初等数论练习题
初等数论试卷和答案

初等数论考试试卷1一、单项选择题(每题3分,共18分)1、如果a b ,b a ,则( ).A b a =B b a -=C b a ≤D b a ±=2、如果n 3,n 5,则15( )n .A 整除B 不整除C 等于D 不一定3、在整数中正素数的个数( ).A 有1个B 有限多C 无限多D 不一定4、如果)(mod m b a ≡,c 是任意整数,则A )(mod m bc ac ≡B b a =C ac T )(mod m bcD b a ≠5、如果( ),则不定方程c by ax =+有解. A c b a ),( B ),(b a c C c a D a b a ),(6、整数5874192能被( )整除.A 3B 3与9C 9D 3或9二、填空题(每题3分,共18分)1、素数写成两个平方数和的方法是( ).2、同余式)(mod 0m b ax ≡+有解的充分必要条件是( ).3、如果b a ,是两个正整数,则不大于a 而为b 的倍数的正整数的个数为( ).4、如果p 是素数,a 是任意一个整数,则a 被p 整除或者( ).5、b a ,的公倍数是它们最小公倍数的( ).6、如果b a ,是两个正整数,则存在( )整数r q ,,使r bq a +=,b r π≤0.三、计算题(每题8分,共32分)1、求[136,221,391]=?2、求解不定方程144219=+y x .3、解同余式)45(mod 01512≡+x .4、求⎪⎭⎫⎝⎛563429,其中563是素数. (8分)四、证明题(第1小题10分,第2小题11分,第3小题11分,共32分)1、证明对于任意整数n ,数62332n n n ++是整数.2、证明相邻两个整数的立方之差不能被5整除.3、证明形如14-n 的整数不能写成两个平方数的和.试卷1答案一、单项选择题(每题3分,共18分)1、D.2、A3、C4、A5、A6、B二、填空题(每题3分,共18分)1、素数写成两个平方数和的方法是(唯一的).2、同余式)(mod 0m b ax ≡+有解的充分必要条件是(b m a ),().3、如果b a ,是两个正整数,则不大于a 而为b 的倍数的正整数的个数为( ][b a ).4、如果p 是素数,a 是任意一个整数,则a 被p 整除或者( 与p 互素 ).5、b a ,的公倍数是它们最小公倍数的( 倍数 ).6、如果b a ,是两个正整数,则存在( 唯一 )整数r q ,,使r bq a +=,b r π≤0.三、计算题(每题8分,共32分)1、 求[136,221,391]=?(8分)解 [136,221,391]=[[136,221],391] =[391,17221136⨯]=[1768,391]------------(4分) = 173911768⨯=104⨯391=40664. ------------(4分)2、求解不定方程144219=+y x .(8分)解:因为(9,21)=3,1443,所以有解; ----------------------------(2分)化简得4873=+y x ; -------------------(1分)考虑173=+y x ,有1,2=-=y x , -------------------(2分)所以原方程的特解为48,96=-=y x , -------------------(1分)因此,所求的解是Z t t y t x ∈-=+-=,348,796。
初等数论试卷和答案

初等数论考试试卷1一、单项选择题(每题3分,共18分)1、如果a b ,b a ,则().A b a =B b a -=C b a ≤D b a ±=2、如果n 3,n 5,则15()n .A 整除B 不整除C 等于D 不一定3、在整数中正素数的个数().A 有1个B 有限多C 无限多D 不一定4、如果)(mod m b a ≡,c 是任意整数,则A )(mod m bc ac ≡B b a =C ac T )(mod m bcD b a ≠5、如果(),则不定方程c by ax =+有解. A c b a ),(B ),(b a c C c a D a b a ),(6、整数5874192能被()整除.A3B3与9C9D3或9二、填空题(每题3分,共18分)1、素数写成两个平方数和的方法是().2、同余式)(mod 0m b ax ≡+有解的充分必要条件是().3、如果b a ,是两个正整数,则不大于a 而为b 的倍数的正整数的个数为().4、如果p 是素数,a 是任意一个整数,则a 被p 整除或者().5、b a ,的公倍数是它们最小公倍数的().6、如果b a ,是两个正整数,则存在()整数r q ,,使r bq a +=,b r ≤0.