9简单超静定结构的解法解析
用力法求解超静定结构

用力法求解超静定结构概述超静定结构是指结构中的支座和约束条件多于结构自由度的情况。
用力法是一种经典的结构分析方法,常用于求解超静定结构。
本文将介绍用力法求解超静定结构的基本原理和步骤,并通过实例加以说明。
一、基本原理用力法的基本原理是根据平衡条件和变形约束,通过假设未知力的大小和方向,建立力的平衡方程和变形方程,解出未知力和结构的变形。
用力法适用于各种类型的结构,包括梁、柱、桁架等。
二、步骤用力法求解超静定结构的步骤如下:1. 选择合适的剖面根据结构的几何形状和约束条件,选择合适的剖面,将结构分割为若干个部分。
2. 假设未知力的方向和大小根据结构的特点和约束条件,假设未知力的方向和大小。
通常,未知力的方向可以根据结构的几何形状和外力的作用方向来确定,而未知力的大小则需要通过力的平衡方程来求解。
3. 建立力的平衡方程根据假设的未知力和结构的几何形状,建立力的平衡方程。
平衡方程包括力的平衡条件和力的矩平衡条件。
4. 建立变形方程根据结构的变形情况和约束条件,建立变形方程。
变形方程可以根据结构的刚度和约束条件来确定。
5. 解方程将力的平衡方程和变形方程联立,解方程组得到未知力和结构的变形。
6. 检验结果将求解得到的未知力和结构的变形代入原平衡方程和变形方程中,检验结果的准确性。
如果结果符合平衡和变形的要求,则求解成功;如果结果不符合要求,则需要重新假设未知力并重新求解。
三、实例分析为了更好地理解用力法求解超静定结构的步骤和原理,下面以一个简单的梁结构为例进行分析。
假设有一根悬臂梁,在梁的自重和外力作用下,需要求解支座反力和梁的变形。
1. 选择合适的剖面选择悬臂梁的剖面,将梁分割为两个部分:悬臂部分和支座部分。
2. 假设未知力的方向和大小假设支座反力的方向向上,大小为R。
3. 建立力的平衡方程根据力的平衡条件,可以得到悬臂部分的平衡方程:R - F = 0,其中F为梁的自重。
4. 建立变形方程根据梁的几何形状和约束条件,可以建立悬臂部分的变形方程,得到悬臂部分的弯矩和挠度。
超静定结构的解法

超静定结构的解法
迭代解法主要利用迭代计算的方法,在每次迭代中修正应力和应变的分布,直到趋于稳定。
该方法的基本步骤如下:
1.假设受力的初始状态,即假设一些节点处的节点位移和内力;
2.利用结构的几何约束和材料力学性质,计算一些节点处的内力和位移;
3.判断内力和位移是否满足力学静平衡条件,若满足则计算结束,否则进入下一步;
4.通过一定的修正方法,调整节点内力和位移;
5.重复步骤2至步骤4,直到内力和位移满足力学静平衡条件。
迭代解法的优点是通用性强,适用于各种超静定结构,但收敛速度较慢,计算量较大。
弹性势能法是利用结构的势能原理,将结构的力学行为转化为弹性势能的变化来求解结构的内力和位移。
该方法的基本步骤如下:
1.根据结构的受力情况和约束条件,建立适当的势能表达式;
2.利用力学静平衡方程,将势能表达式表示为内力和位移的函数;
3.求解势能的极值点,即通过对内力和位移偏导等于零,解得内力和位移的方程;
4.建立适当的边界条件,如位移边界条件和约束条件;
5.通过求解得到的方程,计算结构的内力和位移。
弹性势能法的优点是求解过程相对简单,收敛速度较快,但要求结构能够满足一定的连通性和对称性条件。
在解超静定结构的过程中,还可以采用其他方法来辅助计算,如虚功法、位移法、能量法等。
此外,有些超静定结构也可以通过变形补偿或者加固措施等方法使之退化为静定结构,进而采用常规的静力计算方法来求解。
总之,解超静定结构是一个相对复杂的过程,需要利用附加条件和弹性支承约束来求解。
通过迭代解法和弹性势能法等方法可以得到结构的内力和位移,为实际工程中的设计和分析提供重要的参考和依据。
超静定问题

l >
B端必接触
C
40kN 1.2m
静力平衡方程
RA RB 100kN
B
变形协调条件为 l
RB
RA
A
60kN 2.4m 1.2m
轴 力 图
15kN
85kN
⊕ 25kN
C
40kN 1.2m
B
RA 103 1.2 ( RA 60) 103 2.4 RB 103 1.2 l 9 6 9 6 9 6 210 10 600 10 210 10 600 10 210 10 300 10
3
FC
A
FC
C
L
2
L
B
2
P
例题 6.10
当系统的温度升高时,下列结构中的____不会 A 产生温度应力.
