BDR6122T-无线充电专用驱动芯片

合集下载

Abracon 20W 无线充电传输器芯片说明书

Abracon 20W 无线充电传输器芯片说明书

NAWCCA RTX 53 53 15 101 PartIdentification
Application
Width
Length
Thickness
Design Code
TX = Transmitter
53 = 53mm
53 = 53mm
15 = 4.5mm
101 = Design Code
5101 Hidden Creek Ln Spicewood TX 78669 Phone: 512-371-6159 | Fax: 512-351-8858 LLC For terms and conditions of sales, please visit:
MSL = 1
Soldering Information Wave Soldering Profile: Not suitable for wave soldering
NRND Manual Soldering:
350˚C Max, 3secs
Packaging - Qty per Tray: 150pcs - Qty Trays per Carton: 4 - Qty per Carton: 600pcs - Weight per Tray: 12Kg - Dimension of Carton: 41.5 * 30.0 * 30.0cm
Part Number AWCCA-TX535315-101
Test Condition
N Test Environment
Inductance
DC Resistance
Q
10μH±10%
55mΩ Max
135 Typ
125KHz / 1V
20±15˚C

恒星芯片B4161A 2.4GHz 19dBm无线芯片板文档说明书

恒星芯片B4161A 2.4GHz 19dBm无线芯片板文档说明书

EFR32MG12 2.4 GHz 19 dBm Radio Board BRD4161A Reference ManualRADIO BOARD FEATURES•Wireless SoC:EFR32MG12P432F1024GL125•CPU core: ARM Cortex ®-M4 with FPU •Flash memory: 1024 kB •RAM: 256 kB•Operation frequency: 2.4 GHz •Transmit power: 19 dBm•Integrated PCB antenna, UFL connector (optional).•Touch Slider•Crystals for LFXO and HFXO: 32.768 kHz and 38.4 MHz.The BRD4161A Mighty Gecko Radio Board enables developers to develop Zigbee ®, Thread,Bluetooth ® low energy and proprietary wireless applications. The board con-tains a Mighty Gecko Wireless System on Chip 2.4 GHz and optimized for operation with 19 dBm output power. With the on-board printed antenna and RF connector radi-ated and conducted testing is supported.The BRD4161A Mighty Gecko Radio Board plugs into the Wireless Starter Kit Main-board provided with the Mighty Gecko Starter Kit to get access to display, buttons and additional features from Expansion Boards. With the supporting Simplicity Studio suite of tools, developers can take advantage of graphical wireless application development; mesh networking debug and packet trace; and visual energy profiling and optimization. The board also serves as an RF reference design for applications targeting 2.4 GHz wireless operation with 19 dBm output power.This document contains brief introduction and description of the BRD4161A Radio Board features focusing on the RF sections and performance.| Smart. Connected. Energy-friendly.Rev. 1.00Introduction 1. IntroductionThe EFR32 Mighty Gecko Radio Boards provide a development platform (together with the Wireless Starter Kit Mainboard) for the Silicon Labs EFR32 Mighty Gecko Wireless System on Chips and serve as reference designs for the matching network of the RF inter-face.The BRD4161A Radio Board is designed to operate in the 2400-2483.5 MHz band with the RF matching network optimized to operate with 19 dBm output power.To develop and/or evaluate the EFR32 Mighty Gecko, the BRD4161A Radio Board can be connected to the Wireless Starter Kit Main-board to get access to display, buttons and additional features from Expansion Boards and also to evaluate the performance of the RF interface.2. Radio Board Connector2.1 IntroductionThe board-to-board connector scheme allows access to all EFR32MG12 GPIO pins as well as the RESETn signal. For more informa-tion on the functions of the available pin functions, see the EFR32MG12 data sheet.2.2 Radio Board Connector Pin AssociationsThe figure below shows the pin mapping on the connector to the radio pins and their function on the Wireless Starter Kit Mainboard.GNDF9 / PA3 / VCOM_RTS 3v3VCOM_RTS / PA3 / P36P200Upper RowNC / P38NC / P40PF9 / P42PF11 / P44DEBUG.TMS_SWDIO / PF1 / F0DISP_ENABLE / PD15 / F14UIF_BUTTON0 / PF6 / F12UIF_LED1 / PF4 / F10VCOM_CTS / PA2 / F8DEBUG.RESET / RADIO_#RESET / F4DEBUG.TDO_SWO / PF2 / F2DISP_SI / PC6 / F16VCOM_TXD / PA0 / F6PTI_DATA / PB12 / F20DISP_EXTCOMIN / PD13 / F18USB_VBUS5VBoard ID SCLGNDBoard ID SDAUSB_VREG F7 / PA1 / VCOM_RXD F5 / PA5 / VCOM_ENABLE F3 / PF3 / DEBUG.TDIF1 / PF0 / DEBUG.TCK_SWCLK P45 / PF12P43 / PF10P41 / PF8P39 / NC P37/ PB10 / SENSOR_ENABLE F11 / PF5 / UIF_LED1F13 / PF7 / UIF_BUTTON1F15 / PC8 / DISP_SCLK F17 / PD14 / DISP_SCS F19 / PB13 / PTI_FRAME F21 / PB11 / PTI_CLK GND VMCU_IN PD8 / P0P201Lower RowPD9 / P2PD10 / P4PD11 / P6GNDNCP35 / PA2 / VCOM_CTS P7 / PA9P5 / PA8P3 / PA7P1 / PA6P33 / PA0 / VCOM_TXD P31 / PK2P29 / PK0P27 / PJ14P25 / PI2P23 / PI0P21 / PF14P19 / NC P17 / PC5P15 / PB9P13 / PC11P11 / PB7P9 / PB6VCOM_RXD / P34 / P34BODEN / P32PK1/ P30PJ15 / P28PI3 / P26PI1 / P24PF15 / P22PF13 / P20NC / P18PC4 / P16PB8 / P14PC10 / P12PC9 / P10PD12 / P8Figure 2.1. BRD4161A Radio Board Connector Pin MappingRadio Board Connector3. Radio Board Block Summary3.1 IntroductionThis section gives a short introduction to the blocks of the BRD4161A Radio Board.3.2 Radio Board Block DiagramThe block diagram of the EFR32MG Radio Board is shown in the figure below.Figure 3.1. BRD4161A Block Diagram3.3 Radio Board Block Description3.3.1 Wireless MCUThe BRD4161A Mighty Gecko Radio Board incorporates an EFR32MG12P432F1024GL125 Wireless System on Chip featuring 32-bit Cortex®-M4 with FPU core, 1024 kB of flash memory and 256 kB of RAM and a 2.4 GHz band transceiver with output power up to 19 dBm. For additional information on the EFR32MG12P432F1024GL125, refer to the EFR32MG12 Data Sheet.3.3.2 LF Crystal Oscillator (LFXO)The BRD4161A Radio Board has a 32.768 kHz crystal mounted.3.3.3 HF Crystal Oscillator (HFXO)The BRD4161A Radio Board has a 38.4 MHz crystal mounted.