初等数论试卷

合集下载

初等数论试卷模拟试题和答案

初等数论试卷模拟试题和答案

初等数论试卷一一、 单项选择题:(1分/题×20题=20分) 1.设x 为实数,[]x 为x 的整数部分,则( ) A.[][]1x x x ≤<+; B.[][]1x x x <≤+; C.[][]1x x x ≤≤+; D.[][]1x x x <<+. 2.下列命题中不正确的是( ) A.整数12,,,n a a a 的公因数中最大的称为最大公因数; B.整数12,,,n a a a 的公倍数中最小的称为最小公倍数C.整数a 与它的绝对值有相同的倍数 D.整数a 与它的绝对值有相同的约数3.设二元一次不定方程ax by c +=(其中,,a b c 是整数,且,a b 不全为零)有一整数解()00,,,x y d a b =,则此方程的一切解可表为( )A.00,,0,1,2,;a bx x t y y t t d d =-=+=±± B.00,,0,1,2,;a bx x t y y t t d d =+=-=±± C.00,,0,1,2,;b ax x t y y t t d d =+=-=±± D.00,,0,1,2,;b ax x t y y t t d d=-=-=±±4.下列各组数中不构成勾股数的是( )A.5,12,13; B.7,24,25; C.3,4,5; D.8,16,17 5.下列推导中不正确的是( )A.()()()11221212mod ,mod mod ;a b m a b m a a b b m ≡≡⇒+≡+ B.()()()11221212mod ,mod mod ;a b m a b m a a bb m ≡≡⇒≡ C.()()111212mod mod ;a b m a a b a m ≡⇒≡ D.()()112211mod mod .a b m a b m ≡⇒≡6.模10的一个简化剩余系是( ) A.0,1,2,,9; B.1,2,3,,10;C.5,4,3,2,1,0,1,2,3,4;----- D.1,3,7,9. 7.()mod a b m ≡的充分必要条件是( ) A.;m a b - B.;a b m - C.;m a b + D..a b m +8.设()43289f x x x x =+++,同余式()()0mod5f x ≡的所有解为( )A.1x =或1;- B.1x =或4; C.1x ≡或()1mod5;- D.无解.9、设f(x)=10nn a x a x a +++其中()0,mod i a x x p ≡是奇数若为f(x)()0mod p ≡的一个解,则:( )A .()()mod ()0mod ,1p f x p χχ∂≡≡∂>一定为的一个解 B .()()0mod ,1,()0mod p f x p χχ∂∂≡∂>≡一定为的一个解C .()()()00(),()0mod mod ,mod p f x f x p x x p x x p ααα≡≡≡当不整除时一定有解其中 D .()()()00mod ()0mod ,mod x x p f x p x x p ααα≡≡≡若为的一个解则有 10.()10(),,0mod ,,nn i n f x a x a x a a a p n p =+++≡>/设其中为奇数则同余式()()0mod f x p ≡的解数:( ) A .有时大于p 但不大于n; B .可超过pC .等于pD .等于n11.若2为模p 的平方剩余,则p 只能为下列质数中的 :( )A .3B .11C .13D .23 12.若雅可比符号1a m ⎛⎫=⎪⎝⎭,则 ( ) A .()2mod ,x a m ≡同余式一定有解B .()()2,1,mod a m x a p =≡当时同余式有解;C .()2(,mod m p x a p =≡当奇数)时同余式有解;D .()2(),mod a p x a p =≡当奇数时同余式有解.13.()()2mod 2,3,2,1,x a a αα≡≥=若同余式有解则解数等于( )A . 4B . 3C . 2D . 1 14. 模12的所有可能的指数为;( )A .1,2,4B .1,2,4,6,12C .1,2,3,4,6,12D .无法确定 15. 若模m 的单根存在,下列数中,m 可能等于: ( ) A . 2 B . 3 C . 4 D . 12 16.对于模5,下列式子成立的是: ( )A .322ind =B . 323ind =C . 350ind =D . 3331025ind ind ind =+ 17.下列函数中不是可乘函数的是: ( ) A .茂陛鸟斯(mobius)函数w(a) ; B . 欧拉函数()a φ;C .不超过x 的质数的个数()x π;D .除数函数()a τ;18. 若x 对模m 的指数是ab ,a >0,ab >0,则x α对模m 的指数是( ) A .a B .b C .ab D .无法确定 19.()f a ,()g a 均为可乘函数,则( ) A .()()f a g a 为可乘函数; B .()()f ag a 为可乘函数 C .()()f a g a +为可乘函数; D .()()f a g a -为可乘函数 20.设()a μ为茂陛乌斯函数,则有( )不成立A .()11μ=B .()11μ-=C .()21μ=-D .()90μ= 二.填空题:(每小题1分,共10分)21. 3在45!中的最高次n = ____________________; 22. 多元一次不定方程:1122n n a x a x a x N +++=,其中1a ,2a ,…,n a ,N 均为整数,2n ≥,有整数解的充分必要条件是___________________;23.有理数ab,0a b <<,)(,1a b =,能表成纯循环小数的充分必要条件是_______________________; 24. 设()0mod x x m ≡为一次同余式()mod ax b m ≡,a ≡()0mod m 的一个解,则它的所有解为_________________________;25. 威尔生(wilson )定理:________________________________________; 26. 勒让德符号5031013⎛⎫⎪⎝⎭=________________________________________; 27. 若)(,1a p =,则a 是模p 的平方剩余的充分必要条件是_____________(欧拉判别条件); 28. 在模m 的简化剩余系中,原根的个数是_______________________; 29. 设1α≥,g 为模p α的一个原根,则模2p α的一个原根为_____________; 30.()48ϕ=_________________________________。