A
B
C
D
例题 6.11
图示静不定梁承受集中力F和集中力偶Me作用, 梁的两端铰支,中间截面C处有弹簧支座.在下列 关于该梁的多余约束力与变形协调条件的讨论 中,___是错误的. C
RB
RA 85kN
RB 15kN
三、扭转超静定问题 扭转变形计算公式
Tl GI p
T ( x) dx GI p l
例3.两端固定的圆截面等直杆AB,在截面
C受外力偶矩m作用,求杆两端的支座反力
偶矩。
m
A C B
a
b
解:
A
m
ɑ
mA
C
B
b
m
静力平衡方程为: m A mB m 变形协调条件为:
5 ql 8
B
L
q
结构力学课后解答:第9章__超静定结构的实用计算方法与概念分析

习 题9-2解:设EI=6,则5.1,1==BC AB i i 53.05.13145.1347.05.131414=⨯+⨯⨯==⨯+⨯⨯=BC BA μμ结点 A BC 杆端 AB BA BC 分配系数 固端 0.47 0.53 绞支 固端弯矩 -60 60 -30 0 分配传递 -7.05 -14.1 -15.9 0 最后弯矩-67.0545.9-45.9()()()逆时针方向215.216005.6721609.4522131m KN EI EI m M m M i AB AB BA BA B ⋅-=⎥⎦⎤⎢⎣⎡+---=⎥⎦⎤⎢⎣⎡---=θ(b)解:设EI=9,则3,31,1====BE BD BC AB i i i i12.0141333331316.0141333331436.01413333333=⨯+⨯+⨯+⨯⨯==⨯+⨯+⨯+⨯⨯==⨯+⨯+⨯+⨯⨯==BC BA BE BD μμμμ结点 A BC杆端 AB BA BC BD BE 分配系数 固端 0.16 0.12 0.36 0.36 绞支 固端弯矩0 45 -90 0 分配传递 3.6 7.2 5.4 16.216.20 最后弯矩 3.6 7.25.461.2 -73.8()()()顺时针方向22.1606.32102.732131m KN EI EI m M m M i AB AB BA BA B ⋅=⎥⎦⎤⎢⎣⎡---=⎥⎦⎤⎢⎣⎡---=θ9-3 (a) 解:B为角位移节点设EI=8,则1==BC AB i i ,5.0==BC BA μμ 固端弯矩()m KN l b l Pab M BA ⋅=⨯⨯⨯⨯=+=4882124432222 m KN l M BC ⋅-=⋅+-=582621892 结点力偶直接分配时不变号结点 A BC 杆端 AB BA BC 分配系数 铰接 0.5 0.5 固端弯矩 0 48 -58 12 分配传递0 50 50 5 5 12 最后弯矩103-312(b) 解:存在B 、C 角位移结点设EI=6,则1===CD BC AB i i i73741413145.0141414==⨯+⨯⨯==⨯+⨯⨯==BC CB BC BA μμμμ固端弯矩:mKN M M M m KN M m KN M CDCB BC BA AB ⋅-=⨯+⨯-===⋅-=⋅-=14021808640080802结点 A BC杆端 AB BA BC CB CD 分配系数 固结 0.5 0.5 4/7 3/7 固端弯矩-80 80 0 0 -140 分配传递-20 -40 -40 -2047.5 91.4 68.6 -11.4 -22.8 -22.8 -11.4 3.25 6.5 4.9 -0.82-1.63-1.63-0.820.6 