三、计算题(每题8分,共32分)1、求[136,221,391]=?2、求解不定方程144219=+y x .3、解同余式)45(mod 01512≡+x .4、求⎪⎭⎫ ⎝⎛563429,其中563是素数.(8分) 四、证明题(第1小题10分,第2小题11分,第3小题11分,共32分)1、证明对于任意整数n ,数62332n n n ++是整数.2、证明相邻两个整数的立方之差不能被5整除.3、证明形如14-n 的整数不能写成两个平方数的和.试卷1答案一、单项选择题(每题3分,共18分)1、D.2、A3、C4、A5、A6、B二、填空题(每题3分,共18分)1、素数写成两个平方数和的方法是(唯一的).2、同余式)(mod 0m b ax ≡+有解的充分必要条件是(b m a ),().3、如果b a ,是两个正整数,则不大于a 而为b 的倍数的正整数的个数为(][b a ).4、如果p 是素数,a 是任意一个整数,则a 被p 整除或者(与p 互素).5、b a ,的公倍数是它们最小公倍数的(倍数).6、如果b a ,是两个正整数,则存在(唯一)整数r q ,,使r bq a +=,b r ≤0.三、计算题(每题8分,共32分)1、 求[136,221,391]=?(8分)解[136,221,391]=[[136,221],391]=[391,17221136⨯]=[1768,391]------------(4分) =173911768⨯=104⨯391=40664.------------(4分)2、求解不定方程144219=+y x .(8分)解:因为(9,21)=3,1443,所以有解;----------------------------(2分) 化简得4873=+y x ;-------------------(1分)考虑173=+y x ,有1,2=-=y x ,-------------------(2分)所以原方程的特解为48,96=-=y x ,-------------------(1分)因此,所求的解是Z t t y t x ∈-=+-=,348,796。
初等数论期末试题及答案

初等数论期末试题及答案1. 选择题1.1 以下哪个数是质数?A. 10B. 17C. 26D. 35答案:B. 171.2 下列哪个数不是完全平方数?A. 16B. 25C. 36D. 49答案:C. 361.3 对于任意正整数n,下列哪个数一定是n的倍数?A. n^2B. n^3C. n+1D. n-1答案:A. n^22. 填空题2.1 求下列数的最大公约数:a) 24和36b) 45和75答案:a) 12b) 152.2 求下列数的最小公倍数:a) 6和9b) 12和18答案:a) 18b) 363. 计算题3.1 求1到100之间所有奇数的和。
解答:观察可知,1到100之间的奇数是等差数列,公差为2。
根据等差数列的求和公式,我们可以得到:(100 - 1) / 2 + 1 = 50 个奇数所以,奇数的和为:50 * (1 + 99) / 2 = 25003.2 求1到100之间所有能被3整除的数的和。
解答:观察可知,1到100之间能被3整除的数是等差数列,首项为3,公差为3。
根据等差数列的求和公式,我们可以得到:(99 - 3) / 3 + 1 = 33 个数所以,能被3整除的数的和为:33 * (3 + 99) / 2 = 16834. 证明题4.1 证明:如果一个数是平方数,那么它一定有奇数个正因数。
证明:设n是一个平方数,即n = m^2,其中m是一个正整数。
我们知道,一个数的因数总是成对出现的,即如果a是n的因数,那么n/a也是n的因数。