| Smart. Connected. Energy-friendly.Rev. 1.00 | 33.3.4 Matching Network for 2.4 GHzThe BRD4161A Radio Board incorporates a 2.4 GHz matching network which connects the 2.4 GHz TRX pin of the EFR32MG12 to the one on-board printed Inverted-F antenna. The component values were optimized for the 2.4 GHz band RF performace and current con-sumption with 19 dBm output power.For detailed description of the matching network, see Chapter 4.2.1 Description of the 2.4 GHz RF Matching.3.3.5 Inverted-F AntennaThe BRD4161A Radio Board includes a printed Inverted-F antenna (IFA) tuned to have close to 50 Ohm impedance at the 2.4 GHz band.For detailed description of the antenna see Chapter 4.5 Inverted-F Antenna.3.3.6 UFL ConnectorTo be able to perform conducted measurements, Silicon Labs added an UFL connector to the Radio Board. The connector allows an external 50 Ohm cable or antenna to be connected during design verification or testing.Note: By default the output of the matching network is connected to the printed Inverted-F antenna by a series component. It can be connected to the UFL connector as well through a series 0 Ohm resistor which is not mounted by default. For conducted measurements through the UFL connector the series component to the antenna should be removed and the 0 Ohm resistor should be mounted (see Chapter 4.2 Schematic of the RF Matching Network for further details).3.3.7 Radio Board ConnectorsTwo dual-row, 0.05” pitch polarized connectors make up the EFR32MG Radio Board interface to the Wireless Starter Kit Mainboard. For more information on the pin mapping between the EFR32MG12P432F1024GL125 and the Radio Board Connector, refer to Chapter 2.2 Radio Board Connector Pin Associations.3.3.8 Capacitive Touch SliderThe touch slider (T2) utilizes the capacitive touch capability of the Capacitance Sense Module of the EFR32MG12. The slider interpo-lates 4 separate pads to find the exact position of a finger.The figure below shows the pin mapping of the touch slider to the Wireless SoC.Wireless SoCFigure 3.2. Touch Slider Pin MappingRev. 1.00 | 44. RF Section4.1 IntroductionThis section gives a short introduction to the RF section of the BRD4161A.4.2 Schematic of the RF Matching NetworkThe schematic of the RF section of the BRD4161A Radio Board is shown in the following figure.2.4 GHz Matching 2.4 GHz RF OutputSelection & Inverted-F AntennaFigure 4.1. Schematic of the RF Section of the BRD4161A4.2.1 Description of the 2.4 GHz RF MatchingThe 2.4 GHz matching connects the 2G4RF_IOP pin to the on-board printed Inverted-F Antenna. The 2G4RF_ION pin is connected to ground. For higher output powers (13 dBm and above), besides the impedance matching circuitry, it is recommended to use additional harmonic filtering as well at the RF output. The targeted output power of the BRD4161A board is 19 dBm. Therefore, the RF output of the IC is connected to the antenna through a four-element impedance matching and harmonic filter circuitry.For conducted measurements the output of the matching network can also be connected to the UFL connector by removing the series R1 component between the antenna and the output of the matching and adding a 0 Ohm resistor to the R2 resistor position between the output of the matching and the UFL connector.4.3 RF Section Power SupplyOn the BRD4161A Radio Board the power supply pins of the RF section (RFVDD, PAVDD) are directly connected to the output of the on-chip DC-DC converter. This way, by default, the DC-DC converter provides 1.8 V for the entire RF section (for details, see the sche-matic of the BRD4161A).4.4 Bill of Materials for the 2.4 GHz MatchingThe Bill of Materials of the 2.4 GHz matching network of the BRD4161A Radio Board is shown in the following table.| Smart. Connected. Energy-friendly.Rev. 1.00 | 5Table 4.1. Bill of Materials for the BRD4161A 2.4GHz RF Matching Network4.5 Inverted-F AntennaThe BRD4161A Radio Board includes an on-board printed Inverted-F Antenna tuned for the 2.4 GHz band. Due to the design restric-tions of the Radio Board, the input of the antenna and the output of the matching network can't be placed directly next to each other. As a result, a 50 Ohm transmission line was necessary to connect them. With the actual line length the impedance of the antenna at the double-harmonic frequency is transformed closer to a "critical load impedance range" resulting in the radiated level of the harmonic increases.To reduce the harmonic radiation a tuning component was used between the matching network output and the antenna input. For the actual Radio Board design (with the actual transmission line length) a small value inductor was used (instead of the R1 resistor with value of 1.8 nH) to transform the impedance at the double-frequency harmonic away from the critical region