北师版九年级数学上册《期末提分练案》6.2 方法训练 巧作平行线构造相似三角形的三种常用方法

合集下载

北师大版数学九年级上册第四章 《图形的相似》重点题型归纳

北师大版数学九年级上册第四章 《图形的相似》重点题型归纳

阶段强化专题训练专题一:平行线分线段成比例常见应用技巧 类型一 证比例式技巧1 中间比代换法证比例式1.如图,已知在△ABC 中,点D ,E ,F 分别是边AB ,AC ,BC 上的点,DE ∥BC ,EF ∥AB. (1)求证:BCDEAB AD =; (2)若AD:DB=3:5,求CF:CB 的值.技巧2 等积代换法证比例式2.如图,在△ABC 中,D 是AB 上一点,E 是△ABC 内一点,DE ∥BC ,过D 作AC 的平行线交CE 的延长线于F ,CF 与AB 交于P.求证:PBPAPF PE =.技巧3 等比代换法证比例式3.如图,在△ABC 中,DE ∥BC ,EF ∥CD ,求证:ADAFAB AD =.类型2 证线段相等技巧 4 等比过渡证线段相等(等比例过渡法)4.如图,在△ABC 中,∠ACB=90°,∠B >∠A ,点D 为边AB 的中点,DE ∥BC 交AC 于点E ,CF ∥BA 交DE 的延长线于点F.(1)求证:DE=EF ;(2)连结CD ,过点D 作DC 的垂线交CF 的延长线于点G ,求证:∠B=∠A+∠DGC .类型3 证比例和为1技巧5 同分母的中间比代换法5.如图,已知AC ∥FE ∥BD.求证:1=+BCBEAD AE专题二:证明相似三角形的方法名师点金要找三角形相似的条件,关键抓住以下几点:(1)已知角相等时,找两对对应角相等,若只能找到一对对应角相等,判断夹相等的角的两边是否对应成比例;(2)无法找到角相等时,判断三边是否对应成比例;(3)除此之外,也可考虑平行线分线段成比例定理及相似三角形的“传递性...”.方法1 利用边或角的关系判定两直角三角形相似1.下面关于直角三角形相似叙述错误的是( )A.有一锐角对应相等的两个直角三角形相似B.两直角边对应成比例的两个直角三角形相似C.有一条直角边相等的两个直角三角形相似D.两个等腰直角三角形相似2.如图,BC⊥AD,垂足为C,AD=6.4,CD=1.6,BC=9.3,CE=3.1.求证:△ABC∽△DEC.方法2 利用角判定两三角形相似3.如图,△ABC是等边三角形,CE是外角平分线,点D在AC上,连接BD并延长,与CE 交于点 E. (1)求证:△ABD∽△CED; (2)若AB=6,AD=2CD,求BE的长.方法3 利用边角判定两三角形相似4.如图,AB=3AC,BD=3AE,又BD∥AC,点B,A,E在同一条直线上.求证:△ABD∽△CAE. 方法4 利用三边判定两三角形相似5.如图,AD是△ABC的高,E,F分别是AB,AC的中点.求证:△DEF∽△ABC.专训三巧作平行线构造相似三角形名师点金:解题时,往往会遇到要证的问题与相似三角形联系不上或者说图中根本不存在相似三角形的情况,添加辅助线构造相似三角形是这类几何证明题的一种重要方法.常作的辅助线有以下几种:(1)由比例式作平行线;(2)有中点时,作中位线;(3)根据比例式,构造相似三角形.训练角度1 巧连线段的中点构造相似三角形1.如图,在△ABC中,E,F是边BC上的两个三等分点,D是AC的中点,BD分别交AE,AF于点P,Q,求BP:PQ:QD.训练角度 2 过顶点作平行线构造相似三角形2.如图,在△ABC中,AC=BC,F为底边AB 上一点,BF:AF=3:2,取CF的中点D,连接AD并延长交BC于点E,求BE:EC的值.3.如图,过△ABC的顶点C任作一直线,与边AB及中线AD分别交于点F和点E.求证:AE:ED=2AF:FB.训练角度 3 过一边上的点作平行线构造相似三角形4.如图,在△ABC中,AB>AC,在边AB上取一点D,在AC上取一点E,使AD=AE,直线DE和BC的延长线交于点P.求证: BP:CP=BD:EC.训练角度 4 过一点作平行线构造相似三角形5.如图,在△ABC中,点M为AC边的中点,点E为AB上一点,且AE=41AB,连接EM并延长交BC的延长线于点D.求证:BC=2CD. 作辅助线的方法一:作辅助线的方法二:作辅助线的方法三:作辅助线的方法四:全章整合提升密码专训一:证比例式或等积式的技巧 名师点金证比例式或等积式,若遇问题中无平行线或相似三角形时,则需构造平行线或相似三角形,得到等比例线段;若比例式或等积式中的线段分布在两个三角形或不在两个三角形中,可尝试证这两个三角形相似或先将它们转化到两个三角形中再证两三角形相似,若在两个明显不相似的三角形中,可运用中间比代换.技巧1 构造平行线法1.如图,在△ABC 中,D 为AB 的中点,DF 交AC 于点E ,交BC 的延长线于点F , 求证:AE ·CF =BF ·EC.2.如图,已知△ABC 的边AB 上有一点D ,边BC 的延长线上有一点E ,且AD =CE ,DE 交AC 于点F ,试证明:AB ·DF =BC ·EF.技巧2 三点找三角形相似法3.如图,在▱ABCD 中,E 是AB 延长线上的一点,DE 交BC 于F. 求证:DC AE =CF AD.4.如图,在△ABC 中,∠BAC =90°,M 为BC 的中点,DM ⊥BC 交CA 的延长线于D ,交AB于E.求证:AM 2=MD ·ME.技巧3 构造相似三角形法5.如图,在等边三角形ABC 中,点P 是BC 边上任意一点,AP 的垂直平分线分别交AB ,AC 于点M ,N. 求证:BP ·CP =BM ·CN.技巧4 等比过渡法6.如图,在△ABC 中,AB =AC ,DE ∥BC ,点F 在边AC 上,DF 与BE 相交于点G ,且∠EDF =∠ABE. 求证:(1)△DEF ∽△BDE ;(2)DG ·DF =DB ·EF.7.如图,CE 是Rt △ABC 斜边上的高,在EC 的延长线上任取一点P ,连接AP ,作BG ⊥AP于点G ,交CE 于点D. 求证:CE 2=DE ·PE.技巧5 两次相似法8.如图,在Rt △ABC 中,AD 是斜边BC 上的高,∠ABC 的平分线BE 交AC 于E ,交AD 于F. 求证:BF BE =ABBC.9.如图,在▱ABCD 中,AM ⊥BC ,AN ⊥CD ,垂足分别为M ,N.