对于一个平方数n来说,它的因数可以分成两类:1) 当因数a小于等于m时,对应的商n/a必然大于等于m,因此这样的因数对有m对;2) 当因数a大于m时,对应的商n/a必然小于等于m,因此这样的因数对有(m - 1)对。
所以,在m > 1的情况下,平方数n有2m - 1个正因数,由于m是正整数,因此2m - 1一定是奇数。
而当m = 1时,平方数1只有一个因数,也满足奇数个正因数的条件。
初等数论习题

初等数论练习题1、()=320011 ()10,()=107137 ()2。
2、()=531404 ()10,()=1021580()8 3、比较()21011011与()41203的大小。
4、求证:对于任意整数n m ,,必有1616+≠-n m 。
5、如果n 是一个自然数,则()1+n n 是 (填“奇数”或“偶数”)6、若b a ,两数的和与积均为偶数,则b a ,的奇偶性是 。
7、若a 除以b 商c 余r ,则am 除以bm 商 余 。
8、设4>n ,且()()2434+-n n ,求n 。
9、设()223b a +,证明a 3且b 310证明:若()()pq mn p m +-,则()()np mq p m +-。
11、若23++n m 是偶数,试判定()()200311+--n m 是奇数还是偶数。
12、求证:若b a ,a b ,则b a ±=。
11、设b a ,是正整数,且b a ≤,若5776=ab ,()31,=b a ,求b a ,。
13、设b a ,是正整数,且b a ≤,若50=+b a ,()5,=b a ,求b a ,。
14、如果p 是素数,a 是整数,则有()1,=p a 或者____ ___ 15、()=204,360 ,[]=204,360 。
16、若()()24,4,==b a ,则()=+4,b a 。
17、写出1500的标准分解式是,60480的标准分解式为 18、541是 。
(填“质数”或“合数”)19、设()1,=n m ,求证:()()()n d m d mn d =,()()()n S m S mn S =。
20、计算()430d ,()430S 。
21、求!100末尾0的个数。
22、求13除486的余数。
23、写出模9的一个完全剩余系,使其中每个数都是奇数。
24、写出模9的一个完全剩余系,使其中每个数都是偶数。
25、若()1,=m a ,求证:若x 通过模m 的简化剩余系,则ax 通过模m 的简化剩余系。
初等数论练习题

初等数论练习题"信阳职业技术学院2010年12月~初等数论练习题一一、填空题1、d(2420)=___________; ϕ(2420)=___________。
2、设a,n 是大于1的整数,若a n -1是质数,则a=___________。
3、模9的绝对最小完全剩余系是___________。
4、同余方程9x+12≡0(mod 37)的解是__________。
5、不定方程18x-23y=100的通解是___________。
6、分母是正整数m 的既约真分数的个数为_______。
7、18100被172除的余数是___________。
8、⎪⎭⎫⎝⎛10365 =___________。
—9、若p 是素数,则同余方程x p 11(mod p )的解数为 。
二、计算题 1、解同余方程:3x 211x 200 (mod 105)。
2、判断同余方程x 2≡42(mod 107)是否有解3、求(127156+34)28除以111的最小非负余数。
三、证明题1、已知p 是质数,(a,p )=1,证明:(1)当a 为奇数时,a p-1+(p-1)a ≡0 (mod p); (2)当a 为偶数时,a p-1-(p-1)a ≡0 (mod p)。
(2、设a 为正奇数,n 为正整数,试证n2a ≡1(mod 2n+2)。
3、设p 是一个素数,且1≤k ≤p-1。
证明:k p 1C -(-1 )k(mod p )。
4、设p 是不等于3和7的奇质数,证明:p 6≡1(mod 84)。
初等数论练习题二一、填空题1、d(1000)=__________;σ(1000)=__________。