while keeping the impe-dance at the funamental close to 50 Ohm. With this the suppression of the radiated double-frequency harmonic increases by approxi-mately 3-4 dB. The resulting impedance and reflection measured at the output of the matcing network are shown in the following figure. As it can be observed the impedance is close to 50 Ohm (the reflection is better than -10 dB) for the entire 2.4 GHz band.Figure 4.2. Impedance and Reflection of the Inverted-F Antenna of the BRD4161A Board Measured from the Matching Output Note: The same value and type of 1.8 nH inductor was used as the one in the matching network (L1). | Smart. Connected. Energy-friendly.Rev. 1.00 | 65. Mechanical DetailsThe BRD4161A Mighty Gecko Radio Board is illustrated in the figures below.Figure 5.1. BRD4161A Top View24 mmConnectorConnector Figure 5.2. BRD4161A Bottom ViewMechanical DetailsRev. 1.00 | 7EMC Compliance 6. EMC Compliance6.1 IntroductionCompliance of the fundamental and harmonic levels is tested against the following standards:• 2.4 GHz:•ETSI EN 300-328•FCC 15.2476.2 EMC Regulations for 2.4 GHz6.2.1 ETSI EN 300-328 Emission Limits for the 2400-2483.5 MHz BandBased on ETSI EN 300-328 the allowed maximum fundamental power for the 2400-2483.5 MHz band is 20 dBm EIRP. For the unwan-ted emissions in the 1 GHz to 12.75 GHz domain the specified limit is -30 dBm EIRP.6.2.2 FCC15.247 Emission Limits for the 2400-2483.5 MHz BandFCC 15.247 allows conducted output power up to 1 Watt (30 dBm) in the 2400-2483.5 MHz band. For spurious emmissions the limit is -20 dBc based on either conducted or radiated measurement, if the emission is not in a restricted band. The restricted bands are speci-fied in FCC 15.205. In these bands the spurious emission levels must meet the levels set out in FCC 15.209. In the range from 960 MHz to the frequency of the 5th harmonic it is defined as 0.5 mV/m at 3 m distance (equals to -41.2 dBm in EIRP).Additionally, for spurious frequencies above 1 GHz, FCC 15.35 allows duty-cycle relaxation to the regulatory limits. For the EmberZNet PRO the relaxation is 3.6 dB. Therefore, the -41.2 dBm limit can be modified to -37.6 dBm.If operating in the 2400-2483.5 MHz band the 2nd, 3rd and 5th harmonics can fall into restricted bands. As a result, for those the -37.6 dBm limit should be applied. For the 4th harmonic the -20 dBc limit should be applied.6.2.3 Applied Emission Limits for the 2.4 GHz BandThe above ETSI limits are applied both for conducted and radiated measurements.The FCC restricted band limits are radiated limits only. Besides that, Silicon Labs applies those to the conducted spectrum i.e., it is assumed that, in case of a custom board, an antenna is used which has 0 dB gain at the fundamental and the harmonic frequencies. In that theoretical case, based on the conducted measurement, the compliance with the radiated limits can be estimated.The overall applied limits are shown in the table below.Table 6.1. Applied Limits for Spurious Emissions for the 2.4 GHz Band | Smart. Connected. Energy-friendly.Rev. 1.00 | 87. RF Performance7.1 Conducted Power MeasurementsDuring measurements, the EFR32MG Radio Board was attached to a Wireless Starter Kit Mainboard which was supplied by USB. The voltage supply for the Radio Board was 3.3 V.7.1.1 Conducted Measurements in the 2.4 GHz bandThe BRD4161A board was connected directly to a Spectrum Analyzer through its UFL connector (the R1 component was removed and a 0 Ohm resistor was soldered to the R2 resistor position). During measurements, the voltage supply for the board was 3.3 V provided by the mainboard. The supply for the radio (RFVDD) was 1.8 V provided by the on-chip DC-DC converter, the supply for the power amplifier (PAVDD) was 3.3 V (for details, see the schematic of the BRD4161A). The transceiver was operated in continuous carrier transmission mode. The output power of the radio was set to 19 dBm.The typical output spectrum is shown in the following figure.Figure 7.1. Typical Output Spectrum of the BRD4161AAs it can be observed, the fundamental is slightly lower than 19 dBm limit and the strongest unwanted emission is the double-frequency harmonic and it is under the -37.6 dBm applied limit.Note: The conducted measurement is performed by connecting the on-board UFL connector to a Spectrum Analyzer through an SMA Conversion Adapter (P/N: HRMJ-U.FLP(40)). This connection itself introduces approximately 0.3 dB insertion loss.RF PerformanceRev. 