求证:(1)△AMB ∽△AND ;(2)AM AB =MNAC.技巧6 等积代换法10.如图,在△ABC 中,AD ⊥BC 于D ,DE ⊥AB 于E ,DF ⊥AC 于F.求证:AE AF =ACAB.技巧7 等线段代换法11.如图,等腰△ABC 中,AB =AC ,AD ⊥BC 于点D ,点P 是AD 上一点,CF ∥AB ,延长BP 交AC 于点E ,交CF 于点F ,求证:BP 2=PE ·PF.12.已知:如图,AD 平分∠BAC ,AD 的垂直平分线EP 交BC 的延长线于点P.求证:PD 2=PB ·PC.专训二 巧用“基本图形”探索相似条件 名师点金:几何图形大多数由基本图形复合而成,因此熟悉三角形相似的基本图形,有助于快速、准确地识别相似三角形,从而顺利找到解题思路和方法.相似三角形的四类结构图: 1.平行线型2.相交线型3.子母型4.旋转型训练角度1 平行线型1.如图,在△ABC 中,BE 平分∠ABC 交AC 于点E ,过点E 作ED ∥BC 交AB 于点D.(1)求证:AE ·BC =BD ·AC ; (2)如果S △ADE =3,S △BDE =2,DE =6,求BC 的长.训练角度2 相交线型2.如图,点D ,E 分别为△ABC 的边AC ,AB 上的点,BD ,CE 交于点O ,且EO BO =DOCO ,试问△ADE 与△ABC 相似吗?请说明理由.训练角度3 子母型3.如图,在△ABC 中,∠BAC =90°,AD ⊥BC 于点D ,E 为AC 的中点,ED 的延长线交AB 的延长线于点F.求证:AB AC =DFAF.训练角度4 旋转型 4.如图,已知∠DAB =∠EAC ,∠ADE =∠ABC.求证:(1)△ADE ∽△ABC ;(2)AD AE =BD CE.专训三 利用相似三角形巧证线段的数量和位置关系 名师点金:判断两线段之间的数量和位置关系是几何中的基本题型之一.由角的关系推出“平行或垂直”是判断位置关系的常用方法,由相似三角形推出“相等”是判断数量关系的常用方法.训练角度1 证明两线段的数量关系 类型1: 证明两线段的相等关系1.如图,已知在△ABC 中,DE ∥BC ,BE 与CD 交于点O ,直线AO 与BC 边交于点M ,与DE 交于点N. 求证:BM =MC.2.如图,一直线和△ABC 的边AB ,AC 分别交于点D ,E ,和BC 的延长线交于点F ,且AE:CE =BF:CF. 求证:AD =DB.类型2 证明两线段的倍分关系3.如图,在△ABC 中,BD ⊥AC 于点D ,CE ⊥AB 于点E ,∠A =60°,求证:DE =12BC.4.如图,AM 为△ABC 的角平分线,D 为AB 的中点,CE ∥AB ,CE 交DM 的延长线于E. 求证:AC =2CE.训练角度2 证明两线段的位置关系 类型1:证明两线段平行 5.如图,已知点D 为等腰直角三角形ABC 的斜边AB 上一点,连接CD ,DE ⊥CD ,DE =CD ,连接CE ,AE.求证:AE ∥BC.6.在△ABC 中,D ,E ,F 分别为BC ,AB ,AC 上的点,EF ∥BC ,DF ∥AB ,连接CE 和AD ,分别交DF ,EF 于点N ,M.(1)如图①,若E 为AB 的中点,图中与MN 平行的直线有哪几条?请证明你的结论; (2)如图②,若E 不为AB 的中点,写出与MN 平行的直线,并证明.类型2 证明两线垂直7.如图,在△ABC 中,D 是AB 上一点,且AC2=AB ·AD ,BC 2=BA ·BD ,求证:CD ⊥AB.8.如图,已知矩形ABCD ,AD =13AB ,点E ,F把AB 三等分,DF 交AC 于点G ,求证:EG ⊥DF.专训四巧用位似解三角形中的内接多边形问题名师点金位似图形是特殊位置的相似图形,它具有相似图形的所有性质,位似图形必须具备三个条件:(1)两个图形相似;(2)对应点的连线相交于一点;(3)对应边互相平行或在同一直线上.类型1 三角形的内接正三角形问题1.如图,用下面的方法可以画△AOB的内接等边三角形,阅读后证明相应问题.画法:①在△AOB内画等边三角形CDE,使点C在OA上,点D在OB上;②连接OE并延长,交AB于点E′,过点E′作E′C′∥EC,交OA于点C′,作E′D′∥ED,交OB于点D′;③连接C′D′,则△C′D′E′是△AOB的内接等边三角形.求证:△C′D′E′是等边三角形.类型2 三角形的内接矩形问题2.求作:内接于已知△ABC的矩形DEFG,使它的边EF在BC上,顶点D,G分别在AB,AC上,并且有DE∶EF=1∶2.类型 3 三角形的内接正形问题(方程思想)3.如图,△ABC 是一块锐角三角形余料,边BC=120mm ,高AD=80mm ,要把它加工成正方形零件,使正方形的一边QM 在BC上,其余两个顶点P ,N 分别在AB,AC上,则这个正方形零件的边长是多少?4.(1)如图①,在△ABC 中,点D ,E ,Q 分别在AB ,AC ,BC 上,且DE ∥BC ,AQ交DE 于点P.求证:DP:BQ=PE:QC.(2)在△ABC 中,∠BAC =90°,正方形DEFG 的四个顶点在△ABC 的边上,连接AG ,AF ,分别交DE 于M ,N 两点.①如图②,若AB=AC=1,直接写出MN的长;②如图③,求证:MN²=DM·EN.专训五: 图形的相似中的五种热门考点 名师点金:相似是初中数学的重要内容,也是中考重点考查内容之一,而对于成比例线段、相似三角形的判定与性质、位似图形等都是命题的热点.考点一: 比例线段及性质1.下列各组长度的线段,成比例线段的是( )A. 2 cm ,4 cm ,4 cm ,8 cmB. 2 cm ,4 cm ,6 cm ,8 cmC. 1 cm ,2 cm ,3 cm ,4 cmD. 2.1 cm ,3.1 cm ,4.3 cm ,5.2 cm2.若a 2=b 3=c 4=d 7≠0,则a +b +c +d c =________.3.如图,乐器上的一根弦AB =80 cm ,两个端点A ,B 固定在乐器板面上,支撑点C 是靠近点B 的黄金分割点,则支撑点C 到端点A 的距离约为________.(5≈2.236,结果精确到0.01)考点二: 平行线分线段成比例4.如图,若AB ∥CD ∥EF ,则下列结论中,与AD AF 相等的是( ) A.AB EF B.CD EF C.BO OE D.BC BE5.