初等数论试卷

初等数论试卷

初等数论试卷初等数论试卷一、单项选择题:(1分/题×20题=20分)1.设x 为实数,[]x 为x 的整数部分,则( A )A.[][]1x x x ≤<+;B.[][]1x x x <≤+;C.[][]1x x x ≤≤+;D.[][]1x x x <<+.2.下列命题中不正确的是( B )A.整数12,,,n a a a 的公因数中最大的称为最大公因数;B.整数12,,,n a a a 的公倍数中最小的称为最小公倍数C.整数a 与它的绝对值有相同的倍数D.整数a 与它的绝对值有相同的约数3.设二元一次不定方程ax by c +=(其中,,a b c 是整数,且,a b 不全为零)有一整数解()00,,,x y d a b =,则此方程的一切解可表为( C ) A.00,,0,1,2,;a b x x t y y t t d d=-=+=±± B.00,,0,1,2,;a b x x t y y t t d d=+=-=±± C.00,,0,1,2,;b a x x t y y t t d d=+=-=±± D.00,,0,1,2,;b a x x t y y t t d d =-=-=±±4.下列各组数中不构成勾股数的是( D )A.5,12,13;B.7,24,25;C.3,4,5;D.8,16,175.下列推导中不正确的是( D )A.()()()11221212mod ,mod mod ;a b m a b m a a b b m ≡≡?+≡+B.()()()11221212mod ,mod mod ;a b m a b m a a bb m ≡≡?≡C.()()111212mod mod ;a b m a a b a m ≡?≡D.()()112211mod mod .a b m a b m ≡?≡6.模10的一个简化剩余系是( D )A.0,1,2,,9; B.1,2,3,,10;C.5,4,3,2,1,0,1,2,3,4;----- D.1,3,7,9.7.()mod a b m ≡的充分必要条件是( E ) A.;m a b - B.;a b m - C.;m a b + D..a b m +8.设()43289f x x x x =+++,同余式()()0mod5f x ≡的所有解为( C )A.1x =或1;- B.1x =或4;C.1x ≡或()1mod5;- D.无解.9、设f(x)=10n n a x a x a +++其中()0,mod i a x x p ≡是奇数若为f(x)()0mod p ≡的一个解,则:( C )A .()()mod ()0mod ,1p f x p χχ?≡≡?>一定为的一个解B .()()0mod ,1,()0mod p f x p χχ??≡?>≡一定为的一个解C .()()()00(),()0mod mod ,mod p f x f x p x x p x x p ααα≡≡≡当不整除时一定有解其中D .()()()00mod ()0mod ,mod x x p f x p x x p ααα≡≡≡若为的一个解则有10.()10(),,0mod ,,n n i n f x a x a x a a a p n p =+++≡>/设其中为奇数则同余式()()0mod f x p ≡的解数:( B ) A .有时大于p 但不大于n; B .可超过pC .等于pD .等于n11.若2为模p 的平方剩余,则p 只能为下列质数中的 :( D )A .3B .11C .13D .2313.()()2mod 2,3,2,1,x a a αα≡≥=若同余式有解则解数等于( A )A . 4B . 3C . 2D . 114.模12的所有可能的指数为;( A )A .1,2,4B .1,2,4,6,12C .1,2,3,4,6,12D .无法确定15.若模m 的单根存在,下列数中,m 可能等于: ( D )A . 2B . 3C . 4D . 1218.若x 对模m 的指数是ab ,a >0,ab >0,则x α对模m 的指数是( B )A .aB .bC .abD .无法确定19.()f a ,()g a 均为可乘函数,则( A )A .()()f a g a 为可乘函数;B .()()f ag a 为可乘函数 C .()()f a g a +为可乘函数; D .()()f a g a -为可乘函数20.设()a μ为茂陛乌斯函数,则有( B )不成立A .()11μ=B .()11μ-=C .()21μ=-D .()90μ=二.填空题:(每小题1分,共10分)21. 3在45!中的最高次n = ____________________;22.多元一次不定方程:1122n n a x a x a x N +++=,其中1a ,2a ,…,n a ,N 均为整数,2n ≥,有整数解的充分必要条件是___________________;23.有理数a b,0a b <<,)(,1a b =,能表成纯循环小数的充分必要条件是_______________________;24.设()0mod x x m ≡为一次同余式()mod ax b m ≡,a ≡()0mod m 的一个解,则它的所有解为_________________________;27.若)(,1a p =,则a 是模p 的平方剩余的充分必要条件是_____________(欧拉判别条件);28.在模m 的简化剩余系中,原根的个数是_______________________;29.设1α≥,g 为模p α的一个原根,则模2p α的一个原根为_____________;30. ()48?=_________________________________。