1.00 | 97.2 Radiated Power MeasurementsDuring measurements, the EFR32MG Radio Board was attached to a Wireless Starter Kit Mainboard which was supplied by USB. The voltage supply for the Radio Board was 3.3 V. The radiated power was measured in an antenna chamber by rotating the DUT 360degrees with horizontal and vertical reference antenna polarizations in the XY , XZ and YZ cuts. The measurement axes are shown inthe figure below.Figure 7.2. DUT: Radio Board with the Wireless Starter Kit Mainboard (Illustration)Note: The radiated measurement results presented in this document were recorded in an unlicensed antenna chamber. Also the radi-ated power levels may change depending on the actual application (PCB size, used antenna, and so on). Therefore, the absolute levels and margins of the final application are recommended to be verified in a licensed EMC testhouse.7.2.1 Radiated Measurements in the 2.4 GHz bandFor the transmitter antenna the on-board printed Inverted-F antenna of the BRD4161A board was used (the R1 component was moun-ted). During measurements, the board was attached to a Wireless Starter Kit Mainboard (BRD4001 (Rev. A02) ) which was supplied through USB. During the measurements the voltage supply for the board was 3.3 V provided by the mainboard. The supply for the radio (RFVDD) was 1.8 V provided by the on-chip DC-DC converter, the supply for the power amplifier (PAVDD) was 3.3 V (for details, see the schematic of the BRD4161A). The transceiver was operated in continuous carrier transmission mode. The output power of the radio was set to 19 dBm based on the conducted measurement.The results are shown in the table below.Table 7.1. Maximums of the measured radiated powers in EIRP [dBm]As it can be observed, thanks to the high gain of the Inverted-F antenna, the level of the fundamental is higher than 19 dBm. The stron-gest harmonic is the double-frequency one and thanks to the additional suppression provided by the instead of the R1 resistor its level is under -50 dBm.RF PerformanceEMC Compliance Recommendations 8. EMC Compliance Recommendations8.1 Recommendations for 2.4 GHz ETSI EN 300-328 complianceAs it was shown in the previous chapter, the radiated power of the fundamental of the BRD4161A Mighty Gecko Radio Board complies with the 20 dBm limit of the ETSI EN 300-328 in case of the conducted measurement but due to the high antenna gain the radiated power is higher than the limit by 2 dB. In order to comply, the output power should be reduced (with different antennas, depending on the gain of the used antenna, the necessary reduction can be different). The harmonic emissions are under the -30 dBm limit. Although the BRD4161A Radio Board has an option for mounting a shielding can, that is not required for the compliance.8.2 Recommendations for 2.4 GHz FCC 15.247 complianceAs it was shown in the previous chapter, the radiated power of the fundamental of the BRD4161A Mighty Gecko Radio Board complies with the 30 dBm limit of the FCC 15.247. The harmonic emissions are under the -37.6 dBm applied limit both in case of the conducted and the radiated measurements. Although the BRD4161A Radio Board has an option for mounting a shielding can, that is not required for the compliance.Document Revision History 9. Document Revision HistoryTable 9.1. Document Revision HistoryBoard Revision History 10. Board Revision HistoryTable 10.1. BRD4161A Radio Board RevisionsErrata 11. ErrataThere are no known errata at present.Table of Contents1. Introduction (1)2. Radio Board Connector (2)2.1 Introduction (2)2.2 Radio Board Connector Pin Associations (2)3. Radio Board Block Summary (3)3.1 Introduction (3)3.2 Radio Board Block Diagram (3)3.3 Radio Board Block Description (3)3.3.1 Wireless MCU (3)3.3.2 LF Crystal Oscillator (LFXO) (3)3.3.3 HF Crystal Oscillator (HFXO) (3)3.3.4 Matching Network for 2.4 GHz (4)3.3.5 Inverted-F Antenna (4)3.3.6 UFL Connector (4)3.3.7 Radio Board Connectors (4)3.3.8 Capacitive Touch Slider (4)4. RF Section (5)4.1 Introduction (5)4.2 Schematic of the RF Matching Network (5)4.2.1 Description of the 2.4 GHz RF Matching (5)4.3 RF Section Power Supply (5)4.4 Bill of Materials for the 2.4 GHz Matching (5)4.5 Inverted-F Antenna (6)5. Mechanical Details (7)6. EMC Compliance (8)6.1 Introduction (8)6.2 EMC Regulations for 2.4 GHz (8)6.2.1 ETSI EN 300-328 Emission Limits for the 2400-2483.5 MHz Band (8)6.2.2 FCC15.247 Emission Limits for the 2400-2483.5 MHz Band (8)6.2.3 Applied Emission Limits for the 2.4 GHz Band (8)7. RF Performance (9)7.1 Conducted Power Measurements (9)7.1.1 Conducted Measurements in the 2.4 GHz band (9)7.2 Radiated Power Measurements (10)7.2.1 Radiated Measurements in the 2.4 GHz band (10)8. EMC Compliance Recommendations (11)8.1 Recommendations for 2.4 GHz ETSI EN 300-328 compliance (11)8.2 Recommendations for 2.4 GHz FCC 15.247 compliance (11)9. Document Revision History (12)10. Board Revision History (13)11. Errata (14)Table of Contents (15)Silicon Laboratories Inc.400 West Cesar Chavez Austin, TX 78701USASimplicity StudioOne-click access to MCU and wireless tools, documentation, software, source code libraries & more. Available for Windows, Mac and Linux!IoT Portfolio /IoTSW/HW/simplicityQuality/qualitySupport and CommunityDisclaimerSilicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Labs shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent of Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.Trademark InformationSilicon Laboratories Inc.® , Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®, EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®, Gecko®, ISOmodem®, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress® and others are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.。