如图,在Rt △ABC 中,∠ACB =90°,∠ABC =60°,以AC 为边向三角形外作正方形ACDE ,连接BE 交AC 于F ,若BF = 3 cm ,则EF =________.6.如图,在△ABC 中,AM ∶MD =4∶1,BD ∶DC =2∶3,求AE ∶EC 的值.考点三 相似三角形的性质与判定7.已知△ABC ∽△DEF ,若△ABC 与△DEF 的相似比为3∶4,则△ABC 与△DEF 的面积之比为( ) A.4:3 B.3:4 C.16:9 D.9:168.在平行四边形ABCD 中,点E 在AD 上,且AE ∶ED =3∶1,CE 的延长线与BA 的延长线交于点F ,则S △AEF ∶S 四边形ABCE 为( ) A.3∶4 B.4∶3 C.7∶9 D.9∶79.若两个相似多边形的面积之比为1∶4,周长之差为6,则这两个相似多边形的周长分别是________.10.如图,△ABC 是直角三角形,∠ACB =90°,CD ⊥AB 于D ,E 是AC 的中点,ED 的延长线与CB 的延长线交于点F.(1)求证:FD 2=FB ·FC ; (2)若FB =5,BC =4,求FD 的长.11.如图,四边形ABCD 是正方形,BD 是对角线,BE 平分∠DBC 交DC 于点E ,点F 是BC 的延长线上一点,且CE =CF ,BE 的延长线交DF 于点M.(1)求证:BM ⊥DF ; (2)若正方形ABCD 的边长为2,求ME ·MB.考点四相似三角形的应用12.一天晚上,李明和张龙利用灯光下的影子长来测量一路灯的高度CD.如图,当李明走到点A处时,张龙测得李明直立时身高AM 与影子长AE正好相等;接着李明沿AC方向继续向前走,走到点B处时,李明直立时身高BN的影子恰好是线段AB,并测得AB=1.25 m,已知李明直立时的身高为1.75 m,求路灯的高度CD.(结果精确到0.1 m)13.某高中学校为高一新生设计的学生板凳的正面视图如图所示,其中BA=CD,BC=20 cm,BC,EF平行于地面AD且到地面AD的距离分别为40 cm,8 cm.为使板凳两腿底端A,D之间的距离为50 cm,那么横梁EF的长应为多少?(材质及其厚度等暂忽略不计)考点五图形的位似14.如图,已知正方形ABCD,以点A为位似中心,把正方形ABCD的各边缩小为原来的一半,得正方形A′B′C′D′,则点C′的坐标为________.15.如图,在6×8的网格图中,每个小正方形的边长均为1,点O和△ABC的顶点均在小正方形的顶点上.(1)以O为位似中心,在网格图中作△A′B′C′和△ABC位似,且相似比为1∶2;(2)连接(1)中的AA′,求四边形AA′C′C 的周长.(结果保留根号)专训六全章热门考点整合应用名师点金:本章主要内容为:平行线分线段成比例,相似三角形的判定及性质,位似图形及其画法等,涉及考点、考法较多,是中考的高频考点.其主要考点可概括为:3个概念、2个性质、1个判定、2个应用、1个作图、1个技巧.考点一:3个概念概念1:成比例线段1.下列各组线段,是成比例线段的是( )A.3cm,6cm,7cm,9cmB.2cm,5cm,0.6dm,8cmC.3cm,9cm,1.8dm,6cmD.1cm,2cm,3cm,4cm2.有一块三角形的草地,它的一条边长为25m,在图纸上,这条边的长为5cm,其他两条边的长都为4cm,则其他两边的实际长度都是________m.概念2:相似多边形3.如图,已知∠1′=∠1,∠2′=∠2,∠3′=∠3,∠4′=∠4,∠D′=∠D,试判断四边形A′B′C′D′与四边形ABCD是否相似,并说明理由.概念3:位似图形4.如图,在△ABC中,A,B两个顶点在x轴的上方,点C的坐标是(-1,0).以点C为位似中心,在x轴的下方作△ABC的位似图形,并把△ABC的边放大到原来的2倍,记所得的像是△A′B′C.设点B的对应点B′的坐标是(a,b),求点B的坐标.考点二: 2个性质性质1:平行线分线段成比例的性质5.如图,在Rt△ABC中,∠A=90°,AB=8,AC=6.若动点D从点B出发,沿线段BA运动到点A为止,运动速度为每秒2个单位长度.过点D作DE∥BC交AC于点E,设动点D运动的时间为x秒,AE的长为y.(1)求出y关于x的函数解析式,并写出自变量x的取值范围;(2)当x为何值时,△BDE的面积有最大值,最大值为多少?性质2:相似三角形的性质6.如图,已知D是BC边上的中点,且AD=AC,DE⊥BC,DE与BA相交于点E,EC 与AD相交于点F.(1)求证:△ABC∽△FCD;(2)若S△FCD=5,BC=10,求DE的长.考点三: 1个判定——相似三角形的判定7.如图,△ACB为等腰直角三角形,点D为斜边AB上一点,连接CD,DE⊥CD,DE=CD,连接AE,过C作CO⊥AB于O.求证:△ACE ∽△OCD.8.如图,在⊙O的内接△ABC中,∠ACB=90°,AC=2BC,过点C作AB的垂线l交⊙O 于另一点D,垂足为点E.设P是上异于点A,C的一个动点,射线AP交l于点F,连接PC 与PD,PD交AB于点G. (1)求证:△PAC∽△PDF; (2)若AB=5,弧AP=弧BP,求PD 的长.考点四: 2个应用应用1:测高的应用9.如图,在离某建筑物CE 4 m处有一棵树AB,在某时刻,1.2 m的竹竿FG垂直地面放置,影子GH长为2 m,此时树的影子有一部分落在地面上,还有一部分落在建筑物的墙上,墙上的影子CD高为2 m,那么这棵树的高度是多少?应用2:测宽的应用10.如图,一条小河的两岸有一段是平行的,在河的一岸每隔6 m有一棵树,在河的对岸每隔60 m有一根电线杆,在有树的一岸离岸边30 m处可看到对岸相邻的两根电线杆恰好被这岸的两棵树遮住,并且在这两棵树之间还有三棵树,求河的宽度.考点五: 1个作图——作一个图形的位似图形11.如图,在方格纸中(每个小方格的边长都是1个单位长度)有一点O和△ABC.请以点O 为位似中心,把△ABC缩小为原来的一半(不改变方向),画出△ABC的位似图形.考点六: 1个技巧——证明四条线段成比例的技巧12.如图,已知△ABC,∠BAC的平分线与∠DAC的平分线分别交BC及BC的延长线于点P,Q. (1)求∠PAQ的度数; (2)若点M为PQ的中点,求证:PM2=CM·BM.。