初等数论期末试题及答案

初等数论期末试题及答案

初等数论期末试题及答案1. 选择题1.1 以下哪个数是质数?A. 10B. 17C. 26D. 35答案:B. 171.2 下列哪个数不是完全平方数?A. 16B. 25C. 36D. 49答案:C. 361.3 对于任意正整数n,下列哪个数一定是n的倍数?A. n^2B. n^3C. n+1D. n-1答案:A. n^22. 填空题2.1 求下列数的最大公约数:a) 24和36b) 45和75答案:a) 12b) 152.2 求下列数的最小公倍数:a) 6和9b) 12和18答案:a) 18b) 363. 计算题3.1 求1到100之间所有奇数的和。

解答:观察可知,1到100之间的奇数是等差数列,公差为2。

根据等差数列的求和公式,我们可以得到:(100 - 1) / 2 + 1 = 50 个奇数所以,奇数的和为:50 * (1 + 99) / 2 = 25003.2 求1到100之间所有能被3整除的数的和。

解答:观察可知,1到100之间能被3整除的数是等差数列,首项为3,公差为3。

根据等差数列的求和公式,我们可以得到:(99 - 3) / 3 + 1 = 33 个数所以,能被3整除的数的和为:33 * (3 + 99) / 2 = 16834. 证明题4.1 证明:如果一个数是平方数,那么它一定有奇数个正因数。

证明:设n是一个平方数,即n = m^2,其中m是一个正整数。

我们知道,一个数的因数总是成对出现的,即如果a是n的因数,那么n/a也是n的因数。

对于一个平方数n来说,它的因数可以分成两类:1) 当因数a小于等于m时,对应的商n/a必然大于等于m,因此这样的因数对有m对;2) 当因数a大于m时,对应的商n/a必然小于等于m,因此这样的因数对有(m - 1)对。