2、2010!的标准分解式中,质数11的次数是__________。
)3、费尔马(Fermat)数是指Fn=n22+1,这种数中最小的合数Fn 中的n=_________。
4、同余方程13x ≡5(mod 31)的解是__________。
初等数论期末练习

初等数论练习题一、单项选择题2、如果1),(=b a ,则),(b a ab +=( ).A aB bC 1D b a + 3、小于30的素数的个数( ). A 10 B 9 C 8 D 74、如果)(mod m b a ≡,c 是任意整数,则A )(mod m bc ac ≡B b a =C ac T )(m od m bcD b a ≠ 5、不定方程210231525=+y x ( ).A 有解B 无解C 有正数解D 有负数解 6、整数5874192能被( )整除.A 3B 3与9C 9D 3或9 8、公因数是最大公因数的( ).A 因数B 倍数C 相等D 不确定 9、大于20且小于40的素数有( ). A 4个 B 5个 C 2个 D 3个 11、因为( ),所以不定方程71512=+y x 没有解. A [12,15]不整除7 B (12,15)不整除7 C 7不整除(12,15) D 7不整除[12,15]二、填空题1、有理数ba,1),(,0=b a b a ,能写成循环小数的条件是( ). 2、同余式)45(mod 01512≡+x 有解,而且解的个数为( ).3、不大于545而为13的倍数的正整数的个数为( ).4、设n 是一正整数,Euler 函数)(n ϕ表示所有( )n ,而且与n ( )的正整数的个数.5、设b a ,整数,则),(b a ( )=ab .6、一个整数能被3整除的充分必要条件是它的( )数码的和能被3整除.7、+=][x x ( ).8、同余式)321(m od 75111≡x 有解,而且解的个数( ). 9、在176与545之间有( )是17的倍数.10、如果0 ab ,则),](,[b a b a =( ). 11、b a ,的最小公倍数是它们公倍数的( ). 12、如果1),(=b a ,那么),(b a ab +=( ).三、计算题1、求24871与3468的最小公倍数?2、求解不定方程2537107=+y x .(8分)3、求⎪⎭⎫⎝⎛563429,其中563是素数. (8分)5、求[525,231]=?6、求解不定方程18116=-y x .8、求11的平方剩余与平方非剩余.四、证明题1、任意一个n 位数121a a a a n n -与其按逆字码排列得到的数n n a a a a 121- 的差必是9的倍数.(11分)2、证明当n 是奇数时,有)12(3+n .(10分)3、一个能表成两个平方数和的数与一个平方数的乘积,仍然是两个平方数的和;两个能表成两个平方数和的数的乘积,也是一个两个平方数和的数.(11分)4、如果整数a 的个位数是5,则该数是5的倍数.5、如果b a ,是两个整数,0 b ,则存在唯一的整数对r q ,,使得r bq a +=,其中b r ≤0.《初等数论》练习答案一、单项选择题2、C3、A4、A5、A6、B 8、A 9、A 11、B 二、填空题1、有理数ba,1),(,0=b a b a ,能写成循环小数的条件是( 1)10,(=b ). 2、同余式)45(mod 01512≡+x 有解,而且解的个数为( 3 ).3、不大于545而为13的倍数的正整数的个数为( 41 ).4、设n 是一正整数,Euler 函数)(n ϕ表示所有( 不大于 )n ,而且与n ( 互素 )的正整数的个数.5、设b a ,整数,则),(b a ( ],[b a )=ab .6、一个整数能被3整除的充分必要条件是它的( 十进位 )数码的和能被3整除.7、+=][x x ( }{x ).8、同余式)321(m od 75111≡x 有解,而且解的个数( 3 ). 9、在176与545之间有( 12 )是17的倍数.10、如果0 ab ,则),](,[b a b a =( ab ).11、b a ,的最小公倍数是它们公倍数的( 因数 ). 12、如果1),(=b a ,那么),(b a ab +=( 1 ).三、计算题1、求24871与3468的最小公倍数? 解:因为(24871,3468)=17 所以 [24871,3468]=17346824871⨯=5073684 所以24871与3468的最小公倍数是5073684。