北师大版数学九年级上 相似三角形的性质及判定知识点总结 习题型总结(学生版)

北师大版数学九年级上 相似三角形的性质及判定知识点总结 习题型总结(学生版)

板块考试要求A 级要求B 级要求C 级要求相似三角形 了解相似三角形掌握相似三角形的概念,判定及性质,以及掌握相关的模型会运用相似三角形相关的知识解决有关问题一、相似的有关概念1.相似形具有相同形状的图形叫做相似形.相似形仅是形状相同,大小不一定相同.相似图形之间的互相变换称为相似变换. 2.相似图形的特性两个相似图形的对应边成比例,对应角相等. 3.相似比两个相似图形的对应角相等,对应边成比例.二、相似三角形的概念1.相似三角形的定义对应角相等,对应边成比例的三角形叫做相似三角形.如图,ABC △与A B C '''△相似,记作ABC A B C '''△∽△,符号∽读作“相似于”.知识点睛 中考要求 相似三角形的性质及判定A 'B 'C 'CB A2.相似比相似三角形对应边的比叫做相似比.全等三角形的相似比是1.“全等三角形”一定是“相似形”,“相似形”不一定是“全等形”.三、相似三角形的性质1.相似三角形的对应角相等如图,ABC △与A B C '''△相似,则有A A B B C C '''∠=∠∠=∠∠=∠,,.A 'B 'C 'CB A2.相似三角形的对应边成比例ABC △与A B C '''△相似,则有AB BC ACk A B B C A C ===''''''(k 为相似比).3.相似三角形的对应边上的中线,高线和对应角的平分线成比例,都等于相似比.如图1,ABC △与A B C '''△相似,AM 是ABC △中BC 边上的中线,A M ''是A B C '''△中B C ''边上的中线,则有AB BC AC AMk A B B C A C A M ====''''''''(k 为相似比). M 'MA 'B 'C 'C BA图1如图2,ABC △与A B C '''△相似,AH 是ABC △中BC 边上的高线,A H ''是A B C '''△中B C ''边上的高线,则有AB BC AC AHk A B B C A C A H====''''''''(k 为相似比).H 'H AB C C 'B 'A '图2如图3,ABC △与A B C '''△相似,AD 是ABC △中BAC ∠的角平分线,A D ''是A B C '''△中B A C '''∠的角平分线,则有AB BC AC ADk A B B C A C A D ====''''''''(k 为相似比).D 'D A 'B 'C B A图34.相似三角形周长的比等于相似比. 如图4,ABC △与A B C '''△相似,则有AB BC ACk A B B C A C ===''''''(k 为相似比).应用比例的等比性质有AB BC AC AB BC ACk A B B C A C A B B C A C ++====''''''''''''++.A 'B 'C 'CB A图45.相似三角形面积的比等于相似比的平方.如图5,ABC △与A B C '''△相似,AH 是ABC △中BC 边上的高线,A H ''是A B C '''△中B C ''边上的高线,则有AB BC AC AHk A B B C A C A H ====''''''''(k 为相似比).进而可得21212ABC A B C BC AHS BC AH k S B C A H B C A H '''⋅⋅==⋅=''''''''⋅⋅△△.H 'H AB C C 'B 'A '图5四、相似三角形的判定1.平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似.2.如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.可简单说成:两角对应相等,两个三角形相似.3.如果一个三角形的两边和另一个三角形的两边对应成比例,并且夹角相等,那么这两个三角形相似.4.如果一个三角形的三条边与另一个三角形的你对应成比例,那么这两个三角形相似.可简单地说成:三边对应成比例,两个三角形相似.5.如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.6.直角三角形被斜边上的高分成的两个直角三角形相似(常用但要证明)7.如果一个等腰三角形和另一个等腰三角形的顶角相等或一对底角相等,那么这两个等腰三角形相似;如果它们的腰和底对应成比例,那么这两个等腰三角形也相似.五、相似证明中的比例式或等积式、比例中项式、倒数式、复合式证明比例式或等积式的主要方法有“三点定形法”.1.横向定型法欲证AB BCBE BF=,横向观察,比例式中的分子的两条线段是AB和BC,三个字母A B C,,恰为ABC△的顶点;分母的两条线段是BE和BF,三个字母B E F,,恰为BEF△的三个顶点.因此只需证ABC EBF△∽△.2.纵向定型法欲证AB DEBC EF=,纵向观察,比例式左边的比AB和BC中的三个字母A B C,,恰为ABC△的顶点;右边的比两条线段是DE和EF中的三个字母D E F,,恰为DEF△的三个顶点.因此只需证ABC DEF△∽△.3.中间比法由于运用三点定形法时常会碰到三点共线或四点中没有相同点的情况,此时可考虑运用等线,等比或等积进行变换后,再考虑运用三点定形法寻找相似三角形.这种方法就是等量代换法.在证明比例式时,常用到中间比.比例中项式的证明,通常涉及到与公共边有关的相似问题。

九年级数学上册第四章图形的相似2平行线分线段成比例教案北师大版(2021年整理)

九年级数学上册第四章图形的相似2平行线分线段成比例教案北师大版(2021年整理)

河南省郑州市中牟县雁鸣湖镇九年级数学上册第四章图形的相似2 平行线分线段成比例教案(新版)北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(河南省郑州市中牟县雁鸣湖镇九年级数学上册第四章图形的相似2 平行线分线段成比例教案(新版)北师大版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为河南省郑州市中牟县雁鸣湖镇九年级数学上册第四章图形的相似2 平行线分线段成比例教案(新版)北师大版的全部内容。

第四章:图形的相似们今天要学习的内容:平行线分线段成比例定理。

课中作业在下图中,小方格的边长均为1,直线l1∥ l2∥ l3,分别交直线m,n与格点A1,A2,A3,B1,B2,B3。

(1)计算的值,你有什么发现?(2)将2l向下平移到如图3—7的位置,直线m,n 与2l的交点分别为21,BA你在问题(1)中发现结论还成立吗?如果将2l平移到其它位置呢?(3)在平面上任意作三条平行线,用它们截两条直线,截得的线段成比例吗?12122323B BB BA AA A与环节二活动二。

分析探索,新知学习1.三条平行直线L1//L2//L3截直线AE上的线段AC、CE长度之间(除相等外)存在着什么关系呢?同样截直线BF上的线段BD、DF长度之间存在着什么关系呢?引导学生初步总结出平行线分线段成比例定理,然后师生共同归纳得出定理并板书定理.平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段的比相等。

