晶体结构

合集下载

第一章晶体的结构

第一章晶体的结构

求晶面指数的方法
OA1 ra1, OA2 sa2 , OA3 ta3
h1 : h2 : h3 1 1 1 : : r s t
n
N
a3
O
d
a2
A2 A1
a1
设 a 1 , a 2 , a 3的末端上的格点分别在离原点距离h1d、h2d、
h3d的晶面上,这里 h1、h2、h3为整数 。 基矢
格点只在顶角上,内部和面上都不包含其他格点,整个原胞 只包含一个格点。
3、晶胞
原胞往往不能反映晶体的对称性
晶胞:能反映晶体对称性的最小结构重复单元
是原胞的数倍。晶胞的基矢用 a b c
原胞:
表示
a1 a2 a3
*几种典型晶体结构的原胞和晶胞
每种原子都各自构成一种相同的Bravais格子,这些Bravais 格子相互错开一段距离,相互套构而形成的格子。即复式 格子是由若干相同的Bravais格子相互位移套构而成的。
*几种典型的复式晶格
NaCl结构(Sodium Chloride structure ) 复式面心立方
例:MgO、KCl、AgBr 等
用来描述晶体中原子排列的紧密程度,原子排 列越紧密,配位数越大
简单立方(简立方)(simple cubic, sc)
配位数
6
晶胞内有 1 个原子
体心立方( body-centered cubic, bcc )
排列:ABABAB……
配位数
8
晶胞内有 2 个原子 具有体心立方结构的金属晶体:LI、Na、K、Fe等
重复周期为二层。形成AB AB AB· · · · · · 方式排列。
具有六角结构的金属: Mg,Co,Zn等

常见的晶体结构

常见的晶体结构

常见的晶体结构晶体结构是材料科学中的基础概念之一,也是研究材料性质和应用的重要手段。

通过研究晶体结构,可以了解材料的晶格结构、晶体缺陷、晶体生长以及物理性质等信息。

在本文中,我们将主要介绍几种常见的晶体结构。

1.立方晶系。

立方晶系是最简单、最对称的晶体结构之一,其中所有三个晶轴都是等长且互相垂直。

立方晶系包括体心立方晶体(bcc)和面心立方晶体(fcc)。

在体心立方晶体中,每个原子位于一个正八面体的中心和另外八个顶点之一,而在面心立方晶体中,每个原子位于一个正方形面的中心和其四个相邻原子分别组成的正方形的四个角上。

2.六方晶系。

六方晶系包括一个长度为a和两个垂直于晶轴的长度为c的晶轴,其正交晶面呈六边形。

六方晶系中最常见的是六方密堆积结构,其中每个原子最近的邻居原子共有12个,六个在同一水平面上,另外六个分别位于上下两个平面上。

3.正交晶系。

正交晶系包括三个长度分别为a、b和c的互相垂直的晶轴,其六个面分别为长方形。

正交晶系中最常见的结构是析出相结构,例如钛钶合金中的钛纤维基板。

4.单斜晶系。

单斜晶系包括两个长度不等、互相成锐角的晶轴,以及垂直于这两个轴的垂轴。

单斜晶系中最常见的结构是某些金属、半导体和陶瓷材料中的基体结构。

5.斜方晶系。

斜方晶系包括两个长度不等但互相垂直的晶轴以及一个垂直于晶面的垂轴。

斜方晶系的晶体结构非常多样,但最常见的是钙钛矿结构,这是一种广泛存在于氧化物中的晶体结构。

总结。

以上介绍的几种晶体结构是最常见的晶体结构之一,它们共同构成了材料科学中的基础知识。

了解晶体结构对于研究材料性质和开发新型功能材料非常重要。

另外,随着实验技术和计算方法的不断优化,我们对于各种晶体结构的了解将会越来越深入。

14种晶体结构

14种晶体结构

14种晶体结构晶体是由原子、分子或福隔离子按照一定的空间规则排列而成的有序固体。

晶体结构是指晶体中原子、离子或分子排列的规则和顺序。

在固体物质中,晶体结构的种类有很多种,其中比较常见的有以下14种:1. 立方晶体结构:最简单的晶体结构之一,具有三个等长的边和六个等角,包括简单立方、体心立方和面心立方三种类型。

