材料力学-力法求解超静定结构
材料力学-力法求解超静定结构

力法求解超静定结构时,可以根据计算结果优化结构设计,提高结构的强度和稳定性。
结论与总结
力法是求解超静定结构的有效方法,通过合理应用材料力学基础和力法的原理,我们能够准确求解反力分布并 分析结构的应力情况。
样例分析
结构:桥梁
使用力法求解桥梁上的悬臂梁,计算主梁的支座反 力和悬臂梁的应力分布。
结构:楼房
将力法应用于楼房结构,确定楼板的支座反力并分 析楼梯的受力情况。
实用提示和技巧
1 标定自由度
在应用力法时,正确标定结构的自由度是成功求解反力的重要步骤。
2 验证计算结果
对计算得到的反力进行验证,确保结果的准确性,避免错误的设计决策。
材料力学-力法求解超静 定结构
超静定结构的定义
超静定结构是指具有不止一个不可靠支持反力的结构。它们挑战了传统的结构分析方法,需要使用力法进行求 解。
材料力学基础
材料力学研究材料的受力和变形规律,包括弹性力学、塑性力学和损伤力学。 这些基础理论为力法求解超静定结构提供了必要的工具。
力法的原理
力法是一种基于平衡原理和支座反力法则的结构分析方法。它通过对超静定结构施加虚位移,建立受力平衡方 程,求解未知反力。
超静定结构应用力法求解的步骤
1
确定结构类型
了解结构是否为超静定结构,并确定不
计算反力
2
可靠支持反力的个数。
根据力法原理,建立并求解受力平衡方
程,计算未知反力。
3
验证平衡
通过检查受力平衡方程是否满足等式的
确定应力分布
4
要求,验证计算的反力是否正确。
பைடு நூலகம்
根据已知反力和结构的几何特性,计算 并绘制应力分布图。
材料力学第十四章__超静定结构

§14.1 超静定结构概述
整理课件
本节应用能量法求解静不定系统。 应用能量法求解静不定系统,特别是对桁 架、刚架等构成的静不定系统,将更加有效 。 求解静不定问题的关键是建立补充方程。 静不定系统,按其多余约束的情况,可以 分为外力静不定系统和内力静不定系统。
整理课件
支座反力静不定 类型反力静定内力静不定
整理课件
解静不定梁的一般步骤
(4)在求出多余约束反力的基础上,根据静 力平衡条件,解出静不定梁的其它所有支 座反力。 (5)按通常的方法(已知外力求内力、应力 、变形的方法)进行所需的强度和刚度计 算。
整理课件
例:作图示梁的弯矩图 。
整理课件
解:变形协调条件为
A 0
即
MAl2Pl2 10 2 382
A
M10 1
D
P
1
2
(d)
(e)
1 P0 2M E 1 0 M P d I s2 P E 20 2 a (I 1 c
o) s (1 )d P2(a 1 ) 2 E2 I
1102M E102IdsE aI02(1)2d2EaI
上面两式代入 正则方程:
11
X 整理课1件
Pa( 2
)
求出X1后,可得图(C)
解得
MA
3Pl 16
整理课件
3Pl MA 16
11 P
5P
16
整理课件
另解:变形协调条件为
vB 0
即
RBl2
2l Pl2
5l
0
2 386
解得
5P
RB 16
整理课件
5P
5Pl/32
16
3Pl 16
力法

力法例题:
1、用力法求解,画 M 图。其中 I1 kI 2 k 10
解:一、分析:该体系几何不变,有一次超静定。
二、选取基本结构
三、列力法方程: 11 X 1 1P 0
M P 图,求 11、1P 四、画 M 1、
11
y
i
i
EI
1 1 2 2 1 1 l l l l l l EI 1 2 3 3 EI 2 2
步骤中的难点,重点。) 第五步:求解未知力 X n 。 第六步:求杆端弯矩: M M 1 X 1 M P (一次超静定)
M M1 X1 M 2 X 2 M i X i M n X n M P ( n 次 超 静
定) 第七步:求跨中弯矩(针对于集中力作用在跨中处以及均布荷载 作用情况),作 M 图, Q 图(注意:弯矩,剪力的正负号规定)
y
i
i
EI
2 1 1 l l l l l l 3 2 EI l3 l3 6 EI EI 7l 3 6 EI 1 2 EI
1P
EI
i
yi
1 3 ql 2 l l 2 2 1 3 ql 4 ql 4 EI 4 12 1 EI
M中 AB 0 ql 2 2 2 88 ql 21ql 2 8 176
2、用力法求解,画 M 图。
解:一、分析:该体系几何不变,有一次超静定。 二、选取基本结构
三、列力法方程: 11 X 1 1P 0
M P 图,求 11、1P 四、画 M 1、
11
y
讨论:针对图乘法中需要注意的问题。 (1)必须是等截面直杆段
力法求解超静定结构