观察上图我们容易发现下面结论成立.推论:平行于三角形一边的直线截其它两边(或两边的延长线),所得的对应线段的比相等(或成比例)。

变式思考: 1.如果一条直线截三角形的两边(或两边的延长线)所得的对应线段的比相等(或成比例),那么这条直线平行于三角形的第三边。

北师大版九年级数学上思维特训(十一)含答案:相似三角形中的辅助线作法归类

北师大版九年级数学上思维特训(十一)含答案:相似三角形中的辅助线作法归类

思维特训(十一) 相似三角形中的辅助线作法归类在添加辅助线时,所添加的辅助线往往能构造出一组或多组相似三角形,或得到成比例的线段,或得出等角、等边,从而为证明三角形相似或进行有关的计算找到等量关系.作辅助线的方法主要有以下几种:(1)作平行线构造“A ”型或“X ”型相似;(2)作平行线转换线段比;(3)作垂直证明相似.图11-S -1类型一 作平行线构造“A ”型或“X ”型相似1.如图11-S -2,已知平行四边形ABCD 中,对角线AC ,BD 相交于点O ,E 为AB 延长线上一点,OE 交BC 于点F ,若AB =a ,BC =b ,BE =c ,求BF 的长.图11-S -22.如图11-S -3,在△ABC 中,AD 为BC 边上的中线,CF 为任一直线,CF 交AD 于点E ,交AB 于点F .求证:AE DE =2AF BF.图11-S -33.在一节数学课上,老师出示了这样一个问题让学生探究:如图11-S -4,在△ABC 中,D 是BA 延长线上一动点,点F 在BC 上,且CF BF =12,连接DF 交AC 于点E .(1)如图①,当E 恰为DF 的中点时,请求出ADAB的值;(2)如图②,当DE EF =a (a >0)时,请求出ADAB 的值(用含a 的代数式表示).思考片刻后,同学们纷纷表达自己的想法:甲:过点F 作FG ∥AB 交AC 于点G ,构造相似三角形解决问题; 乙:过点F 作FG ∥AC 交AB 于点G ,构造相似三角形解决问题;丙:过点D 作DG ∥BC 交CA 的延长线于点G ,构造相似三角形解决问题. 老师说:“这三位同学的想法都可以”.请参考上面某一种想法,完成第(1)问的求解过程,并直接写出第(2)问中ADAB的值.图11-S -4类型二 作平行线转换线段的比4.如图11-S -5,B 为AC 的中点,E 为BD 的中点,求AFAE的值.图11-S -55.如图11-S -6,已知等边三角形ABC ,D 为AC 边上的一动点,CD =nDA ,连接BD ,M 为线段BD 上一点,∠AMD =60°,连接AM 并延长交BC 于点E .(1)若n =1,则BE CE =______,BMDM =______;(2)若n =2,如图②,求证:BM =6DM ;(3)当n=________时,M为BD的中点(直接写出结果,不要求证明).图11-S-66.2017·朝阳已知:如图11-S-7,在△ABC中,点D在AB上,E是BC的延长线上一点,且AD=CE,连接DE交AC于点F.(1)猜想证明:如图①,在△ABC中,若AB=BC,学生们发现:DF=EF.下面是两位学生的证明思路:思路1:过点D作DG∥BC,交AC于点G,可通过证△DFG≌△EFC得出结论;思路2:过点E作EH∥AB,交AC的延长线于点H,可通过证△ADF≌△HEF得出结论.……请你参考上面的思路,证明DF=EF(只用一种方法证明即可).(2)类比探究:在(1)的条件下(如图①),过点D作DM⊥AC于点M,试探究线段AM,MF,FC 之间满足的数量关系,并证明你的结论.(3)延伸拓展:如图②,在△ABC中,若AB=AC,∠ABC=2∠BAC,ABBC=m,请你用尺规作图在图②中作出AD的垂直平分线交AC于点N(不写作法,只保留作图痕迹),并用含m的代数式直接表示FNAC的值.图11-S -7类型三 作垂直证相似7.如图11-S -8,在△ABC 中,∠C =90°,D 为边AB 的中点,M ,N 分别为边AC ,CB 上的点,且DM ⊥DN .(1)求证:DM DN =BCAC;(2)若BC =6,AC =8, CM =5,直接写出CN 的长.图11-S -88.如图11-S -9,在△ABC 中,D 是BC 边上的点(不与点B ,C 重合),连接AD . 问题引入:(1)如图①,当D 是BC 边的中点时,S △ABD ∶S △ABC =________;当D 是BC 边上任意一点时,S △ABD ∶S △ABC =________(用图中已有线段表示).探索研究:(2)如图②,在△ABC 中,O 是线段AD 上一点(不与点A ,D 重合),连接BO ,CO ,试猜想S △BOC 与S △ABC 之比应该等于图中哪两条线段之比,并说明理由.拓展应用:(3)如图③,O 是线段AD 上一点(不与点A ,D 重合),连接BO 并延长交AC 于点F ,连接CO 并延长交AB 于点E .试猜想OD AD +OE CE +OFBF的值,并说明理由.图11-S -99.如图11-S -10,已知一个直角三角形纸片ACB ,其中,∠ACB =90°,AC =4,BC =3,E ,F 分别是AC ,AB 边上的点,连接EF .(1)如图①,若将直角三角形纸片ACB 的一角沿EF 折叠,折叠后点A 落在AB 边上的点D 处,且S 四边形ECBF =3S △EDF ,则AE =________;(2)如图②,若将直角三角形纸片ACB 的一角沿EF 折叠,折叠后点A 落在BC 边上的点M 处,且MF ∥CA ,求EF 的长;(3)如图③,若FE 的延长线与BC 的延长线相交于点N ,CN =1,CE =47,求AFBF的值.图11-S-10详解详析1.解:如图,过点O 作OM ∥BC 交AB 于点M .∵O 是AC 的中点,OM ∥BC , ∴M 是AB 的中点,即MB =12a ,∴OM 是△ABC 的中位线,OM =12BC =12b .∵OM ∥BC , ∴△BEF ∽△MEO , ∴BF MO =BEME, 即BF 12b =c a 2+c ,∴BF =bc a +2c . 2.证明:如图,过点D 作DG ∥CF 交AB 于点G .∵DG ∥CF ,D 为BC 的中点, ∴G 为BF 的中点,FG =BG =12BF .∵EF ∥DG ,∴AE DE =AF GF =AF 12BF =2AFBF.3.解:(1)甲同学的想法:如图①,过点F 作FG ∥AB 交AC 于点G ,∴△AED ∽△GEF ,∴AD GF =ED EF. ∵E 为DF 的中点,∴ED =EF ,∴AD =GF . ∵FG ∥AB ,∴△CGF ∽△CAB ,∴GF AB =CFCB .∵CF BF =12,∴CF CB =13,∴AD AB =GF AB =CF CB =13. 乙同学的想法:如图②,过点F 作FG ∥AC 交AB 于点G ,∴AD AG =ED EF. ∵E 为DF 的中点,∴ED =EF ,∴AD =AG . ∵FG ∥AC ,∴AG AB =CFCB.∵CF BF =12,∴CF CB =13,∴AD AB =AG AB =CF CB =13. 丙同学的想法:如图③,过点D 作DG ∥BC 交CA 的延长线于点G ,∴∠C =∠G ,∠CFE =∠GDE ,∴△GDE ∽△CFE ,∴GD CF =ED EF .∵E 为DF 的中点, ∴ED =EF , ∴GD =CF .∵DG ∥BC ,∴∠C =∠G ,∠B =∠ADG , ∴△ADG ∽△ABC ,∴AD AB =DG BC .∵CF BF =12,∴CF BC =13.∴AD AB =DG BC =CF BC =13. (2)如图④,过点D 作DG ∥BC 交CA 的延长线于点G ,∴∠C =∠G ,∠CFE =∠GDE ,∴△GDE ∽△CFE ,∴GD CF =EDEF .∵DEEF =a ,∴ED =aEF , ∴DG =aCF .