、 的平方根等于 ,算术平方根等于 。

• 已知y= + +3,求xy 的算术平方根。

课堂总结:
【课后作业】
班级 姓名 学号
一、判断题:
12±。

( ) 2、01平方根是自己的是和。

( )
3、 3=± ( )
4、 49的平方根是 ( )
5、2的平方根是 ( ) 9。

( ) 7的平方根。

( ) 8、1的平方根是1。

( ) 9、7=。

( ) 10、-1的平方根是-1。

( )
二、选择题:
1、下列说法中正确的是: ( )
5±。

B、算术01平方根是自己的是和。

C、 10=± D、 2、一个自然数的算术平方根为a,则下一个自然数的平方根是( )
81
121)5(2)42
)2()8(-2-x x -2
2162562561616±=∴±=±的平方根是,即(
)216256
2561616
±=∴±=±的平方根是,(
)2162562561616±=∴±=的平方根是,即(
)2162562561616
±=∴±±=±的平方根是,即A 、2
1a + B 、2(1)a ±+ C
、 D
、 3
) A 、16的平方根。

B 、4的平方根。

C 、16的算术平方根。

D 、 4的算术平方根。

4、下列求256的平方根的过程正确的是( )
A 、解:
B 、解:
C 、解:
D 、解:
5、81的算术平方根的平方根是( )A 、9± B 、3± C 、9 D 、3
6
( )A、13±
B、
D、17±
( )A、4±
B、
C、 D、8±
三、填空题 1、___的平方根等于它自身。

__的算术平方根等于自己。

绝对值等于自己的数是__. 平方等于自己的数是___,倒数等于自己的数是___。

相反数等于自己的是__ 2、0.01的平方根是____,
_____.
3
4±,则X=_____.
5=,则X=_______.
4、已知a 的算术平方根是0.02,则a =____, 当a ___=
3=。

5、如果一个自然数的平方是n ,那么比这个自然数小2的数是________.
6
___和_____之间,与整数______ 更接近。

7、比较大小并写出规律:


规律是______________________________________________________________.
四、计算和解答题
1、求下列各数的平方根:0, 1, 13
16,
2、计算:
②、 ③、 ④、
3、已知-3是某数的一个平方根,求这个数和它的算术平方根。

4、已知2a+1的一个平方根是3,3a+b-1的一个平方根是-4,求a 和b 的值。

相关文档
最新文档