2. 六方晶体结构:其晶胞的基本结构是六方密堆,其中最典型的就是六方晶体和螺旋晶体。

3. 正交晶体结构:晶胞具有三个不相互垂直的晶轴,分别被称为a、b 和c 轴,是最常见的晶体结构之一。

4. 单斜晶体结构:晶胞具有两个不相互垂直的晶轴,是晶体结构中的一种。

5. 三方晶体结构:具有三个相等的轴,夹角为60度,最常见的晶体结构之一是石英。

6. 菱晶体结构:晶胞内部有四面体结构,是一种简单的晶体结构。

7. 钙钛矿晶体结构:一种具有钙钛矿结构的晶体,包括钙钛矿结构和螺旋钙钛矿结构。

8. 蜗牛晶体结构:晶胞的形状像一只蜗牛的壳,是晶体结构中的一种。

9. 立方密排晶体结构:晶胞的结构是立方密排,是晶体结构中的一种。

10. 体心立方晶体结构:晶体结构的晶胞中有一个原子位于晶体的中心,是晶体结构中的一种。

11. 面心立方晶体结构:晶体结构的晶胞的各个面的中心有一个原子,是晶体结构中的一种。

12. 钻石晶体结构:晶体结构的晶胞构成了一种钻石结构,是晶体结构中的一种。

13. 银晶体结构:晶体结构的晶胞构成了一种银结构,是晶体结构中的一种。

14. 锶钛矿晶体结构:晶体结构的晶胞构成了一种锶钛矿结构,是晶体结构中的一种。

晶体结构的种类繁多,每种晶体结构都有其独特的结构特点和性质,对晶体的物理和化学性质有着重要的影响。

研究晶体结构不仅可以帮助我们更好地了解晶体的构成和性质,还有助于我们在材料科学、物理化学等领域的应用和研究。

因此,对晶体结构的研究具有重要的科学意义和应用价值。

晶体结构

晶体结构

晶体结构和布拉菲格子的区别
晶体结构和布拉菲格子的区别
基矢 原胞 晶胞(单胞)
初基元胞 点阵的基本 平移矢量。
有多种取法。
12面体
14面体
布拉伐格子 晶向 晶面
标志?
互质的整数(h1h2h3)-----晶面指数
若以单胞的棱a,b,c为坐标系对应的指数(h1h2h3)----miller index
33 23
13
32 22 12
31
33 11
21 31 13;32 12 32 0
11
23 21 21 0
同样若沿Z轴作对称操作-转动900
0 1 0 A 1 0 0
0 0 1
A1A


22
0
0
11
0
13





11
0
0
22
13
0
0 31 33
31 0 33
7晶系14种Bravais Lattice介绍
可以证明,由于对称性的要求,共有14种Bravais Lattice, 分为7个晶系(点阵只有7种点群)。 对称操作群{D/t} D--点(宏观)对称操作; t--平移对称操作. 点阵点群-------{D/t=0}7个7个晶系 点阵空间群-------{D/t}14个14 lattices
绪论
������ 固体物理是研究固体的结构和其组成粒子之间的相互作用 及运动规律,以阐明其性能和用途的学科。
固体的分类 晶体(晶态):原子按一定的周期规则排列的固体(长程有序)。 非晶体(非晶态):原子排列没有明确的周期性(短程有序)。