∵DG ∥BC ,∴∠C =∠G ,∠B =∠ADG , ∴△ADG ∽△ABC , ∴AD AB =DG BC. ∵CF BF =12,∴CF BC =13,即BC =3CF . ∴AD AB =DG BC =aCF 3CF =a 3. 4.解:取CF 的中点G ,连接BG . ∵B 为AC 的中点,∴BG AF =12,且BG ∥AF .又E 为BD 的中点,∴F 为DG 的中点, ∴EF BG =12,∴EF AF =14, ∴AF AE =43. 5.解:(1)当n =1时,CD =DA . ∵△ABC 是等边三角形,∴BD ⊥AC ,∠BAC =60°,∴∠ADM =90°. 又∵∠AMD =60°, ∴∠MAD =30°,∴∠BAE =∠BAC -∠MAD =30°, 即∠BAE =∠EAD ,∴AE 为△ABC 的中线,∴BECE=1.在△AMD 中,DM =12AM (30°角所对的直角边等于斜边的一半).∵∠BAM =∠ABM =30°,∴AM =BM , ∴BM DM=2. (2)证明:∵∠AMD =∠ABD +∠BAE =60°, ∠CAE +∠BAE =60°,∴∠ABD =∠CAE . 又∵BA =AC ,∠BAD =∠ACE =60°, ∴△BAD ≌△ACE (ASA),∴AD =CE ,∴CD =BE .如图,过点C 作CF ∥BD 交AE 的延长线于点F , ∴FC BM =CE BE =AD CD =12①,DM FC =AD AC =13②, 由①×②得DM BM =16,∴BM =6DM .(3)∵M 为BD 的中点,∴BM =MD . ∵△BAD ≌△ACE , ∴AD =CE ,∴CD =BE .∵△AMD ∽△ACE ,△BME ∽△BCD , ∴AD AE =MD CE ,BM BC =ME CD, ∴AD =MD ·AE CE ③,CD =BC ·MEBM④,由③×④得CD=5-12DA,∴n=5-12.6.解:(1)思路1:如图①,过点D作DG∥BC,交AC于点G.∵AB=BC,∴∠A=∠BCA.∵DG∥BC,∴∠DGA=∠BCA,∠DGF=∠ECF,∴∠A=∠DGA,∴DA=DG.∵AD=CE,∴DG=CE.又∵∠DFG=∠EFC,∴△DFG≌△EFC,∴DF=EF.思路2:如图②,过点E作EH∥AB,交AC的延长线于点H.∵AB=BC,∴∠A=∠BCA.∵EH∥AB,∴∠A=∠H.∵∠ECH=∠BCA,∴∠H=∠ECH,∴CE=EH.∵AD=CE,∴AD=EH.又∵∠AFD=∠HFE,∴△DF A≌△EFH,∴DF=EF.(2)结论:MF=AM+FC.证明:如图③,由思路1可知:DA=DG,△DFG≌△EFC,∴FG=FC.∵DM ⊥AG ,∴AM =GM . ∵MF =FG +GM , ∴MF =AM +FC .(3)AD 的垂直平分线交AC 于点N ,如图④所示.连接DN ,过点D 作DG ∥CE 交AC 于点G .设DG =a ,BC =b ,则AB =AC =mb ,AD =AG =ma .∵∠ABC =2∠BAC ,设∠BAC =x ,则∠B =∠ACB =2x ,∴5x =180°,∴x =36°,∴∠A =36°. ∵NA =ND ,∴∠A =∠ADN =36°.∵∠ADG =∠B =72°,∴∠NDG =∠A =36°. 又∵∠DGN =∠AGD ,∴△GDN ∽△GAD , ∴DG 2=GN ·GA .易知DG =DN =AN =a ,∴a 2=(ma -a )·ma ,两边同除以a ,得m 2a -ma -a =0. ∵DG ∥CE ,∴DG ∶CE =FG ∶FC =DG ∶DA =1∶m . ∵CG =mb -ma ,∴FG =1m +1·m (b -a ),∴FN =GN +FG =ma -a +1m +1m (b -a )=m 2a -a +mb -ma m +1=mb m +1,∴FN AC =mbm +1mb =1m +1. 7.解:(1)证明:如图,过点D 作DP ⊥BC 于点P ,DQ ⊥AC 于点Q ,∴∠DQM =∠DPN =90°.又∵∠C =90°,∴四边形CPDQ 为矩形,∴∠QDP =90°,即∠MDQ +∠MDP =90°. ∵DM ⊥DN ,∴∠MDN =90°,即∠MDP +∠NDP =90°,∴∠MDQ =∠NDP ,∴△DMQ ∽△DNP ,∴DM DN =DQDP.∵D 为AB 的中点,DQ ∥BC ,DP ∥AC ,∴DQ =12BC ,DP =12AC ,∴DQ DP =BC AC ,∴DM DN =BCAC .(2)由题意得AQ =CQ =4,MQ =CM -CQ =5-4=1, DQ =12BC =3,DP =12AC =4.∵△DMQ ∽△DNP ,∴MQ NP =DQ DP ,∴NP =43.又CP =PB =3,∴CN =3-43=53.8.解:(1)1∶2 BD ∶BC(2)猜想S △BOC 与S △ABC 之比应该等于OD ∶AD .理由:如图,分别过点O ,A 作BC 的垂线OE ,AF ,垂足分别为E ,F , ∴OE ∥AF ,∴OD ∶AD =OE ∶AF .∵S △BOC =12BC ·OE ,S △ABC =12BC ·AF ,∴S △BOC ∶S △ABC =⎝⎛⎭⎫12BC ·OE ∶⎝⎛⎭⎫12BC ·AF =OE ∶AF =OD ∶AD . (3)猜想OD AD +OE CE +OFBF的值是1.理由如下:由(2)可知:OD AD +OE CE +OF BF =S △BOC S △ABC +S △BOA S △ABC +S △AOC S △ABC =S △BOC +S △BOA +S △AOC S △ABC =S △ABCS △ABC =1.9.解:(1)∵将△ACB 的一角沿EF 折叠,折叠后点A 落在AB 边上的点D 处, ∴EF ⊥AB ,△AEF ≌△DEF ,∴S △AEF =S △DEF . ∵S 四边形ECBF =3S △EDF ,∴S △ABC =4S △AEF .在Rt △ABC 中,∵∠ACB =90°,AC =4,BC =3,∴AB =5.∵∠EAF =∠BAC ,∴Rt △AEF ∽Rt △ABC , ∴S △AEF S △ABC =(AE AB)2,即(AE 5)2=14,∴AE =2.5.(2)连接AM 交EF 于点O ,如图①,∵将△ACB 的一角沿EF 折叠,折叠后点A 落在BC 边上的点M 处,∴AE =EM ,AF =MF ,∠AFE =∠MFE .∵MF ∥CA ,∴∠AEF =∠MFE , ∴∠AEF =∠AFE ,∴AE =AF , ∴AE =EM =MF =AF , ∴四边形AEMF 为菱形. 设AE =x ,则EM =x ,CE =4-x . ∵四边形AEMF 为菱形, ∴EM ∥AB ,∴△CME ∽△CBA , ∴CM CB =CE CA =EMAB, 即CM 3=4-x 4=x 5,解得x =209,CM =43. 在Rt △ACM 中,AM =AC 2+CM 2=4103.∵S 菱形AEMF =12EF ·AM =AE ·CM ,∴EF =2×43×2094103=4109.(3)如图②,过点F 作FH ⊥BC 于点H , ∵EC ∥FH ,∴△NCE ∽△NHF ,∴CN ∶NH =CE ∶FH ,即1∶NH =47∶FH ,∴FH ∶NH =4∶7.设FH =4x ,NH =7x ,则CH =7x -1,BH =3-(7x -1)=4-7x .∵FH ∥AC ,∴△BFH ∽△BAC ,∴BH ∶BC =FH ∶AC ,即(4-7x )∶3=4x ∶4,解得x =0.4,∴FH =4x =85,BH =4-7x =65.在Rt △BFH 中,BF =(65)2+(85)2=2, ∴AF =AB -BF =5-2=3,∴AF BF =32.。