所以,在m > 1的情况下,平方数n有2m - 1个正因数,由于m是正整数,因此2m - 1一定是奇数。

而当m = 1时,平方数1只有一个因数,也满足奇数个正因数的条件。

三套大学初等数论期末考试试卷

三套大学初等数论期末考试试卷

期末考试卷(A)一、填空题(每空3分,共45分)1. 若a ︱b ,b <a ,则b= ;a ︱b ,b ︱a ,则a= 。

2. (36,108,204)= ;[30,45,84]= 。

3. 300 000的质因数标准分解为 ,它的所有正约数的个数是 ,所有正约数的和是 。

4. 。

5. 四位数b a 27能同时被2,3,5整除,则a= ;b= 。

6. 用m ϕ()表示数0,1,2,1m -中与数m 互质的数的个数,则ϕ(20)= ,ϕ(120)= 。

7. 循环小数0.01001001000100010001……的循环节的长度h= 。

8. 已知费马(Fermat )数为2F 21nn =+,n N ∈,则前四个费马质数是 。

9. 设今天是星期一,则102天后是星期 。

二、从0、3、5、7四个数中任意选三个,排成能同时被2、3、5 整除的三位数,求这样的三位数,且确定有多少个这样的三位数。

(7分)三、(16分)1、求4063的个位数。

2、 求1001006!约分后的分母。

四.解方程(16分)。

=0 ;2. 525x +231y=42。

五.证明题、(16分) 1. 求证:77733337|(333777) 。

2.设p为质数,a为整数,且a2≡b2(mod p),证明:a≡b(mod p)或a≡-b(mod p)。

中央广播电视大学2006—2007学年度第二学期“开放本科”期末考讧数学专业初等数论试题2007年7月一、单项选择题(每题4分,共24分)1.如果b,d,e,b,则( ).A.a=b B.a=-bC.a≥b D.a=±b2.如果2|n, 15|n,则30( )n.A. 整除B.不整除c. 等于D.不一定3.大于10且小于30的素数有( ).A.4个B.5个C 6个D.7个4.模5的最小非负完全剩余系是( ).A.一2,一1,O,1,2 B.一5,一4,一3,一2,一1C.1,2,3,4,5 D.0,1,2,3,45.如果( ),则不定方程ax+by=c 有解.A.(a,b)|c B.c|(a,b)C.a|c D.(a,b)|a6.整数637693能被( )整除.A.3 B.5C.7 D.9二、填空题(每题4分,共24分)1.x=[x]+ ·2.同余式111x≡75(mod321)有解,而且解的个数.3.在176与545之间有是17的倍数.4.如果ab>o,则[a,b](a,b)= ·5. a,b的最小公倍数是它们公倍数的·S.如果(a,b)=1,那么(ab,a+b)= .三、计算题(共32分)1.求(336,221,391)=?2.求解不定方程4x+12y=8.3.解同余式12x+4≡0(mod 7).4.解同余式x2≡2(mod 23)四、证明题(第1小题10分,第2小题10分,共20分)1.如果(a,b)=1,则(a十b,a-b)=l或2.2.证明相邻两个偶数的乘积是8的倍数.试卷代号:1077中央广播电视大学2006—2007学年度第二学期“开放本科”期末考试2007年7月一、单项选择题(每题4分,共24分)1.B 2.D 3.B4.A 5.D 6.A二、填空题(每题4分,共24分)1.{x}2.33.124.ab5.因数6.1三、计算题(每题8分,共32分)1.求(336,221,391)=?解:(336,221,391)=(336,(22l,391))…………………………—…………………(4分)=(336,17)=l ,.,..,,,.,.....,...·(4分)2.求解不定方程4x+12y=8.解:因为(4,12)=4 | 8,所以有解……………………………………………………(2分)化简x+3y=2,则有x=-1,y=l ……………………………………………(4分)通解为x=-1十3t,y=1一t ……………………………………………………(2分)3.解同余式12x十4≡O(mod7).解:因为(12,7)=1|4,所以有解,而且解的个数为1 …………………………(2分)变形12x一7y=一4………………………………………………………………(2分)简单计算x≡2(mod7).…………………………………………………………(4分)4.解同余式x2≡2(mod23)解:因为,所以有解,而且解的个数为2……………………(4分)解分别为x≡5,18(mod23)………………………………………………………(4分)四、证明题(第14、题lo分,第2小题lo分,共20分)1.如果(a,b)=1,则(a+b,a-b)=1或2.证明设(a十b,a一b)=d,则d|(a十b),d|(a一b)…………………………………(3分)所以d|(a十b)十(a一b),d|2a.同理d|2b…………………………………………(4分)再(a,b)=1,所以d|2.即d=1或2……………………………………—………(3分)2.证明相邻两个偶数的乘积是8的倍数.(10分)证明设相邻两个偶数分别为2n,(2n+2)…………………………………………(2分)所以2n(2n十2)=4n(n十1) …………………………………………………………<3分)而且两个连续整数的乘积是2的倍数………………………………………………(2分)即4n(n+1)是8的倍数.…………………………………………—……………(3分)初等数论一、判断题1、任意给出5个整数必有三个数之和能被整数3整除。

初等数论模拟试题及答案

初等数论模拟试题及答案

初等数论模拟试题及答案一、选择题(每题2分,共20分)1. 以下哪个数是素数?A. 4B. 9C. 13D. 162. 一个数的最小素因子是它本身,这个数是什么?A. 0B. 1C. 质数D. 合数3. 欧拉函数φ(n)表示小于或等于n的正整数中与n互质的数的个数。

若n=12,φ(12)的值是多少?A. 4B. 6C. 8D. 124. 一个数如果只有1和它本身两个因数,这个数是什么?A. 0B. 1C. 质数D. 合数5. 以下哪个数是完全数?A. 6B. 12C. 28D. 4966. 一个数的约数个数是奇数,这个数是什么?A. 质数B. 合数C. 完全数D. 素数7. 模n的逆元是指一个整数a,使得a×x ≡ 1 (mod n),以下哪个数在模5下没有逆元?A. 1B. 2C. 3D. 48. 费马小定理指出,如果p是一个质数,那么对于任意整数a,a^(p-1) ≡ 1 (mod p)。

以下哪个选项是错误的?A. a^4 ≡ 1 (mod 5)B. a^3 ≡ 1 (mod 7)C. a^2 ≡ 1 (mod 4)D. a^2 ≡ 1 (mod 3)9. 哥德巴赫猜想是指每一个大于2的偶数都可以表示为两个质数之和。