力法求解超静定结构
超静定结构是指其支反力个数大于等于结构模式自由度的结构,
也就是说,该结构中的支撑点不够,会产生多余的支反力,这就导致
了该结构的解题难度非常大。
但是,采用力法求解可以有效地解决这
个问题。
首先,可以采用静力平衡方程来确定结构中的支反力。
静力平衡
方程是通过平衡结构中的所有受力和力矩,来确定支反力的方程。
它
的基本形式为ΣF=0和ΣM=0,其中ΣF表示所有力的总和,ΣM表示
所有力的总力矩。
然后,要使用结构分析的基本原理,即支点位移法。
支点位移法
通过改变结构中某些支点的位置,并计算相应的支反力和位移量,来
求解结构中的位移和反力。
在计算反力时,要注意支点位移前后对结
构的影响,以及反力大小的变化等因素。
此外,在解决超静定结构时,还要注意结构中梁、柱等构件的弹
性变形。
这些变形对结构的位移和反力也会产生影响,因此需要考虑
其中的因素。
最后,要注意力法求解的精度问题。
由于超静定结构中存在多余
的支反力,因此求解过程中难免会产生误差。
为了提高计算精度,可
以采用迭代的方法,在多次迭代中逐步优化计算结果,提高求解精度。
总之,采用力法求解超静定结构需要掌握一定的理论基础和实践技巧,同时要注意结构中的弹性变形、支点移动等因素,并采用迭代的方法进行计算,以提高计算精度。
这些掌握了的技巧和方法将在实际工程中具有指导意义。
结构力学 力法计算超静定结构

子项目一 力法计算超静定结构
情景一 超静定结构的基本特征
学习能力目标
1. 能够解释力法的基本概念。 2. 能够确定超静定的次数,得到静定的基本结构。 3. 了解超静定结构的特点。
项目表述
试分析如图 3 – 1 所示超静定结构,确定它的超静定次数。
情景一 超静定结构的基本特征 学习进程
情景一 超静定结构的基本特征 知识链接
② 去掉一个固定铰支座(图 3 – 6a)或拆去一个单铰相当于去掉两个约束(图 3 – 6b),可用两个多余未知力代替。
情景一 超静定结构的基本特征 知识链接
③ 去掉一个固定支座(图 3 – 7b)或切断一刚性杆(图 3 – 7c),相当于去掉 三链接
③ 超静定结构的内力和各杆的刚度比有关,而静定结构则不然。在计算超静定 结构时,除了用静力平衡条件外,还要用到结构的变形条件建立补充方程。而 结构的变形条件与各杆的刚度有关,在各杆的刚度比值发生变化时,结构各部 分的变形也相应变化,从而影响各杆的内力重新分布。利用在超静定结构中, 刚度大的部分将产生较大的内力,刚度较小的部分内力也较小的特点,可以通 过改变杆件刚度的方法来达到调整内力数值的目的。 ④ 在局部荷载作用下,超静定结构与静定结构相比,具有内力分布范围大,内 力分布较均匀,峰值小,且变形小、刚度大的特点。如图 3 – 9a 所示是三跨连 续梁在荷载 F 作用下的弯矩图和变形曲线,由于梁的连续性,两边跨也产生内 力和变形,最大弯矩在跨中为 0.175Fl。图 3 – 9b 所示是多跨静定梁在荷载 F 作用下的弯矩图和变形曲线,由于铰的作用,两边跨不产生内力和变形,最大 弯矩在跨中为 0.25Fl,约为前者的 1.4 倍。
情景一 超静定结构的基本特征 知识链接
材料力学-第六章 简单的超静定问题