九年级数学上册 第四章 图形的相似 2 平行线分线段成例 平行线的作法素材 北师大版(2021学年

九年级数学上册 第四章 图形的相似 2 平行线分线段成例 平行线的作法素材 北师大版(2021学年

九年级数学上册第四章图形的相似2 平行线分线段成例平行线的作法素材(新版)北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(九年级数学上册第四章图形的相似 2 平行线分线段成例平行线的作法素材(新版)北师大版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为九年级数学上册第四章图形的相似2 平行线分线段成例平行线的作法素材(新版)北师大版的全部内容。

平行线的作法1、已知:如图,△ABC 中,D为BC 的中点,过D 作任意直线交AC 于E ,交BA 的延长线于F ,求证:FBFAEC AE = 过A 作AG∥BC交FD 于G,可得两个基本图形2、已知:E是△ABC 的边AC 的中点,D 是A B边上任意一点,DE 与BC的延长线交于点F求证:FBFCDB AD =证法介绍:(1) 过A 作平行线)(FC FG FBFGDB AD == )(FC AG BFAGDB AD ==(2)过B作平行线BFCFEG EC EG AE DB AD ==,(3)过C 作平行线:C G=AD A D=GD(4)过E 作平行线BDABBD EG FB FG AB EG 2121===方法同前BCCE 21=BFBG BD ABBF GC FG FB FC -=-=21 =112-=-⋅=--BD ABBF FG BF FG BF BF FG =BDAD因此,选择最佳的求解方法,依赖于对知识的理解,对基本图形的识别和对解题规律的总结和归纳.3、已知,如图,△ABC中,E 、F 分别为BC 的三等分点,D为AC 的中点,BD 分别与A E、AF 交于点M、N,求BM:MN:N D (5:3:2)解法一:过A作A G∥BD交CB 延长线于G 解法二:过E 、F 作BD 的平行线 解法三:过E 、F 作AC 的平行线解法四:连DF,过D 作DG∥BC4、△ABC 中,AD 平分∠BAC,求证:DCBDAC AB = 过C 作CE∥AD 过D 作D E∥AC 利用面积关系 过C 作CE∥AB5、如图,四边形A BCD 中,对角线AC 、B D相交于点O,过点O 作EG∥BC 交AB 于E ,交CD 于F,交A D的延长线于G求证:OG 2=CF·GECM OG BM EG = ∴CM BMOG EG = BM OGDB DO MC GF DC DF === ∴CMBMGF GO =以上就是本文的全部内容,可以编辑修改。

相似图形的判定及性质

相似图形的判定及性质
1.如图,在△ABC 中,D 为 AB 的中点,DF 交 AC 于点 E, 交 BC 的延长线于点 F.求证:AE·CF=BF·EC.
期末提分练案
证明:过点 C 作 CM∥AB,交 DF 于点 M. ∵CM∥AB, ∴∠FCM=∠B,∠FMC=∠FDB. ∴△CMF∽△BDF. ∴BCFF=CBMD. 又∵CM∥AD, ∴∠A=∠ECM,∠ADE=∠CME.
北师版 九年级上
期末提分练案
第6讲 相似图形的判定及性质 第5课时 技巧训练
证比例式或等积式的七种常用技巧
习题链接
提示:点击 进入习题
1 见习题 2 见习题 3 见习题 4 见习题 5 见习题
6 见习题 7 见习题 8 见习题 9 见习题 10 见习题
答案显示
11 见习题 12 见习题
期末提分练案
期末提分练案
证明:如图,连接 PM,PN. ∵MN 是 AP 的垂直平分线, ∴MA=MP,NA=NP. ∴∠1=∠2,∠3=∠4. 又∵△ABC 是等边三角形, ∴∠B=∠C=∠1+∠3=60°. ∴∠2+∠4=60°.
期末提分练案
∴∠5+∠6=120°. 又∵∠6+∠7=180°-∠C=120°, ∴∠5=∠7. ∴△BPM∽△CNP. ∴CBNP=BCMP ,即 BP·CP=BM·CN.
求证:AB·DF=BC·EF.
期末提分练案
【点拨】利用相似三角形证明等积式或者比例式的一般方 法:把等积式或者比例式中的四条线段分别看成两个三角形 的对应边,然后通过证明这两个三角形相似,从而得到所要 证明的等积式或比例式.特别地,当等积式中的线段的对应 关系不容易看出时,也可以把等积式转化为比例式.
期末提分练案
6.如图,P 是▱ABCD 的边 BC 的延长线上一点,AP 分别交 BD 和 CD 于点 M 和 N.求证:AM 2=MN·MP.

九年级数学上册第四章图形的相似《平行线分线段成比例及相似多边形》巩固练习(含解析)北师大版(202

九年级数学上册第四章图形的相似《平行线分线段成比例及相似多边形》巩固练习(含解析)北师大版(202

2018-2019学年九年级数学上册第四章图形的相似《平行线分线段成比例及相似多边形》巩固练习(含解析)(新版)北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018-2019学年九年级数学上册第四章图形的相似《平行线分线段成比例及相似多边形》巩固练习(含解析)(新版)北师大版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018-2019学年九年级数学上册第四章图形的相似《平行线分线段成比例及相似多边形》巩固练习(含解析)(新版)北师大版的全部内容。