晶体结构与缺陷

晶体结构与缺陷

晶体结构与缺陷晶体是一种有着高度有序排列的原子、离子或分子的固体材料。

晶体的结构对其性质和应用具有重要影响,而缺陷则是晶体中不完美的部分。

本文将探讨晶体结构、晶格缺陷和它们在材料中的影响。

一、晶体结构晶体结构是指晶体中原子、离子或分子的排列方式。

晶体的结构可以通过晶体学方法(如X射线衍射)来表征。

根据晶体的结构特征,可以将晶体分为多种类型,包括立方晶系、正交晶系、单斜晶系等。

晶体结构的基本单位是晶胞,晶胞由晶体中最小的重复单元构成。

在晶体结构中,晶胞有各种不同的排列方式,例如简单立方晶胞、面心立方晶胞和体心立方晶胞。

这些不同的排列方式导致了不同类型的晶体结构。

二、晶格缺陷晶格缺陷是指晶体中原子、离子或分子位置的非理想性质。

晶格缺陷可以通过外部环境和材料制备过程中的条件引入。

晶格缺陷可以分为点缺陷、线缺陷和面缺陷三类。

1. 点缺陷点缺陷是指晶体中少数几个原子、离子或分子的位置与理想排列位置有所偏离。

最常见的点缺陷是空位缺陷和杂质缺陷。

空位缺陷是指晶体中某个位置上的原子或离子缺失,而杂质缺陷是指原子或离子被其他类型的原子或离子替代。

点缺陷可以对晶体的性质和行为产生重要影响。

例如,在半导体材料中,控制杂质缺陷的浓度可以改变材料的电导率。

在金属材料中,点缺陷可以影响金属的硬度、延展性和热导率等物理性能。

2. 线缺陷线缺陷是指晶体中沿某个方向出现的缺陷线。

常见的线缺陷包括位错和螺旋位错。

位错是晶体中原子排列顺序的偏移,而螺旋位错则是沿某个方向上原子排列的扭曲。

线缺陷可以导致晶体的塑性变形和断裂行为。

位错的运动可以使晶体发生滑移,从而导致材料的塑性变形。

而螺旋位错则可以在晶体中形成螺旋状的断裂。

3. 面缺陷面缺陷是指晶体中的平面缺陷。

最常见的面缺陷是晶界和孪晶。

晶界是两个晶粒之间的界面,它们的晶体结构可能有所不同。

孪晶是指两个对称的晶体结构在某个面上镜面对称的结合。

面缺陷可以对晶体的物理性能产生重要影响。

晶界可以影响晶体的弹性模量和导电性能。

晶体结构

晶体结构
4.每个碳原子可形成 12 个六元环,每个C-C键可以
形成 6 个六元环。
5.在金刚石晶体中碳原子个数与C-C共价键个数之
比是 1 ︰ 2 6.在金刚石晶胞中占有的碳原子数 8个
二氧化硅的晶体结构
Si
O
180º
109º28´
共价键
小结:
1. 在SiO2晶体中,每个硅原子与 4 个氧原子
结晶合体;中每硅个原氧子原与子 氧与 原子2个个数硅之原比子是结合1;:在2 S。iO2
2. 在SiO2 晶体中,每个硅原子形成 4 个共
价键;每个氧原子形成 2 个共价键; 3. 在SiO2 晶体中,最小环为 12 元环。 4.1molSiO2晶体含共价键 4mo。l
石墨的晶体结构模型
石墨的晶体结构
石墨晶体是层状结构,在每一层内,碳原 子排成六边形,每个碳原子都与其他3个 碳原子以共价键结合,形成平面的网状结 构。在层与层之间,是以分子间作用力相 结合的。由于同一层的碳原子间以较强的 共价键结合,使石墨的熔点很高。但由于 层与层之间的分子间作用力较弱,容易滑 动,使石墨的硬度很小。像石墨这样的晶 体一般称为过渡型晶体或混合型晶体。
2、根据氯化钠的结构模型确定晶胞,并分
析其构成。每个晶胞中有 4 个Cl- 4
Na+,有
3、在每个Na+周围与它最近的且距离相等 的Na+有 12 个
4、在每个Na+周围与它最近的且距离相等 的Cl-所围成的空间结构为 正八面体 体
图氯 化 铯 晶 体 结 构 示 意
氯化铯的晶胞
【 CsCl 型 】
六方最密堆积分解图
第三层的另一种排列 方式,是将球对准第一层 的 2,4,6 位,不同于 AB 两层的位置,这是 C 层。