0.45 最后弯矩-112.2215.57-15.4866.28-66.05(c) 解:B 、C 为角位移结点51411,5441454414,51411=+==+==+==+=CD CBBC BA μμμμ固端弯矩:mKN M mKN M mKN M mKN M mKN M mKN M DC CD CB BC BA AB ⋅-=⨯-=⋅-=⨯-=⋅=⨯=⋅-=⨯-=⋅=⨯=⋅=⨯=10065242003524501252450125241283424646424222222结点 A BCD 杆端 AB BA BC CB CD 滑动 分配系数 滑动 0.2 0.8 0.8 0.2 -100固端弯矩64 128 -50 50 -200 分配传递15.6 -15.6 -62.4 -31.272.48 144.96 36.24 -36.24 14.5 -14.5 -58 -29 11.6 23.2 5.8 -5.8 2.32-2.32-9.28-4.643.7 0.93 -0.93 最后弯矩96.4295.58-95.6157.02-157.03-142.9796.42(d) 解:11313141413114131414145.0141414=⨯+⨯+⨯⨯===⨯+⨯+⨯⨯===⨯+⨯⨯=DBDE DCCD CA μμμμμ 固端弯矩:mKN M mKN M ED DE ⋅=⋅-=⨯-=383812422 结点 A CD E 杆端 AC CA CD DC DB DE ED 分配系数 固结 0.5 0.5 4/11 3/11 4/11 固结 固端弯矩0 0 0 0 0 -2.67 2.67 分配传递-5 -10 -10 -546/33 92/33 69/33 92/33 46/33 -0.35 - 23/33- 23/33-0.35 0.127 0.096 0.127 0.064 最后弯矩-5.35-10.7-9.3-2.442.190.254.12(e) 解:当D 发生单位转角时:()()2414-=⨯⨯=m EI K Y C 则())假设12(441==⨯=-m EI EIM DC73,74,3716,379,371216,12,16,9,12=====∴=====∴EB ED DE DA DC DE EB DE DA DC S S S S S μμμμμ 结点D EB 杆端 DC DA DE ED EB BE 分配系数 12/37 9/37 16/37 4/7 3/7 固结 固端弯矩0 0 -9 9 0 0 分配传递-2.57 -5.14 -3.86 -1.93 3.75 2.81 5 -2.5 -0.72 -1.43 -1.07 -0.54 0.230.18 0.31 0.16 最后弯矩3.982.99-6.985-5-2.47(f) 解:截取对称结构为研究对象。
材料力学

5 Pa RD a RD a 6 EI 3EI 3EI
如何得到?
A D
P
B
自行完成
C D
RD
例题 6
图示结构AB梁的抗弯刚度为EI,CD杆的抗拉刚度为EA,
已知P、L、a。求CD杆所受的拉力。
D
a
A
C
L
2
L
B
2
P
解:变形协调条件为 wC lCD
D
a
C
FC
A
( P FC ) L wC 48EI FC L lCD EA
温度应力:
FB E t A
6 1 12 . 5 10 碳素钢线胀系数为 C0
温度应力:超静定结构中,由于温度变化,使构
件膨胀或收缩而产生的附加应力。
不容忽视!!!