昂科发布软件更新支持NationN32WB452系列低功耗蓝牙芯片N32WB452LEQ6的烧录

昂科发布软件更新支持NationN32WB452系列低功耗蓝牙芯片N32WB452LEQ6的烧录

昂科发布软件更新支持Nation国民技术的N32WB452系列低功耗蓝牙芯片N32WB452LEQ6的烧录芯片烧录行业领导者-昂科技术近日发布最新的烧录软件更新及新增支持的芯片型号列表,其中Nation国民技术的N32WB452系列低功耗蓝牙芯片N32WB452LEQ6的烧录已经被昂科的通用烧录平台AP8000所支持。

N32WB452系列BLE5.0微控制器产品采用32位ARM Cortex-M4加32位ARM Cortex-M0双内核构架,其中32bit ARM Cortex-M0核专用于处理BLE5.0射频电路及蓝牙协议,通过内部高速总线,由ARM Cortex-M4核进行配置。

ARM Cortex-M4核作为应用处理器,支持浮点运算单元(FPU)和数字信号处理(DSP)指令,支持并行计算指令,最高工作主频144MHz,集成高达512KB加密存储Flash并支持多用户分区管理,最大144KB SRAM。

内置一个内部高速AHB总线,二个低速外设时钟总线APB及总线矩阵,最多支持65个通用I/O,提供丰富的高性能模拟接口,包括2个12bit 5Msps ADC,最多支持16个外部输入通道、2个1Msps12bit DAC、多达18通道电容式触摸按键,同时提供多种数字通信接口,包括7个U(S)ART、4个I2C、3个SPI、1个USB 2.0设备、2个CAN 2.0B通信接口,1个数字视频接口(DVP),1个SDIO接口,内置密码算法硬件加速引擎,支持多种国际及国密算法硬件加速。

N32WB452系列产品提供了符合BLE 5.0的无线连接能力,稳定工作于-40°C至+85°C 的温度范围,供电电压1.8V至3.6V,提供多种功耗模式供用户选择,符合低功耗应用的要求。

该系列产品提供QFN48、QFN64和QFN88封装。

根据不同的封装形式,器件中的外设配置不尽相同。

这些丰富的外设配置,使得N32WB452系列BLE5.0微控制器芯片适合于智能门锁、智能穿戴、智能标签、智能家居、物联网及移动互联等多种应用场合。

6122芯片

6122芯片

WD6122 红外遥控发射电路WD6122 芯片是通用红外遥控发射集成电路,采用CMOS 工艺制造,最多可外接64个按键,并有三组双重按键。

封装形式为SOP-24和SOP-20。

一.特点z低压CMOS 工艺制造z工作电压范围宽z通过外部接法最多可产生65536种用户码z可通过SEL管脚选择,最多可支持128+ 6条指令码z SOP-24、SOP-20、COB封装形式可选二. 应用范围z VCD、DVD 播放机、电视机、组合音响设备、电视机顶盒三. 产品规格分类z WD6122-001:SEL2接GND ,ROM中数据为0z WD6122-002:SEL2接VDD,用户专用模式四. 结构框图WD6122 红外遥控发射电路五. 管脚图及管脚说明1. 管脚图2. 管脚说明管脚号 符号 输入输出 功能描述23、24、1~6 KI0-KI7 I 键扫描输入端7 REM O数据输出管脚(遥控输出)8 Vdd 电源正极9 SEL I 选择管脚10 OSCO O 振荡器管脚(输出)11 OSCI I 振荡器管脚(输入)12 Vss 电源负极13 LMP O 输出LED指示(呈闪烁状态)21~14 KI/O0~KI/O7I/O 键扫描输入/输出管脚22 CCS I 键扫描输入WD6122 红外遥控发射电路六. 功能说明1. 编码方式WD6122时被传送。

码型结构如下:引导码由一个9ms的载波波形和4.5ms的关断时间构成,它作为随后发射的码的引导,这样当接收系统是由微处理器构成的时候,能更有效地处理码的接收与检测及其它各项控制之间的时序关系。

编码采用脉冲位置调制方式(PPM)。

利用脉冲之间的时间间隔来区分“0”和“1”。

每次8位的码被传送之后,它们的反码也被传送,减少了系统的误码率。

2.键盘输入矩阵WD6122键盘输入矩阵请参考下图:3.按键输入WD6122 在键扫描输入端KI0~KI7 和键扫描定时信号输入/输出端KI/O0~KI/O7构成的8×8 矩阵上共设置64 个按键。

安浩芯-SGD5141XX-无线充电(带锂电保护)接收芯片-规格说明书

安浩芯-SGD5141XX-无线充电(带锂电保护)接收芯片-规格说明书

规格说明书SGD5141XX无线充电(带锂电保护)接收芯片版本1.5 安 浩 芯保留不预先通知而修改此文件的权利目录1.概述 (3)2.特性 (3)3.引脚说明 (4)4.功能模块框图 (5)5.封装尺寸图 (6)6.编号说明 (7)7.应用电路图 (8)8.无线充电 (9)9.通信功能 (9)10.状态指示 (9)11.过温保护功能 (10)12.过流、短路保护和自动恢复功能 (10)13.过放电保护功能 (11)14.极限工作条件 (11)15.电气参数 (12)16.修改记录 (13)1. 概述SGD5141是一款无线充电接收+锂电保护芯片,其集成通讯、高频整流、频率控制、充电状态指示、过温保护、过流保护、锂电保护等功能,外围器件精简到只需要一个小电容,带上模拟混合数字的技术,使整机可靠性更高,应用更加灵活简洁。