变形协调条件:
l1 l 3 cos
F N1
F N3
F N2
l3
l1
A
A
l2
例2.图示AB为刚性梁,1、2两杆的抗拉(压)
刚度均为EA,制造时1杆比原长l短,将1杆装
到横梁后,求两杆内力。
解: 装配后各杆变形 1杆伸长 l1 2杆缩短 l 2 变形协调条件
A
1
l1
4、联解方程
FN 1 F E3 A3 2 cos 2 E1 A 1 cos
FN 3
F E1 A 3 1 1 2 cos E3 A3
●装配应力的计算
装配应力:超静定结构中由于加工误差, 装 配产生的应力。 平衡方程:
FN 1 FN 2
1
3 2
A
l
FN 3 ( FN1 FN 2 ) cos
2、AC和BC材料相同,面积不同,外力作用在 连接界面处,在外力不变的情况下,要使AC上 轴力增加,错误的方法有( )。 A、 增加AC的横截面积 B、 减小BC的横截面积 C、 增加AC的长度 D、 增加BC的长度
A l1 C F B l2
3、AB为等截面杆,横截面面积为A,外力F作 用在中间,则AC和BC上应力分别( )。
2
l 2
B
2( l1 ) l 2
解: 分析AB
A
aF 1 2aF 2 0
F1l 物理方程 l1 EA 变形协调条件
FA
F1
F2
B
F2 l l 2 (缩短) EA
2( l1 ) l 2
4EA 2EA F1 (拉力) F2 (压力) 5l 5l
力法求解超静定结构的步骤:

第八章力法本章主要内容1)超静定结构的超静定次数2)力法的解题思路和力法典型方程(显然力法方程中所有的系数和自由项都是指静定基本结构的位移,可以由上一章的求位移方法求出(图乘或积分))3)力法的解题步骤以及用于求解超静定梁刚架桁架组合结构(排架)4)力法的对称性利用问题,对称结构的有关概念四点结论5)超静定结构的位移计算和最后内力图的校核6)§8-1超静定结构概述一、静力解答特征:静定结构:由平衡条件求出支反力及内力;超静定结构的静力特征是具有多余力,仅由静力平衡条件无法求出它的全部(有时部分可求)反力及内力,须借助位移条件(补充方程,解答的唯一性定理)。
二、几何组成特征:(结合例题说明)静定结构:无多余联系的几何不变体超静定结构:去掉其某一个或某几个联系(内或外),仍然可以是一个几何不变体系,如桁架。
即:超静定结构的组成特征是其具有多余联系,多余联系可以是外部的,也可能是内部的,去掉后不改变几何不变性。
多余联系(约束):并不是没有用的,在结构作用或调整结构的内力、位移时需要的,减小弯矩及位移,便于应力分布均匀。
多余求知力:多余联系中产生的力称为三、超静定结构的类型(五种)超静定梁、超静定刚刚架、超静定桁架、超静定拱、超静定组合结构四、超静定结构的解法综合考虑三个方面的条件:1、平衡条件:即结构的整体及任何一部分的受力状态都应满足平衡方程;2、几何条件:也称变形条件、位移条件、协调条件、相容条件等。
即结构的变形必须符合支承约束条件(边界条件)和各部分之间的变形连续条件。
3、物理条件:即变形或位移与内力之间的物理关系。
精确方法:力法(柔度法):以多余未知力为基本未知量位移法(刚度法):以位移为基本未知量。
力法与位移法的联合应用:力法与位移法的混合使用:混合法近似方法:力矩分配法、矩阵位移法、分层总和法、D值法、反弯点法等本章主要讲力法。
五、力法的解题思路(结合例子)把不会算的超静定结构通过会算的基本结构来计算。
材料力学超静定全版