路、桥、建筑物中的伸缩缝 高温管道间隔一定距离弯一个伸缩节
例题 11
图示阶梯形杆上端固定,下端与支座距离=1mm, 材料的弹性模量E=210GPa,上下两段杆的横截 面面积分别为600平方毫米和300平方毫米。试 作杆的轴力图。
C
A
FA
B
L2
FC
FA FB FC qL 0
L2
M
A
0
FB
变形协调方程
L qL2 FC FB L 0 2 2
3 FB qL 16
FA 3 qL 16
C q C FC 0
7.5kNm
5qL4 FC L3 5 0 FC qL 8 384 EI Z 48EI Z
由于超静定结构能有效降低结构的内力及变形,在 工程上(如桥梁等)应用非常广泛。
●超静定问题的解法:
超静定结构的解法

力法的基本思路
超静定计算简图 解除约束转 化成静定的 基本结构承受荷 载和多余未知力
基本体系受力、变形解法已知
力法的基本思路
用已掌握的方法,分析单个基本未 知力作用下的受力和变形
位移包含基本未知力Xi
同样方法分析 “荷载”下的 受力、变形
为消除基本结构与原结构差别,建立位移协调条件
11 12 1P 1 21 22 2 P 2
11 X 1 1n X n 1 P 1 X X nn n nP n n1 1
或写作矩阵方程
δ X P
(3) 作基本结构在单位未知力和荷载(如果 有)作用下的弯矩(内力)图 M i , M P (4) 求基本结构的位移系数
小结:力法的解题步骤
(1) 确定结构的超静定次数和基本结构(体系)
超静定次数 = 基本未知力的个数
= 多余约束数
= 变成基本结构所需解除的约束数
(3 次)
或
(14 次)
或
(1 次)
(6 次)
(4 次)
确定超静定次数时应注意: (a) 切断弯曲杆次数3、链杆1,刚结变单铰1, 拆开单铰2。总次数也可由计算自由度得到。 (b) 一个超静定结构可能有多种形式的基本 结构,不同基本结构带来不同的计算工作量。 因此,要选取工作量较少的基本结构。 (c) 可变体系不能作为基本结构 (2) 建立力法典型方程
将未知问题转化为 已知问题,通过消除已 知问题和原问题的差别, 使未知问题得以解决。 这是科学研究的 基本方法之一。
由于从超静定转化为静定,将什么 约束看成多余约束不是唯一的,因此 力法求解的基本结构也不是唯一的。
超静定结构的计算

§1.3超静定结构的计算超静定结构是具有多余约束的几何不变体系,仅根据静力平衡条件不能求出其全部支座反力和内力,还须考虑变形协调条件。
计算超静定结构的基本方法是力法和位移法。
这两种基本方法的解题思路,都是设法将未知的超静定结构计算问题转换成已知的结构计算问题。
转换的桥梁就是基本体系,转换的条件就是基本方程,转换后要解决的关键问题就是求解基本未知量。
1.3.1力法力法是以多余未知力为基本未知量、一般用静定结构作为基本结构,以变形协调条件建立基本方程来求解超静定结构内力的计算方法。
超静定结构多余约束(或多余未知力)的数目称为超静定次数,用n表示。
确定超静定次数的方法是:取消多余约束法,即去掉超静定结构中的多余约束,使原结构变成静定结构,所去掉的多余约束的数目即为原结构的超静定次数。
在结构上去掉多余约束的方法,通常有如下几种:●切断一根链杆,或者移去一个支座链杆,相当于去掉一个约束;●将一个固定支座改成固定铰支座,或将受弯杆件某处改成铰接,相当于去掉一个抗转动约束;●去掉一个联结两刚片的铰,或者撤去一个固定铰支座,相当于去掉两个约束;●将一梁式杆切断,或者撤去一个固定支座,相当于去掉三个约束。
现以图1-26a所示一次超静定结构为例,说明力法的基本原理。
其中,要特别重视力法的三个基本概念。
图1-261、力法的基本未知量:取超静定结构中的多余未知力(如图1-26a 中的X1)作为力法的基本未知量,以X i表示。
多余未知力在超静定结构内力分析中处于关键的地位,因此,有必要将其突出出来,作为主攻目标。
力法这个名称也因此而得。
2、力法的基本体系:将原结构中的多余约束(如图1-26a中的支座B)去掉,所得到的无任何外加因素的结构,称为力法的基本结构(图1-26b);基本结构在荷载和多余未知力共同作用下的体系,称为力法的基本体系(图1-26c)。