以下哪个数不能被表示为两个质数之和?A. 4B. 6C. 8D. 1010. 以下哪个数是梅森素数?A. 3B. 7C. 2^7 - 1D. 2^3 - 1二、填空题(每题2分,共20分)11. 素数是指只有________和它本身两个因数的自然数。

12. 如果a和b互质,那么它们的最大公约数是________。

13. 一个数的约数个数是偶数,这个数至少有________个约数。

14. 欧拉函数φ(1)的值是________。

15. 模n的剩余类集合记为Z/nZ,它包含________个元素。

16. 费马小定理中,如果a和p互质,那么a^(p-1) ≡ ________ (mod p)。

初等数论期末考试模拟试卷(含答案)

初等数论期末考试模拟试卷(含答案)

初等数论期末考试模拟试卷(含答案)一、填空题(每题5分,共25分)1. 若两个正整数a和b的最大公约数为1,则称a和b互质。

若a和b互质,则a+b与a-b也互质。

()2. 设m和n是正整数,且m、n互质。

若存在正整数k,使得km+1与kn+1互质,则k的最小值为()。

答案:13. 已知p和q是不同的质数,且p+q=17,则p^2+q^2的最小值为()。

答案:974. 设F(n)表示斐波那契数列的第n项,且F(n+1)=F(n)+F(n-1),F(1)=1,F(2)=1。

若F(n)能被3整除,则n的最小值为()。

答案:85. 已知正整数a、b、c满足a^2+b^2=c^2,则称a、b、c 为勾股数。

勾股数中,a、b、c都是奇数的三元组称为奇素勾股数。

已知最小的奇素勾股数是(3,4,5),则第二小的奇素勾股数是()。

答案:(15,8,17)二、选择题(每题5分,共25分)6. 以下关于最大公约数和最小公倍数的说法,错误的是()。

A. 两个正整数的最大公约数是它们的公共因子中最大的一个B. 两个正整数的最大公约数等于它们的乘积除以最小公倍数C. 两个正整数的最大公约数和最小公倍数的乘积等于这两个数的乘积D. 两个正整数的最大公约数和最小公倍数一定互质答案:D7. 设p是质数,且p>2,则以下说法正确的是()。

A. p的平方能被3整除B. p的立方能被3整除C. p的平方加1能被3整除D. p的平方减1能被3整除答案:D8. 以下关于斐波那契数列的说法,错误的是()。

A. 斐波那契数列中的任意两个相邻项互质B. 斐波那契数列中的任意两个非相邻项互质C. 斐波那契数列中的任意三个连续项构成勾股数D. 斐波那契数列中的任意两个相邻项之比越来越接近黄金比例答案:C9. 设a、b、c是勾股数,且a是最小的质数。

以下说法正确的是()。

A. b和c一定互质B. b和c一定不互质C. b和c中至少有一个是质数D. b和c中至少有一个不是质数答案:D10. 以下关于同余的说法,错误的是()。

自考初等数论试题及答案

自考初等数论试题及答案

自考初等数论试题及答案一、选择题(每题2分,共10分)1. 以下哪个数是素数?A. 4B. 9C. 11D. 15答案:C2. 一个数的最小素因子是3,那么这个数的最小公倍数是:A. 3B. 6C. 9D. 12答案:C3. 计算 \((2^3) \div 2^2\) 的结果是:A. 2B. 4C. 8D. 16答案:A4. 一个数的质因数分解是 \(2^2 \times 3^3\),那么这个数的约数个数是:A. 5B. 6C. 7D. 8答案:D5. 如果 \(p\) 是一个素数,那么 \(p^2 - 1\) 可以分解为:A. \((p-1)(p+1)\)B. \(p(p-1)\)C. \((p+1)(p-1)\)D. \(p^2 - 1\)答案:C二、填空题(每题3分,共15分)1. 如果一个数 \(n\) 能被3整除,那么 \(n\) 的各位数字之和也能被____整除。

答案:32. 一个数 \(a\) 与 \(b\) 的最大公约数(GCD)是 \(d\),那么\(a \times b\) 的最大公约数是______。

答案:d3. 一个数 \(n\) 能被9整除,那么 \(n\) 的各位数字之和也能被______整除。

答案:94. 一个数 \(n\) 能被11整除,那么 \(n\) 的奇数位数字之和与偶数位数字之和的差是______的倍数。

答案:115. 一个数 \(n\) 能被7整除,那么 \(2n + 4\) 能被______整除。

答案:7三、解答题(每题10分,共20分)1. 求 \(2^{16} - 1\) 的所有素因子。

答案:\(2^{16} - 1 = (2^8 + 1)(2^8 - 1) = (2^4 + 1)(2^4 -1)(2^8 + 1) = (2^2 + 1)(2^2 - 1)(2^4 + 1)(2^4 - 1)(2^8 + 1) = 3 \times 15 \times 17 \times 15 \times 255\),所以素因子为3, 5, 17, 255。