在小体积的产品上应用更加有优势和效率更高。

应用范围广:数码产品(智能手表、手环、耳机……),以及各类需要防水、外观讲究和充电方便的手持产品。

2. 特性◆内置的功率级采用低电阻NMOS FET技术确保高效率与低功耗◆内置模拟+数字解调,减少外围器件,通讯更加可靠灵活◆充电状态和电池状态可以给指示◆免调试,自动连接◆自动功率控制◆过热保护功能(OTP)◆欠压保护功能(UVLO)◆过流保护功能(OCP)◆短路保护功能(SCP)◆外围电路简单到一个电容,体积小,安装方便◆静态电流小于6uA,过放电保护后电流小于1uA◆电池保护功能◆充电电压检测精度高◆锂电保护◆多芯片并联,增加充电电流3. 引脚说明SOT23-6:DFN6L(2*2)4. 功能模块框图5. 封装尺寸图SOT23-6DFN6L(2mm*2mm)DFN6L(0202X0.75-0.65) 封装尺寸图6.编号说明封装形式:S表示SOT23-6充电电流:1表示100mA充电结束电压:4表示4.2V表示无线接收IC品牌7.应用电路图单芯片电路图并联芯片电路1、C1电容尽量靠近芯片,到芯片VDD和GND的走线尽量短和粗,如果电池的引线比较长,那么要加大C1的容量2、C1电容请使用NPO电容3、电池的引线到芯片的VDD和GND尽量短和粗4、由于采用的是高频磁耦合传输电能,为了减少高频的趋肤效应,用铜线绕制线圈时,可以采用多股线,画PCB或FPC时用双面板而且走线尽量宽5、LAYOUT时注意,跟芯片底部金属和GND引脚相连的铜皮尽量大和厚,目的这样可以帮助芯片散热和减低导通内阻,从而增加转换效率和提高系统的稳定性8.无线充电芯片内部集成无线充电管理电路,VCHG端口跟接收线圈相连,发射线圈发生的交变磁场,会使放在附近的接收线圈接收到AC信号,芯片内部的高压整流电路会把接收到AC信号整理成DC电源提供给电池充电,当电池电压小于2.7V时实行涓流充电,大于2.7V实现恒流充电,充电到电池电压大约4.15V时,会转成类似恒压的涓充,充电到4.2V时结束充电,充电结束电压精度是1%。

tec6122中文资料

tec6122中文资料

16 进制代码 (有小数点)
FDH 61H DBH F3H 67H B7H BFH E1H FFH F7H EFH 3FH 9CH 7BH 9FH 8FH CFH 6FH 01H
第 4 页 共 4页 202004-1-8 14:550636
六、 主要电参数(VCC=+5V,T=25℃)
参数名称
电源电压
静态电流 输入 低电平 电平 高电平
―S1∽―S8 吸收脉冲电流 A—DP 输出
脉冲电流
工作频率
符号 测试条件 最小值 典型值
Vcc
Idd
OEN=0
ViL
SI, SCP,
ViH
LCP, ห้องสมุดไป่ตู้EN
脉冲占空比
IOL
1:8
脉冲占空比
IoH
1:8
TEC6122 与微处理器并行口 interface 应用时,任选一个并行口输出端为 SI,另一个并 行口输出端为 SCP。此时,移位数据 SI、移位脉冲 SCP,移位脉冲个数均由程序产生。以 8051 为例,我们选 P1.0 为 SI,P1.1 为 SCP。其相应的显示程序见附录三。
驱动单色 8X8LED 点阵
段数据锁存器,多路选择器,段驱动器
第 1 页 共 1页 202004-1-8 14:550636
TEC6122 说明书
移入 8X8 bit 串行移位寄存器中的段码数据在 LCP 打入锁存器脉冲作用下,锁存到 8X8 bit 段数 据 锁 存 器 。 数 据 锁 存 器 中 的 段 码 经 多 路 选 择 器 , ―S1 时送第一位(个位) A1, B1,……,DP1,段码显示;依次地,S8 送第 8 位(千万位)A8,B8,……,DP8,段码显示。