在基本体系中,仍然保留原结构的多余约束反力X1,只是把它由被动力改为主动力,因此基本体系的受力状态与原结构完全相同。
9-简单超静定结构的解法解析

例4 两铸件用两钢杆1、2连接如图,其间距为 l=200mm。现需 将制造得过长e=0.11mm的铜杆3装人铸件之间,并保持三杆 的轴线平行且有等间距a。试计算各杆内的装配应力。已知: 钢杆直径d=10mm,铜杆横截面为20mm 30mm的矩形,钢的 弹性模量E=210GPa,铜的弹性模量E=100GPa。铸件很厚,其 变形可略去不计。
最后,补充方程变为
7 qa4 FNa3 FNl 12 EI EI EA
解得
FN
7qa4 A 12(Il Aa3 )
B
D
在静定问题中,只会使结构的几 何形状略有改变,不会在杆中产生 附加的内力。如1杆较设计尺寸过长, C 仅是A点的移动。
3
1 aa
2
A''
A'
e
A
在超静定问题中,由于有了多余 约束,就将产生附加的内力。
附加的内力称为装配内力,与之相 应的应力则称为装配应力,装配应力 是杆在荷载作用以前已经具有的应 力,也称为初应力。
土建工程中的预应力钢筋混凝土构件,就是利 用装配应力来提高构件承载能力的例子。
(2)温度应力
静定问题:由于杆能自由变形,由温度所引起的变 形不会在杆中产生内力。
超静定问题:由于有了多余约束,杆由温度变化所 引起的变形受到限制,从而将在杆中产生内力。这 种内力称为温度内力。
与之相应的应力则称为温度应力。
M x 0, M A M B M e 0
变形协调条件:根据原超静定杆的约束情况,基 本静定系在B端的扭转角应等于零, 即补充方程为
B 0
按叠加原理:
B BB BM 0
BB、BM分别为MB、Me 引起的在杆端B的扭转角。
线弹性时,物理关系(胡克定理)为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、 超静定问题及其解法
B
C
F
1
2
A
B
aa
A F
静定结构: 仅靠静力平衡方程就可以求出结构 的约束反力或内力。
B
D
C
1
3
2
aa y
F N3
A
a a FN1
F N2
FA A
F
A
x
F
F
FC
C
超静定结构(静不定结构): 静力 B 学平衡方程不能求解。
超静定结构的未知力的数目多于 独立的平衡方程的数目;两者的 差值称为超静定的次数。
FN2
FN3
B
C
D F
Y 0, FN1 FN2 FN3 F 0 M D 0, 1.5FN1 0.5FN2 0.5FN3 0
(2) 变形分析—协调条件(补充方程)
l1 l2 l3
B
C
A
C'
B'
2(l1 l2 ) l1l3
(3) 胡克定理
BF BB
B BF BB
A
(3) 胡克定理(物理关系)
Fa BF EA
BB
FBl EA
(4)补充方程变为
B
Fa FBl 0 EA EA
得
FB
Fa l
FB
x FB为正,表明其方向与图中所设一致.
例2 设l,2,3杆用铰连接如图,1、2两杆的长度、横截面面 积和材料均相同,即l1=l2=l,A1=A2, E1= E2=E;3杆长度为 l3 ,横截面面积为A3,弹性模量为E3 。试求各杆的轴力。
FB B
DC
A
•习惯上把维持物体平衡并非必需的约束称为多余约 束,相应的约束反力称为多余未知力。
• 超静定的次数就等于多余约束或多余未知力的数 目。
•注意:从提高结构的强度和刚度的角度来说,多余 约束往往是必需的,并不是多余的。
•超静定的求解:根据静力学平衡条件确定结构的超 静定次数,列出独立的平衡方程;然后根据几何、 物理关系列出需要的补充方程;则可求解超静定问 题。
B 1
C1 A1 C
1
解: 画出结构装配简图,
1
B
并可确定装配后3 杆受 压,1、2杆受拉
aa
C 2
A
l
e
C'
3
l1=l2
B1
1
B
B'
C1
C
C'
A1
2
A
A' l3
FN1
B
FN3
C
FN2
A
aa
(1) 列出平衡方程,一次超静定问题