初等数论试卷,最全面的答案,包括截图

初等数论试卷,最全面的答案,包括截图

初等数论试卷,最全⾯的答案,包括截图初等数论考试试卷⼀、单项选择题:(1分/题X 20题=20分)1 ?设x为实数,lx ]为x的整数部分,则(A )A.[xl X ::: lx ; E. [x I ::: x Ixl ? 1 ;C. lx I x lx A:;1 ;D. lx I ::: X ::: Ix.l ? 1 .2.下列命题中不正确的是(B )A.整数a i,a2,||(,a n的公因数中最⼤的称为最⼤公因数;C.整数a与它的绝对值有相同的倍数D.整数a与它的绝对值有相同的约数3 .设⼆元⼀次不定⽅程ax?by=c (其中a,b,c是整数,且a,b不全为零)有⼀整数解x o,y°,d⼆a,b,则此⽅程的⼀切解可表为(C )a bA.x =x°t, y ⼆y°t,t =0, _1,_2」H;d da bB.x = X o t, y ⼆y o t,t = 0, —1, _2」H;d db ac. x =X o t, y =y°t,t =0, _1,_2,川;d db aD. x =x°t, y ⼆y o t,t =0, ⼀1,_2,|";d d4. 下列各组数中不构成勾股数的是(D )A. 5, 12, 13;B. 7, 24, 25;C.3, 4, 5;D. 8, 16, 175. 下列推导中不正确的是(D )A.? 三b modm ,a2 三d modm = y a?三b b2modm ;B.Q= b mod m ,a2 = b2 modm = Qa? = bb 2mod m ;c. Q= b mod m = 时2 = ba 2modm ;2 2C. ⼀5, -4, _3,-2,_1,0,1,2,3,4;D. 1,3,7,9.D.a1= b1 modm = Q=b modm .6 .模10的⼀个简化剩余系是(D )A. 0,1,2,川,9;B. 1,2,3川1,10;7. a三b modm的充分必要条件是(A )A. ma —b;B. a —b m;C.m a +b;D. a +b m.&设f x =x42x38x 9,同余式f x三0 mod5的所有解为(C )A. x =1 或-1;B. x =1 或4;C. x 三1 或-1 mod5 ;D.⽆解.9、设f(x)= a n X n JlUII a1x ? a°其中a i是奇数,若x = x0mod p 为f(x) = 0 mod p 的⼀个解, 则:(?)A. 了.三/.: mod p ⼚定为f (x)三0(mod p勺,1的⼀个解B. '三I mod p「,::1,⼀定为f (x)三0 mod p :的⼀个解D. 若x三x° mod p -为f (x)三0 mod p -的⼀个解,则有x :三x° mod p10.设f (x)⼆a n x n|川|) ax a0,其中a i为奇数,a n丞Omodp,n p,则同余式f (x) =0 mod p 的解数:( )A.有时⼤于p但不⼤于n; B .不超过pC.等于p D .等于n11.若2为模p的平⽅剩余,则p只能为下列质数中的:( D )A. 3 B . 11 C . 13 D . 2312.若雅可⽐符号->1,则(C )Im⼃2A. 同余式x三a modm ⼀定有解,B. 当a,m =1时,同余式x2=a mod p有解;C. 当m = p(奇数)时,同余式x2三a mod p有解;D. 当a⼆p(奇数)时,同余式x2三a mod p有解.13.若同余式x2三a mod2‘,〉-3, 2, a =1有解,则解数等于(A )C. ⼀5, -4, _3,-2,_1,0,1,2,3,4;D. 1,3,7,9.D.18. 若x 对模m 的指数是ab , a >0, ab >0,则a 对模m 的指数是(B )A. a B . b C . ab D.⽆法确定19. f a , g a 均为可乘函数,则(A ) A. f a g a 为可乘函数; B . f ag (a )C. f a g a 为可乘函数; D . f a - g a 为可乘函数20. 设丄[a 为茂陛乌斯函数,则有(B )不成⽴A ⼆ J 1 =1B .空-1 =1C .⼆■-2 = -1D .⼆=9 =0⼆. 填空题:(每⼩题1分,共10分)21.3在45!中的最⾼次n = ________ 21 ___ ; 22. 多元⼀次不定⽅程:a 1x 1 a 2x 2 ?⼁II a n x^ N ,其中a 1 , a 2,…,a n , N 均为整数,n _ 2 ,有整数解的充分必要条件是 _ ( a 1 , a 2 ,…,a n ,) I N_a23.有理数⼀,0cavb , (a,b )=1,能表成纯循环⼩数的充分必要条件是_ (10, b ) =1__; b- _ 24. 设x 三冷 mod m 为⼀次同余式ax 三b modm , a = 0 mod m 的⼀个解,则它的所有解 A . 414. A . 15. A . B . 3 C 模12的所有可能的指数为:( 1, 2, 4 B . 1, 2, 4, 6, 若模m 的原根存在,下列数中,2 B .3 C 16. 对于模5,下列式⼦成⽴的是.2 A )12 C . 1, 2, m不可能等于:( D . 12 B ) 3, D 4, 6,12 D ?⽆法确定 )A. in d 32 =2ind 3^=3 C. in d 35 =0ind 310 ⼆ ind 32 ind 35 17. A. 下列函数中不是可乘函数的是:茂陛鸟斯(mobius )函数w(a ); B. 欧拉函数■- a ;C. 不超过x 的质数的个数⼆x ;25. ____________________________ 威尔⽣(wilson )定理: _______________ (P —1)! +1 三0(modp ), p 为素数 _____________ ;26. 勒让德符号'^03 |= 1 ;訂013⼃27. 若a, p [=1,则a 是模p 的平⽅剩余的充分必要条件是 a 2三1 mod p (欧拉判别条件; 28.在模m 的简化剩余系中,原根的个数是 _讥営m __; 29.设。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、填空题(本大题共10小题,每小题4分,共40分)请在每小题的空格中填上正确答案。