晶体的结构与晶格常数

晶体的结构与晶格常数

晶体的结构与晶格常数晶体是由具有规则的、无序的、周期性重复的排列方式组成的固体材料。

它的结构是由晶格和晶体结构单元组成的。

晶格是指晶体中的原子、离子或分子按照规则、有序的方式排列成的一个平行于晶体表面、经过晶体内部的无限重复网格。

晶格常数是指晶体中晶胞平衡状态下,晶胞沿各个晶胞轴的最小长度,用a、b和c表示。

不同的晶体具有不同的结构和晶格常数。

下面将介绍几种常见的晶体结构及其对应的晶格常数。

1. 立方晶系立方晶系是最简单的晶体结构之一,其晶格常数在三个晶胞轴上相等。

具体包括以下几种类型:- 体心立方结构(BCC):其晶格常数a=4R/√3,其中R为原子半径。

- 面心立方结构 (FCC):其晶格常数a=2R/√2。

- 简单立方结构 (SC):其晶格常数a=2R。

2. 正交晶系正交晶系的晶体结构具有与立方晶系类似的特点,但其晶胞轴长度不相等。

其晶格常数表达为:- a轴:a=2R。

- b轴:b=2R。

- c轴:c=2R。

3. 单斜晶系单斜晶系的晶格常数也具有不同的长度。

其中a轴、b轴和c轴的长度分别为:- a轴:a=2R。

- b轴:b=2R。

- c轴:c=2R。

4. 菱面晶系菱面晶系的晶胞具有菱形形状,晶胞轴长度如下:- a轴:a=2R。

- b轴:b=2R。

- c轴:c=2R。

5. 六方晶系六方晶系的晶胞具有六角形形状,a轴和c轴的长度为:- a轴:a=2R。

- c轴:c=2R。

以上仅是几种常见的晶体结构及其晶格常数的示例,实际晶体的结构和晶格常数还可能受到其他因素的影响,如晶体的成分、原子尺寸等。

总结起来,晶体的结构与晶格常数密切相关,不同的晶体结构及其晶格常数决定了晶体的物理性质和化学性质。

通过深入研究晶体的结构与晶格常数,可以更好地理解晶体的性质,并为材料科学和应用提供基础。

晶体结构

晶体结构

1、点阵:按连接其中任意两点的向量进行平移后,均能复原
的一组点。 如 等径密置球
. a. . . . . . . .
3a
特点:①点阵是由无限多个点组成;
②每个点周围的环境相同;
③同一个方向上相邻点之间的距离一样.
晶体结构 = 点阵+结构基元
1、直线点阵:一维点阵 如:结构 结构基元:
点阵
.
a
.
2a
六、晶面指标(符号)和有理指数定律: 由于不同方向的晶面结构微粒排列的情况不同,导致物理 性质不一样——各向异性。
用晶面表示不同的平面点阵组,那晶面在三个晶轴上的倒
易截数之比——晶面指标。 如图 某晶面在坐标轴上的截面 截距
z
4c
2a , 3b , 4c
y
c b 2 3 4 截数 a 3b 1 1 1 2a 倒易截数 (643) 2 3 4 x 倒易截数之比:1/2:1/3:1/4 = 6:4:3 ,为整数 1 1 1 符号化—倒易截数之比: : : h : k : l hkl 为晶面指标 r s t
a b c , 900
一个 6 或 6
一个 4 或 4 一个 3 或 3 三个 2 一个 2 无(仅有i )
1200
a b c, 900
a b c, 900
a b c, 900
C2V , D2 , D2 h
, , ;
V , M r , Z , DC 等
Beq ,U eq
原子坐标及等效温度因子: x , y , z;
分子结构参数:键长,键角,最小二乘平面等 绘出分子结构图,晶胞堆积图等 分析结构特征,解释结构与性能之间的关系。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