rt06122snhec03规格书

rt06122snhec03规格书

rt06122snhec03规格书引言一、产品简介rt06122snhec03是一款多功能设备,具备高性能和稳定性。

它可以广泛应用于各个行业,如工业自动化、通信、电子等领域。

该产品采用先进的技术和材料,具有出色的耐用性和可靠性。

二、外观设计rt06122snhec03外观简洁大方,采用了现代化设计理念。

机身采用高强度材料制成,具有良好的耐磨性和防护性能。

产品的尺寸合理,便于携带和安装。

外观颜色多样,可根据客户需求进行定制。

三、性能参数1. 处理器性能:rt06122snhec03配备了高性能的处理器,能够快速处理大量数据和复杂计算,确保设备的高效运行。

2. 存储容量:rt06122snhec03内置大容量存储器,能够存储大量数据和文件,满足不同应用场景的需求。

3. 通信接口:rt06122snhec03具备多种通信接口,如以太网、USB、RS232等,便于与其他设备进行连接和数据传输。

4. 电源管理:rt06122snhec03采用先进的电源管理技术,具有低功耗和高效能的特点,能够提供稳定可靠的电源供应。

5. 温度范围:rt06122snhec03能够在广泛的温度范围内正常工作,适应各种环境条件。

6. 抗震能力:rt06122snhec03具备良好的抗震能力,能够在恶劣的工作环境下保持稳定运行。

四、功能特点1. 多任务处理:rt06122snhec03能够同时处理多个任务,提高工作效率。

2. 数据加密:rt06122snhec03支持数据加密功能,确保数据的安全性和机密性。

3. 远程管理:rt06122snhec03具备远程管理功能,可以通过网络远程监控和管理设备,方便用户进行远程操作。

4. 高精度测量:rt06122snhec03具有高精度的测量能力,能够准确测量各种物理量。

5. 多种应用场景:rt06122snhec03适用于多种应用场景,如工业自动化控制、实验测量、通信设备等。

五、应用领域rt06122snhec03可以广泛应用于各个行业领域,如工业控制系统、通信设备、电子仪器仪表等。

uPD6122G-001中文资料

uPD6122G-001中文资料

3
µPD6121, 6122
1. PIN FUNCTIONS
(1) Key input pins (KI0 to KI7), key input/output pins (KI/O0 to KI/O7) A pull-down resistor is placed between key input pins and a VSS pin. When several keys are pressed simultaneously, the transmission of the corresponding signals is inhibited by a multiple-input prevention circuit. In the case of double-key input, transmission is inhibited if both keys are pressed simultaneously (within 36 ms interval); if not pressed simultaneously, the priority of transmission is first key, then second key. When a key is pressed, the custom code and data code reading is initiated, and 36 ms later, output to REM output is initiated. Thus if the key is pressed during the initial 36 ms, one transmission is performed. If a key is kept pressed for 108 ms or longer, only leader codes are consecutively transmitted until the key is released. Keys can be operated intermittently at intervals as short as 126 ms (interval between two on’s), making this an extremely fast-response system. (2) Resonator connection pins (OSCI, OSCO) The oscillator starts operating when it receives a key input. Use a ceramic resonator with a frequency between 400 and 500 kHz. (3) Power-supply pin The power supply voltage is supplied by two 3-V batteries. A broad range of operating power supply voltage is allowed, from 2.0 to 3.3 V. The supply current falls below 1 µA when the oscillator is inactive when no keys are pressed. (4) REM output pin The REM output pin outputs the transmission code, which consists of the leader code, custom code (16 bits), and data code (16 bits) (Refer to 2. NEC TRANSMISSION FORMAT (REM OUTPUT)). (5) SEL input pin By controlling D7 of the data code with this pin, the µPD6121 and µPD6122 can transmit 64 and 128 different data codes, respectively. By connecting the SEL pin to VDD or VSS, D7 is set to “0” or “1”, respectively. This pin has high-impedance input, therefore be sure to connect it either to VDD or VSS. (6) CCS input pin By placing a diode between the CCS pin and the KI/O pin, it is possible to set a custom code. When a diode is connected, the corresponding custom code is “1”, and when not connected, it is “0”. (7) LMP output pin The LMP pin outputs a low-level signal while the REM pin outputs a transmission code.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.00 BSC 2.00 BSC 0.50 BSC
1.60 0.90 0.30
Max. 0.80 0.05
0.30
1.65 0.95 0.35
V1.0
11
2017
8 PINS, SOP, 150MIL
BDR6122T
Symbol
A A1 A2 b c D E E1 e L