错填、不填均无分。

1.μ(2002)=_________; d(2002)=_________.
2.自然数225,226,…,240中的素数是_________.
3.n+2,2n+3,3n+1中必定互素的一组数是_________.
4.模7的绝对值最小简化剩余系是_________.
5.同余方程16x ≡6(mod 46)的解是_________.
6.不定方程3x+4y=5的通解是_________.
7.17|(2002n -1),则正整数n 的最小值是_________.
8.满足ϕ(n) =20的n 有多个,其中两个是_________.
9.弗罗贝纽斯(Frobenius)问题可表述为_________. 10.⎪⎭
⎫ ⎝⎛17954 =_________. 二、计算题(本大题共3小题,第1,2小题各7分,第3小题9分,共23分)
1.判断下面同余方程组是否有解,如有解则求出其解:
⎪⎩
⎪⎨⎧≡≡≡9).5(mod x 20),7(mod x 15),2(mod x
2.试求不定方程y 2+x=x 2
+y-22的所有正整数解.
3.判断同余方程x 2≡62(mod 113)是否有解,如有解,则使用高斯(Gauss)逐步淘汰法求其解.
三、论证题(本大题共4小题,第1,2小题各8分,第3小题10分,第4题11分,共37
分)
1.试证一个正整数的平方,必与该正整数的各位数码字的和的平方,关于模9同余。

2.设(a,m)=1,x 通过模m 的一个简化剩余系,试证ax 也通过模m 的简化剩余系.
3.设F n =n 22+1,试证(F n ,F n+1)=1.
4.试证在两继自然数的平方之间,不存在四个自然数a<b<c<d ,使得ad=bc.
一、单项选择题(本大题共5小题,每小题3分,共15分)
1.对于不同的整数n,最大公因数(4n-2,3n+1)将有不同的值,其可能得到的值共有( )
A.1个
B.2个
C.3个
D.4个
2.以下各组数中,恰有一个素数和一个合数的数组是( )
A.101,103
B.117,119
C.131,133
D.141,143
3.设a 是整数,下面同余式必不成立的是( )
A.a 2≡-1(mod 4)
B.a 2≡2(mod 7)
C.a 2≡3(mod 11)
D.a 2≡-1(mod 13)
4.以下同余方程或同余方程组中,无解的是( )
A.6x ≡10(mod 22)
B.6x ≡10(mod 18)
C.⎩⎨⎧≡≡20) 11(mod x 8) 3(mod x
D. ⎩
⎨⎧≡≡9) 7(mod x 12) 1(mod x 5.在数201,202,203,204中不能表为两整数平方和的数共有( )
A.0个
B.1个
C.2个
D.3个
二、填空题(本大题共8小题,每小题4分,共32分)
请在每小题的空格中填上正确答案。