云母类结构单元层
⑼蒙皂石类(蒙脱石、贝得石、皂石)
结构单元层为TOT+H2O+C,TOT中存在Al3+代替Si4+, 因此在TOT单元间连接松散的阳离子C和分子水 H2O。
蒙脱石的结构单岭石晶体(Kaolinite)
蒙脱石晶体 Montmorillonite
Ca2+ Ti4+ O2-
Ca2+位于立方晶胞的角顶, O2-位于立方晶胞晶棱的面心, Ti4+位于晶胞的中心。
钙钛矿结构可看成是较大的Ca2+和 O2-作立方最紧密堆积,Ti4+充填在 由六个氧形成的八面体空隙中。
Ca2+和O2-作毕竟不是等大球,因此,
CaTiO3的晶体结构较同种原子构成 的紧密堆积结构对称程度低,空间
辉石型单链:[Si2O6]4-
角闪石型双链[Si4O11]6-
6.6.4 层状结构
硅氧骨干形式: [ Si4O10]4 [SiO4]四面体以三个角顶 相连,形成二维展布的网 层。
每一个[SiO4]四面体有 三个惰性氧;一个活性 氧。活性氧可以指向同 一方向,也可以指向不 同方向。
层状硅氧骨干[ Si4O10]4-
⑴ ABX3型-- (CaTiO3)型
高温下为等轴晶系,空间群Pm3m。
Ca2+ Ti4+ O2-
a=0.385nm,Z=1。 配位数:Ti4+:CN=6; Ca:CN=12; O2-:CN=6 (4 个Ca, 2个Ti)
钙钛矿晶胞的两种划分方式: O2-位于立方晶胞晶棱的中点, Ca2+位于立方晶胞的中心, 配位数为12;Ti4+位于晶胞 的角顶,配位数为6;O 周围 有4 个Ca, 2个Ti。[TiO6]八 面体共角顶连接。
双链,平行c轴延伸,每4个硅氧四面体为一重 复周期,链与链之间是借位于A、M1、M2、 M3、M4位置上的阳离子连接.
柱状透闪石(左)阳起石(右)
⑥ 高岭石Al4[Si4O10](OH)4-- 蛇纹石 Mg6[Si4O10](OH)4
结构单元层为TO型,单元层之间由弱的氢键连结。
一层四面体片的顶氧与另一层四面体片的底氧相 对,则在顶氧的上方有一层与之成紧密堆积的 OH-,八面体片由一层四面体片的顶氧加OH-与 一层OH-组成。
单四面体: [SiO4]4-
有4个活性氧。
双四面体:[Si2O7]6-
每一个[SiO4]四面体有1个
惰 性氧;3个活性氧。
6.6.2 环状结构
硅氧骨干:[SinO3n]2n-
。n为环节数。 [SiO4]四面体以共角顶的方式连接成封闭的环。 根据[SiO4]四面体的连接方式和环节的数目,可 分为三元环、四元环、六元环以及单环和双环等。 在[SinO3n]2n- 中,每一个[SiO4]四面体有2个惰性 氧;2个活性氧。
一、本课程的基本要求
1. 理解晶体的概念及其基本性质; 2. 掌握晶体的对称、晶体定向和晶体学符号; 3. 掌握晶体内部结构的对称要素和空间群; 4. 掌握晶体化学的基本知识,熟悉单质、无机化合 物和硅酸盐的晶体结构。
二、考试方式及时间
结构评分:平时成绩:30%(包括出勤、上课)+ 期末考试成绩:70% 考试时间:2013年06月16日 (09:55~11:55),16周 日第二场,西71101,西71102,西71401,西7311, 西7312。
Mg
Si
Mg2+与[SiO4]四面体的关系
硅氧单四面体彼此分离,之间由[MO6]相连 结。 氧的配位数为4,与一个Si和三个呈八面体 配位的阳离子M键联。
在平行c轴方向上 , [MO6]八面体以共 棱方式联结成锯齿 状链。[SiO4]四面 体盖在[MO6]八面 体锯齿状链之间的 空隙上。

B
O
A
B
O
6.6 硅酸盐的晶体结构
硅酸盐的基本结构单位为[SiO4]4 -四面体。 [SiO4]4-四面体可以孤立存在,也可以共顶连接, 构成不同形式的硅氧骨干。
根据硅氧四面体的连接方式,硅酸盐结构可 分为岛状、环状、链状、层状和架状等。
6.6.1 岛状结构
结构中硅氧四面体彼此分开犹如孤岛,硅氧四面体 之间靠其它阳离子所连接。
两层四面体片以顶氧相对,两层顶氧及OH-以 最紧密堆积的方式错开叠置,其间的八面体空隙 被Mg2+、Al3+、Fe2+、Fe3+等充填。
6.6.5 架状结构
硅氧四面体的四个角顶,均与相邻的硅氧四面体的
角顶相连。在没有其它阳离子代替硅氧四面体中的 Si4+时,Si和O的原子数之比为1:2,整个结构是电 性中和的。这种情况只见于石英。
架状结构硅酸盐的特点是:在结构中出现了Al3+
代Si4+,多余的负电荷要求有阳离子进行中和,
形成铝硅酸盐。 架状络阴离子化学式:[AlxSin-xO2n]x-。 架状结构硅酸盐中最常见的阳离子是K+、Na+、
Ca2+、Ba2+等。
常见硅酸盐的晶体结构
①镁橄榄石Mg2[SiO4]
底层
顶层
O O Mg
双层型(TO型)结构单元层
[SiO4]四面体片(T片) [MgO6]、[AlO6]八面体片(O片) 一层四面体片的顶氧与另一层四面体片的底氧相
对,则在顶氧的上方有一层与之成紧密堆积的OH-,
八面体片由一层四面体片的顶氧加OH-与一层OH-
组成。