x Fx 0, FN3 FN1 FN2 0 M C' 0, FN1 FN2
(2) 变形分析—协调条件(补充方程)
因铸件可视作刚体,其变形相容条件是三 杆变形后的端点须在同一直线上。由于结构在 几何和物性均对称于杆3,可得补充方程
l1
FN1l EA
,
l2
FN2l EA
,
l3
FN3l EA
FN1 2FN2 FN3
(4)联立求解得
Hale Waihona Puke FN1F 12
,
FN 2
F 3
,
FN3
7F 12
2、装配应力·温度应力
(1)装配应力
B
D
在静定问题中,只会使结构的
几何形状略有改变,不会在杆中产 生附加的内力。如1杆较设计尺寸过 C 长,仅是A点的移动。
程; (2)根据变形协调条件,建立补充方程; (3)利用胡克定律,改写补充方程; (4)联立求解。
例3 一平行杆系,三杆的横截面面积、长度和弹性
模量均分别相同,用A、l、E 表示。设AC为一刚性横 梁,试求在荷载F 作用下各杆的轴力。
l
1
2
3
a
a
a 2
DC
A BF
解: (1)受力分析--平衡方程
FN1 A
该处的施加对应的约束反力FB,得到一个作用有原 荷载和多余未知力的静定结构
--称为原超静定结构的基本静定系或相当系统
A
注意原超静定结构的 B 端
约束情况,相当系统要保持和
C
原结构相等,则相当系统在 B
F
点的位移为零。
B
即得补充方程 B 0
FB
在相当系统中求 B 点的位移,按叠加原理,可得
A
C F B x
2、拉压超静定问题
例1 两端固定的等直杆 AB,在 C 处承受轴向力F 如图,杆的拉压刚度为 EA,求杆的支反力。
FA
A
解:一次超静定问题
a
(1)力:由节点 A 的平衡条
C
l
件列出杆轴线方向的平衡方
F
程
b
B
FA FB F 0
FB
(2)变形: 补充方程(变形协调条件)
可选取固定端 B 为多余约束,予以解除,在
B
1
D
32
C 解:一次超静定问题
(1)力:由节点A的平衡条件列 出平衡方程
y FN1 a
F N3
a FN2
A
F
A F
Fx 0, FN1 sin a FN2 sin a 0
x Fy 0, FN3 FN1 cosa FN3 cosa F 0
B
D
C (2)变形:补充方程
F EA
cos3 a
E3 A3
在超静定杆系中,各杆轴力的大小和该杆的刚度
与其它杆的刚度的比值有关。
增大或减少1、2两杆的刚度,则它们的轴力也 将随之增大或减少;杆系中任一杆的刚度的改变都 将引起杆系各轴力的重新分配。这些特点在静定杆 系中是不存在的。
归纳起来,求解超静定问题的步骤是: (1)根据分离体的平衡条件,建立独立的平衡方
1 32 aa
(变形协调条件)
A A'
l1 l3 cosa
l3
(3)胡克定理
l1
FN1l EA
l3
FN3l cosa
E3 A3
(4)补充方程变为
FN1
FN3
EA E3 A3
cos2 a
联立平衡方程、补充方程,求解得
FN1
FN 2
2 c osa
F
E3 A3 EAcos2
a
FN3 1 2
3
1 aa
2
A''
A'
e
A
在超静定问题中,由于有了多 余约束,就将产生附加的内力。
附加的内力称为装配内力,与之 相应的应力则称为装配应力,装配应 力是杆在荷载作用以前已经具有的 应力,也称为初应力。
例4 两铸件用两钢杆1、2连接如图,其间距为 l=200mm。现需 将制造得过长e=0.11mm的铜杆3装人铸件之间,并保持三杆 的轴线平行且有等间距a。试计算各杆内的装配应力。已知: 钢杆直径d=10mm,铜杆横截面为20mm 30mm的矩形,钢的 弹性模量E=210GPa,铜的弹性模量E=100GPa。铸件很厚,其 变形可略去不计。
•补充方程:为求出超静定结构的全部未知力,除了 利用平衡方程以外,还必须寻找补充方程,且使补 充方程的数目等于多余未知力的数目。
•根据变形几何相容条件,建立变形几何相容方程, 结合物理关系(胡克定律),则可列出需要的补充 方程。
•补充方程的获得,体现了超静定问题的求解技巧。 此处我们将以轴向拉压、扭转、弯曲的超静定问题 进行说明。