错填、不填均无分。

1.d(2000)=____;π(200)-π(180)=____.
2.为了编制1至2000之间的素数表,只需从中删去素数2,3,…,p 的倍数,留下的数(包括2,3,…,p 自身)就全是素数.为此,最小的p 是____.
3.设n 是合数,且ϕ(n)=6,则其中一个n 是____.
4.同余方程12x ≡8(mod 44)的解是____.
5.不定方程7x+5y=22的通解是____.
6.22004被31除所得余数是____.
7.华林(Waring)问题是指____.
8.依据勒让德 (Legendre)符号的值,同余方程x 2≡69(mod 199)的解的个数是____.(注:661是素数)
三、计算题(本大题共3小题,每小题8分,共24分)
1.解同余方程组⎪⎩
⎪⎨⎧≡≡≡11) (mod 34x 7) (mod 13x 9) (mod 6x
2.试用高斯(Gauss)逐步淘汰法解同余方程x 2≡33 (mod 97).
3.试求方程41-3x -⎥⎦
⎤⎢⎣⎡+734x =0的实数解.
四、证明题(本大题共3小题,第1小题8分,第2小题10分,第3小题11分,共29分)
1.试证x 6+5=y 2无整数解.
2.试证形如4m-1的素数有无限多个.
3.设(a,m)=1,正整数n 使a n ≡1 (mod m)成立.这样的n 有多个,其中最小的记为δ.试论δ|n.
一、填空题(本大题共10小题,每小题3分,共30分)
1.ϕ(5600)=_____.
2.同余方程20x ≡14(mod 72)关于模72的解是_____.
3.不定方程7x+19y=213的整数解是_____.
4.模19的平方非剩余是_____.
5.同余方程x 2≡74(mod 101)有_____个解.
6.199!末尾连续地有_____个零.
7.547是_____.(填“素数”或“合数”).
8.写出模10的一个最小的非负完全剩余系,并要求每项都是3的倍数,则此完全剩余系为_____.
9.最大公因数(n+1,3n+2)=_____.
10.欧拉定理表述为_____.
二、计算题(本大题共4小题,每小题10分,共40分)
1.求10
1010被7除所得的余数.
2.解同余方程组⎪⎩⎪⎨⎧≡≡≡15) 11(mod x 9). 5(mod x 7) 2(mod x
3.甲物每千克5元,乙物每千克3元,丙物每3千克1元,现在用100元买这三样东西共100千克,问各买几千克?
4.用高斯逐步淘汰法解同余方程x 2≡73(mod 137).
三、证明题(本大题共3小题,每小题10分,共30分)
1.若n=9k+t,t=3,4,5或6,k ∈Z ,证明方程x 3+y 3=n 无整数解.
2.设3|(a 2+b 2),证明3|a 且3|b.
3.若(a,m)=1,x 通过模m 的简化剩余系,则ax 也通过模m 的简化剩余系.
4.
一、单项选择题(本大题共5小题,每小题2分,共10分)
在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.-30被-9除的余数是( )
A.-3
B.-6
C.3
D.6
2.下列给出的数中是合数的是( )
A.1063
B.1073
C.1093
D.1103
3.⎪⎪⎭
⎫ ⎝⎛4001000中5的幂指数是( )
A.1
B.2
C.3
D.4
4.不能表示为5x +7y (x , y 是非负整数)的最大整数是( )
A.23
B.24
C.25
D.26
5.下列给出的素数模数中,3是平方非剩余的是( )
A.37
B.47
C.53
D.59
二、填空题(本大题共10小题,每小题3分,共30分)
请在每小题的空格中填上正确答案。

错填、不填均无分。

1.60480的标准分解式为______.
2.μ(50400)=______.
3.π(55.5)=______.
4.对任意的正整数n ,最大公因数(12n +1,30n +3)=______.
5.若ϕ(n )=4,则n=______.
6.同余方程6x ≡7(mod 23)的解是______.
7.不定方程6x +9y =30的通解是______.
8.写出模10的一个最小的非负简化剩余系,并要求每项都是7的倍数,则此简化剩余系为______.
9.326被50除的余数是______.
10.梅森数M 23是______(填素数或合数).
三、计算题(本大题共4小题,每小题10分,共40分)
1.已知两正整数中,每一个除以它们的最大公约数所得的商之和等于18,它们的最小公倍数等于975,求这两个数。

2.有一队士兵,若三人一组,则余1人;若五人一组,则缺2人;若十一人一组,则余3人。

已知这队士兵不超过170人,问这队士兵有几人?
3.求正整数x ,使x 2-1216是完全平方数。

4.已知563是素数,判断不定方程x2+563y=429是否有整数解。

四、证明题(本大题共2小题,每小题10分,共20分)
1.证明当n为整数时,504|n9-n3。

2.设(a, m)=1,若x通过模m的完全剩余系,则ax + b也通过模m的完全剩余系.。

相关文档
最新文档