三层型(TOT型)结构单元层
[SiO4]四面体片(T片) [MgO6]、[AlO6]八面体片(O片) [SiO4]四面体片(T片)
第6章 晶体结构
6.1 金属单质的晶体结构 6.2 惰性气体的晶体结构
6.3 非金属单质的晶体结构
6.4 二元化合物晶体结构 6.5 多元化合物的晶体结构 6.6 硅酸盐的晶体结构
6.5 多元化合物的晶体结构
ABX3型 AB2X4型
⑴ ABX3型--方解石(CaCO3)型
三方晶系。NaCl型结构沿立方体对角线压缩后, Ca2+代替Na+,CO32-代替Cl-,即为方解石型结 构。碳与三个氧之间以共价键结合,Ca2+与 CO32-之间为离子键。 空间群R3c, a=0.6361nm,α=46°07′, Z=2。
Ca2+
群由Fm3m降低为 Pm3m。
Ti4+
O2-
钙钛矿的同质多像转变 >1580 K为等轴晶系,空间群 Pm3m 。 1500 K时,Ti沿C轴上下移动,偏离晶胞中心, 立方型变为四方型,空间群变为I4/mcm。 温度1380 K时, 四方型又转变为斜方型,空间群 Bmmb。 室温下, Ti沿偏离C轴移动,为斜方晶系,空间 群变为Pbnm。
三、考试题型
一、名词解释(5题×4分,共20分)
二、单项选择题(10题×2分,共20分) 三、填空题(15空×1分,共15分) 四、判断题(5题×1分,共5分) 五、简答题(5题×8分,共40分)
石榴石中配位多面体的连接方式
③绿柱石--Be3Al2[Si6O18]
[SiO4]四面体六方环垂直c轴且平行排列,上下两 个环错动25°,环与环之间由Al3+和Be2+连接。 环中心有平行c轴的宽阔孔 道,可以容纳大半径的K+、 Na+、Cs+、 Rb+以及水分子 。
绿柱石的单位晶胞
平行(0001)配位多面体的连接
⑦ 滑石Mg3[Si4O10](OH)2--叶蜡石 Al2[Si4O10](OH)2
三层型(TOT型)结构单元层 两层四面体片以顶氧相对,两层顶氧及OH-以最紧密 堆积的方式错开叠置,其间的八面体空隙被 Mg2+,Al3+,Fe2+,Fe3+等充填。
⑧ 云母类 结构单元层为TOT+C,结构单元层内有1/4的四 面体空隙由Al3+占据,多余的负电荷由TOT之间 的一价阳离子K+或Na+中和。
6.6.3 链状结构
硅氧四面体以角顶连接成沿一个方向无限延伸的链, 常见有单链和双链。 单链:硅氧骨干为[SinO3n]2n- ,n为一个重复单元中 硅氧四面体数。每一个[SiO4]四面体有2个惰性氧;2 个活性氧。链平行排列,之间靠骨干外阳离子联系, 并尽可能达到最紧密堆积状态。 双链:[Si2nO6n-1](4n-2)- , n为一个重复单元中硅氧四 面体数的1/2;1为一个重复单元中两个单链间的交 连数。
O
O
Mg Mg Si Mg2+与[SiO4]四面体的关系
橄榄石结构的配位多面体模型
橄榄石( peridot)晶体碎块
②石榴石
等轴晶系,通式:A3B2[SiO4]3
A:Mg2+、Fe2+、Mn2+、Ca2+等; B:Al3+、Fe3+、Cr3+等。
孤立的[SiO4]四面体为三价阳离子 的八面体所连接,其间形成一些 较大的畸变立方体空隙,它的每 一个角顶为氧所占据,中心为二 价阳离子。
Ca2+ Ti4+
O2-
Pm3m
I4/mcm
Pbnm
结构扭曲往往导致晶体出现压 电性、铁电性,成为重要的技术 晶体。
CaTiO3型结构的铁电效应
[TiO6]八面体共角顶连接
(2) AB2X4型—尖晶石(AB2O4)型
空间群 Fd3m , a0=0.808-0.853nm,z=8。其结构中 氧做立方最紧密堆积,阳离子充填四面体和八面体空隙。 单位晶胞中有 32 个 O2- 和 24 个 A、B 组阳离子,共 形成 32 个八面体空隙和 64 个四面体空隙。
Z
平行Z轴[BeO4]与四面体六元环的连接
相关文档
最新文档