Notes: 1. Refer to JEDEC MS-012AA 2. All dimensions are in millimeter
V1.0
10
2017
封装资料
8-PIN, DFN
BDR6122T
Symbol
A A1 A3 b D E e D2 E2 L
Note: Refer to JEDEC MO-229
Min. 0.70
0
0.18
1.50 0.80 0.25
Dimensions Nom. 0.75 0.02
0.20 REF 0.25
V1.0
8
2017
典型工作特性
(如无特殊规定,VM=5V, VCC=3V)
BDR6122T
VM Sleep Current (nA)
12 10
8 6 4 2 0
-40 -20 0 20 40 60 80
Ambient Temperature (℃)
VCC Sleep Current (nA)
6 5 4 3 2 1 0
Power Supply
Motor Driver System
VM
Motor Driver
Local Bulk Capacitor
GND
IC Bypass Capacitor
图 2. 外部电源供电的马达驱动系统
PCB 布局
VM 和 VCC 应该使用低 ESR 陶瓷电容旁路到地,建议数值是 0.1uF。这些电容应该尽可能的放在 VM 和 VCC 脚位 旁边,并用粗线与地相连。
t5
输出上升时间
t6
输出下降时间
twake
唤醒时间 , nSLEEP 上升沿到输入开启
BDR6122T
最小 0.8 0.8 0.7 0.7 0.5 0.5 5
单位 µS µS µS µS µS µS µS
IN1
Z
IN2 t1
OUT1
Z
Z
OUT2
t4
t2
t3
Z
OUTx
80%
80%
20%
20%
t5
t6
图 5. 输入输出时序图
电源和马达驱动系统之间的电感限制了电源的额定电流值。如果电源电容值太小,系统需要额外的电流提供或者马 达电压会有跳变。当电源电容值足够大的时候,马达电压就会很稳定,并且在大电流切换时也能快速响应。
电源电容的额定电压应该比工作电压高,当马达传输给电源能量时能够提供足够的裕度。
Parasitic Wire Inductance
模式
条件
H桥
正常工作
nSLEEP pin=1
工作
休眠模式
nSLEEP pin=0
关断
故障
任意一种故障出现
关断
表 3. 工作模式
V1.0
4
2017
BDR6122T
电源电容推荐
在马达驱动系统设计中,电源电容是非常重要的,一般而言,容值大一些效果更好一些。
电源电容值选取由以下几个因素决定: 马达系统需要很高的电流能力 电源电容要求提供电流能力 在电源和马达直接寄生的电感数量 可接受的电压纹波 马达类型(有刷直流马达,无刷直流马达,步进马达) 马达刹车方式
-40 -20 0
20 40 60 80
Ambient Temperature (℃)
图 6. IVMQ vs TA
图 7. IVCCQ vs TA
VM Operating Current (mA)
0.3 0.25
0.2 0.15
0.1 0.05
0 -40
-20 0 20 40 60 80 Ambient Temperature (℃)
Min. -
0.10 1.25 0.31 0.10
0.40 0
Millimeter Nom. 4.90 BSC 6.00 BSC 3.90 BSC 1.27BSC -Biblioteka Max. 1.75 0.25
0.51 0.25
1.27 8
V1.0
12
2017
VCC Operating Current (mA)
0.6 0.5 0.4 0.3 0.2 0.1
0 -40 -20 0 20 40 60 80
Ambient Temperature (℃)
HS + LS rds(ON) (mΩ)
图 8. IVM vs TA(50KHz PWM)
400 350 300 250 200
功率电源 全桥输出 1 全桥输出 2 地 逻辑输入 2 逻辑输入 1 休眠模式输入端口 逻辑供电电源
描述
引脚编号 1 2 3 4 5 6 7 8
V1.0
3
2017
BDR6122T
功能描述
全桥控制方式
BDR6122T 是由一组 PWM 输入信号控制的(也叫 IN-IN 控制),每一路输出都是由一个输入脚控制。
µA
240
400
µA
5
nA
380
500
µA
450
650
µA
480
650
µA
450
650
µA
2
nA
VIN=0V VIN=3.3V IN1 IN2 nSLEEP
0.3*VCC V
0.5*VCC
V
5
µA
50
µA
100

VM=5V ; VCC=3V ; Io=800mA ; Tj=25℃ VOUT=0V
VCC 下降 VCC 上升
0.1uF
0.1uF
VM
1
OUT1
2
OUT2
3
GND
4
8
VCC
7
nSLEEP
6
IN1
5
IN2
图 4. 简化的 PCB 布局
V1.0
5
2017
绝对最大额定值
参数 马达供电电压 , VM 逻辑电源供电电压, VCC 工作温度 存储温度, Tstg 工作湿度 存储湿度
静电等级
所有脚位
HBM MM
CDM*
8-Pin, DFN
BDR6122T
标记 -
SOP-8
VM
1
8
VCC
OUT1
2
7
nSLEEP
Thermal
Pad
OUT2
3
6
IN1
GND
4
5
IN2
VM
1
OUT1
2
OUT2
3
GND
4
8
VCC
7
nSLEEP
6
IN1
5
IN2
引脚名称 VM
OUT1 OUT2 GND
IN2 IN1 nSLEEP VCC
输入/输出 电源 输出 输出 电源 输入 输入 输入 电源
应用
电子锁 玩具 无线充电 机器人 消费类产品
BDR6122T
1.8A 低压 H 桥驱动 IC
特征
H 桥马达驱动 - 驱动直流有刷马达或电感或其它负载 - 超低内阻:上臂+下臂: 280mΩ
最大 1.8A 直流输出驱动电流 马达电压和逻辑电压独立供电
- 马达电源 VM: 0 to 12V - 逻辑电源 VCC: 1.8V to 5.5V 低功耗休眠模式 - IVM 和 IVCC 的静态电流 10nA 小封装 - DFN8 (2.0 X 2.0 mm) - SOP-8 保护特征 - VCC 欠压锁定 - 过流保护 - 过热保护
关断状态下漏电流
保护功能
VUVLO VCC 欠压锁定
IOCP tRETRY TTSD
过流保护触发点 过流保护恢复时间 过温保护温度点
BDR6122T
测试条件
最小
典型
最大 单位
VM=5V ; VCC=3V; 无 PWM 关断模式 VM=5V ; VCC=3V ; 无 PWM 正/反转模式 VM=5V ; VCC=3V ; 无 PWM 刹车模式 VM=5V ; VCC=3V PWM=50KHz VM=5V ; VCC=3V nSLEEP=0
-40 -20 0 20 40 60 80 Ambient Temperature (℃)
图 10. HS + LS rDS-on vs TA
HS + LS DS(ON) r (mΩ)
图 9. IVCC vs TA(50KHz PWM)
400 VCC=2V
350
VCC=3V VCC=5V
300
250
芯片温度
280

5
nA
1.7
V
1.8
V
1.9
3.5
A
1
mS
160

V1.0
7
2017
时序要求
TA=25℃, VM=5V, VCC=3V, RL=20Ω 时间
参数
t1
输出开启时间
t2
输出关断时间
t3
延迟时间, INx high to OUTx high
t4
延迟时间, INx low to OUTx low
相关文档
最新文档