(完整版)初等数论练习题答案

初等数论练习题一一、填空题1、d(2420)=12;(2420)=_880_ϕ2、设a,n 是大于1的整数,若a n -1是质数,则a=_2.3、模9的绝对最小完全剩余系是_{-4,-3,-2,-1,0,1,2,3,4}.4、同余方程9x+12≡0(mod 37)的解是x ≡11(mod 37)。
5、不定方程18x-23y=100的通解是x=900+23t ,y=700+18t t ∈Z 。
.6、分母是正整数m 的既约真分数的个数为_ϕ(m )_。
7、18100被172除的余数是_256。
8、 =-1。
⎪⎭⎫⎝⎛103659、若p 是素数,则同余方程x p - 1 ≡1(mod p )的解数为 p-1 。
二、计算题1、解同余方程:3x 2+11x -20 ≡ 0 (mod 105)。
解:因105 = 3⋅5⋅7,同余方程3x 2+11x -20 ≡ 0 (mod 3)的解为x ≡ 1 (mod 3),同余方程3x 2+11x -38 ≡ 0 (mod 5)的解为x ≡ 0,3 (mod 5),同余方程3x 2+11x -20 ≡ 0 (mod 7)的解为x ≡ 2,6 (mod 7),故原同余方程有4解。
作同余方程组:x ≡ b 1 (mod 3),x ≡ b 2 (mod 5),x ≡ b 3 (mod 7),其中b 1 = 1,b 2 = 0,3,b 3 = 2,6,由孙子定理得原同余方程的解为x ≡ 13,55,58,100 (mod 105)。
2、判断同余方程x 2≡42(mod 107)是否有解?11074217271071107713231071107311072107710731072107732107422110721721107213)(=∴-=-=-==-=-=-==⨯⨯≡-∙--∙-()()()(),()()()(,(()()(()(解: 故同余方程x 2≡42(mod 107)有解。
初等数论习题

《初等数论》习题集第1章第 1 节1. 证明定理1。
2. 证明:若m pmn pq,则m pmq np。
3. 证明:任意给定的连续39个自然数,其中至少存在一个自然数,使得这个自然数的数字和能被11整除。
4. 设p是n的最小素约数,n = pn1,n1 > 1,证明:若p >,则n1是素数。
5. 证明:存在无穷多个自然数n,使得n不能表示为a2 p(a > 0是整数,p为素数)的形式。
第 2 节1. 证明:12n4 2n3 11n2 10n,nZ。
2. 设3a2 b2,证明:3a且3b。
3. 设n,k是正整数,证明:nk与nk + 4的个位数字相同。
4. 证明:对于任何整数n,m,等式n2 (n 1)2 = m2 2不可能成立。
5. 设a是自然数,问a4 3a2 9是素数还是合数?6. 证明:对于任意给定的n个整数,必可以从中找出若干个作和,使得这个和能被n整除。
第 3 节1. 证明定理1中的结论(ⅰ)—(ⅳ)。
2. 证明定理2的推论1, 推论2和推论3。
3. 证明定理4的推论1和推论3。
4. 设x,yZ,172x 3y,证明:179x 5y。
5. 设a,b,cN,c无平方因子,a2b2c,证明:ab。
6. 设n是正整数,求的最大公约数。
第 4 节1. 证明定理1。
2. 证明定理3的推论。
3. 设a,b是正整数,证明:(a b)[a, b] = a[b, a b]。
4. 求正整数a,b,使得a b = 120,(a, b) = 24,[a, b] = 144。
5. 设a,b,c是正整数,证明:。
6. 设k是正奇数,证明:1 2 91k 2k 9k。
第 5 节1. 说明例1证明中所用到的四个事实的依据。
2. 用辗转相除法求整数x,y,使得1387x 162y = (1387, 162)。
3. 计算:(27090, 21672, 11352)。
4. 使用引理1中的记号,证明:(Fn + 1, Fn) = 1。