按几何特征分类
连续性
Hale Waihona Puke 结构在各个方向上都是连 续的。非连续性
结构在某些方向上存在间 断,如梁的弯曲变形。
平面性
结构在某个平面内发生变 形,如薄板弯曲。
按求解方法分类
解析法
01
近似法
02
03
实验法
通过数学解析的方法求解超静定 问题,需要建立复杂的数学模型。
THANKS FOR WATCHING
感谢您的观看
解决超静定问题的技术和方法在工程 实践中具有广泛的应用价值,为复杂 结构的分析和设计提供重要的理论支 持和技术指导。
02 超静定问题的分类
按支承情况分类
01
02
03
固定支承
结构与支承物的连接处不 能发生任何方向的位移, 只能发生转动。
弹性支承
结构与支承物的连接处既 有刚性位移,又有弹性位 移。
铰支承
机械装置超静定问题分析
总结词
保障机械运转稳定性
详细描述
机械装置在运转过程中会受到各种外力和内 力的作用,导致其发生变形和位移。超静定 问题分析能够评估机械装置在不同工况下的 稳定性,预防因变形和位移引起的故障,提 高机械运转的可靠性和效率。
05 超静定问题的未来研究方 向
新型材料的超静定问题研究
详细描述
复杂结构如高层建筑、大跨度桥梁、空间结构等,其 超静定问题涉及到多个自由度和多种非线性因素,需 要深入研究其静力、动力和稳定性等问题。
多场耦合的超静定问题研究
要点一
总结词
要点二
详细描述
多场耦合的超静定问题研究将成为一个重要方向。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
补充:力法求解超静定结构
对称结构在正对称载荷作用下: 结构的内力及变形是对称的
位于对称轴上的截面C的内力 QC=0
材料力学Ⅰ电子教案
补充:力法求解超静定结构
对称结构在反对称载荷作用下: 结构的内力及变形是反对称的 位于对称轴上的截面C的内力 NC=0 , MC=0
THANK YOU
件为基本方程的方法,称为力法。
材料力学Ⅰ电子教案
A
补充:力法求解超静定结构
C
B
a
F
l
A
C
X1 A
C
B
1F
B
F
F
X1
A
C
B
1X1
材料力学Ⅰ电子教案
B为支座,因此有
补充:力法求解超静定结构
1 1 F 1X0
对力于的弹X1性倍结,构故,位1 X移1也与是力成11正的比X,1倍X1,是即单有位
11 X11F0
XB
qa
16
,
YB
9qa 16
X
A
qa 16
,
YA
7qa 16
材料力学Ⅰ电子教案
补充:力法求解超静定结构
材料力学Ⅰ电子教案
补充:力法求解超静定结构
变形协调条件:1 2 3 0
i表示Xi作用点沿着Xi方向的位移。
由叠加原理:
同理
1 1X1 1X2 1X3 1P 0
1 11 X 1 12 X 2 13 X 3 1P 0 2 21 X 1 22 X 2 23 X 3 2 P 0 3 31 X 1 32 X 2 33 X 3 3P 0
材料力学-力法求解超静定结构
材料力学Ⅰ电子教案
补充:力法求解超静定结构
简单的超静定结构
1 超静定系统的几个基本概念
外超静定系统:支座反力不能全由平衡方程求出 内超静定系统:支座反力可由平衡方程求出,但杆
件的内力却不能全由平衡方程求出;
材料力学Ⅰ电子教案
补充:力法求解超静定结构
材料力学Ⅰ电子教案
补充:力法求解超静定结构
11
1 EI
a2 2
2a 3
a2
a
4a 3 3 EI
1PBiblioteka 1 EIqa 23
a
qa 4 2 EI
由 11 X 1 1P 0 得
3 qa X1 8
X B 0,
YB
3 qa 8
X A 0,
YA
11 qa 8
,
M
A
qa 2 8
逆时针
材料力学Ⅰ电子教案
材料力学Ⅰ电子教案
补充:力法求解超静定结构
力法正则方程:
11X1 12 X2 1n Xn 1F 0 21X1 22X2 2nXn 2F 0 n1 X1 n2 X2 nn Xn nF 0
材料力学Ⅰ电子教案
对称性的利用:
补充:力法求解超静定结构
对称结构:若将结构绕对称轴对折后,结构在 对称轴两边的部分将完全重合。
求图示刚架的支反力。
补充:力法求解超静定结构
材料力学Ⅰ电子教案
补充:力法求解超静定结构
M10图
MP图
材料力学Ⅰ电子教案
11
2 a2
EI 2
2
a
3
2a 3 3EI
补充:力法求解超静定结构
1P
1 EI
2 3
qa 2 8
a
a
2
qa 4 24 E I
由 11 X 1 1P 0 得
qa X 1 16
补充:力法求解超静定结构
求解超静定系统的基本方法,是解除多余 约束,代之以多余约束反力,根据多余约束处 的变形协调条件建立补充方程进行求解。
解除多余约束后得到的静定结构,称为原 超静定系统的静定基本系统。
材料力学Ⅰ电子教案
补充:力法求解超静定结构
在求解超静定结构时,一般先解除多余约 束,代之以多余约束力,得到基本静定系。再 根据变形协调条件得到关于多余约束力的补充 方程。这种以“力”为未知量,由变形协调条
材料力学Ⅰ电子教案
补充:力法求解超静定结构
正对称载荷:绕对称轴对折后,结构在对称轴 两边的载荷的作用点和作用方向将重合,而且 每对力数值相等。
材料力学Ⅰ电子教案
补充:力法求解超静定结构
反对称载荷:绕对称轴对折后,结构在对称轴 两边的载荷的数值相等,作用点重合而作用方 向相反。
材料力学Ⅰ电子教案
材料力学Ⅰ电子教案
补充:力法求解超静定结构
这里可求得
11
l3 3 EI
Fa 2
1F
(3l a)
6EI
于是可求得
X1
Fa3 2l3
(3l
a)
材料力学Ⅰ电子教案
补充:力法求解超静定结构
例:试求图示平面刚架的支座反力。已知各杆
EI=常数。
材料力学Ⅰ电子教案
补充:力法求解超静定结构
M10图
MP图
材料力学Ⅰ电子教案