平行线分线段成比例及相似多边形【巩固练习】 一、选择题1。

下列四组图形中,一定相似的是( ) A .正方形与矩形 B .正方形与菱形 C .菱形与菱形 D .正五边形与正五边形 2.如图,若AB∥CD∥EF,则下列结论中,与ADAF相等的是( )A .AB EF B .CD EF C .BO OE D .BCBE3.如图,在直角梯形ABCD 中,DC∥AB,∠DAB=90°,AC⊥BC,AC=BC ,∠ABC 的平分线分别交AD 、AC 于点E ,F ,则EFBF的值是( )A .2—1B .2+2C .2+1D .24.如图,在平行四边形ABCD 中,AC=4,BD=6,P 是BD 上的任一点,过点P 作EF∥AC,与平行四边形的两条边分别交于点E 、F ,设BP=x ,EF=y ,则能反映y 与x 之间关系的图象是( )5.如图,已知AB∥CD∥EF,AD :AF=3:5,BE=12,那么CE 的长等于( )A .2B .4C .524 D .536 6.如图,直线AB∥CD∥EF,若AC=3,CE=4,则BFBD的值是( )A .43B .34C .73D .74二、填空题7.给出下列几何图形:①两个圆;②两个正方形;③两个矩形;④两个正六边形;⑤两个等边三角形;⑥两个直角三角形;⑦两个菱形.其中,一定相似的有 (填序号). 8.在一张复印出来的纸上,一个多边形的一条边由原图中的2cm 变成了6cm ,这次复印的放缩比例是 .9.如图,在△ABC 中,DE∥BC,AD=2,AB=6,AE=3,则AC 的长为 .10.如图,在△ABC 中,若DE∥BC,21DB AD ,DE=4cm ,则BC 的长为 .11.如图,直线AD∥BE∥CF,BC=31AC,DE=4,那么EF 的值是 .12.如图,在△ABC 中,∠BAC=30°,AB=AC ,AD 是BC 边上的中线,∠ACE=12∠BAC,CE 交AB于点E ,交AD 于点F .若BC=2,则EF 的长为 .三、解答题13。

相似三角形的判定 数学北师大版九年级上册

相似三角形的判定 数学北师大版九年级上册
初中数学北师大版九年级上册
第四章 图形的相似
4 探索三角形相似的条件
第1课时 相似三角形的判定(1)
类比引入
可否用比较少的条件来判定三角形相似呢? 类比全等三角形
相似多边形
各角分别相等、各边成比例
相似三角形
三角分别相等、三边成比例
复习回顾
[——北师版 七年级 数学下册 教材P93、P98、P101、P103]
A
C B A'
C' B'
例1 如图,D、E分别是△ABC的边AB和AC上的点,
DE∥BC,AB=7,AD=5,DE=10,求BC的长. A
平行
角相等
△相似
解:∵ DE∥BC,
D
∴∠ADE=∠B,∠AED=∠C.
B
∴△ADE∽△ABC (两角分别相等的两个三角形相似).
∴ AD DE .
AB BC
CP AC
3. 如图,画一个三角形,使它与△ABC相似,且相 似比为1:2.
A
E
B
F
C
①取AB、BC的中点 E、F,连接EF. 则△ABC∽△EBF, 且相似比为1:2
3. 如图,画一个三角形,使它与△ABC相似,且相
似比为1:2.
E
A
则△ABC∽△EBF,
且相似比为1:2
B
C
F
②分别延长AB、BC,使EB=2AB,FB=2CB.
AB AC
∴△ABC∽△A′B′C′
B′
A
C A′
C′
例 如图,D,E分别是△ABC的边 AC ,AB上的点,AE=1.5,
AC=2,BC=3,且 AD ,3 求DE的长 .
AB 4
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
AC 上取一点 E,使 AD=AE,直线 DE 和 BC 的延长线交于 点 P.求证:BCPP=BECD.
【点拨】过某一点作某线段的平行线,构造出“A”型或“X”型的 基本图形,通过相似三角形转化线段的比,从而解决问题.
期末提分练案
证明:如图,过点 C 作 CF∥AB 交 DP 于点 F, ∴∠PFC=∠PDB,∠PCF=∠PBD. ∴△PCF∽△PBD.∴BCPP=BCDF. ∵AD∥CF,∴∠ADE=∠EFC. ∵AD=AE,∴∠ADE=∠AED. ∵∠AED=∠CEP,∴∠EFC=∠CEP.∴EC=CF.∴BCPP=BEDC.
在△ADF 和△GDC 中,∠ADF=∠CDG, DF=CD,
∴△ADF≌△GDC(AAS).∴AF=CG.
∵BF∶AF=3∶2,∴AB∶AF=5∶2.
∵∠CGE=∠BAE,∠CEG=∠BEA, ∴△ABE∽△GCE. ∴BEEC=CAGB=AABF=52.
期末提分练案 3.如图,在△ABC 中,AB>AC,在边 AB 上取一点 D,在边
Hale Waihona Puke 期末提分练案证明:如图,过点 C 作 CF∥AB,交 DE 于点 F, ∴∠FCD=∠B. ∵∠D 为公共角,∴△CDF∽△BDE.∴CBFE=BCDD. ∵点 M 为 AC 边的中点,∴AM=CM. ∵CF∥AB,∴∠A=∠MCF.
期末提分练案
又∵∠AME=∠CMF,∴△AME≌△CMF(ASA).∴AE=CF. ∵AE=14AB,BE=AB-AE, ∴BE=3AE,即ABEE=13. ∵CBFE=CBDD,∴ABEE=BCDD=13,即 BD=3CD. 又∵BD=BC+CD,∴BC=2CD.
期末提分练案
2.如图,在△ABC 中,F 为边 AB 上一点,且 BF∶AF=3∶2, 取 CF 的中点 D,连接 AD 并延长交 BC 于点 E,求BEEC的值.
解:过点 C 作 CG∥AB,交 AE 的延长线于点 G. ∵CG∥AB,∴∠DAF=∠G. ∵D 为 CF 的中点,∴CD=DF.
期末提分练案 ∠DAF=∠G,
期末提分练案
4.如图,在△ABC 中,点 M 为 AC 边的中点,点 E 为 AB 上一 点,且 AE=14AB,连接 EM 并延长交 BC 的延长线于点 D. 求证:BC=2CD.
期末提分练案
【点拨】本题证法不唯一,还可以过点 C 作 DE 的平行线、过点 E 作 BD 的平行线、过点 A 作 BD 的平行线与 DE 的延长线相交 等,都是过一点作平行线构造相似三角形,利用比例式的等量代 换进行证明.
期末提分练案 ∵D 是 AC 的中点,∴AD=CD.∴DF 是△ACE 的中位线. ∴DF∥AE,且 DF=12AE.∴DF∥PE.∴BBEF=BBDP. ∵BF=2BE,∴BD=2BP.∴BP=PD.∴DF=2PE. ∵DF∥AE,∴∠APQ=∠FDQ,∠PAQ=∠DFQ. ∴△APQ∽△FDQ.∴QPQD=DAPF. 设 PE=a,则 DF=2a,AP=3a. ∴PQ∶QD=AP∶DF=3∶2.∴BP∶PQ∶QD=5∶3∶2.
北师版 九年级上
期末提分练案
第6讲 相似图形的判定及性质 第2课时 方法训练 巧作平行线构造相
似三角形的三种常用方法
习题链接
提示:点击 进入习题
答案显示
1 见习题 2 见习题 3 见习题 4 见习题
期末提分练案 1.如图,在△ABC 中,E,F 是边 BC 上的两个三等分点,D 是
AC 的中点,BD 分别交 AE,AF 于点 P,Q, 求 BP∶PQ∶QD. 解:连接 DF. ∵E,F 是边 BC 上的两个三等分点, ∴BE=EF=FC.
相关文档
最新文档