描述流体运动地两种方法

合集下载

流体的运动描述与速度场

流体的运动描述与速度场

流体的运动描述与速度场流体力学是研究流体运动规律及其相应性质的学科,它在科学和工程领域中具有广泛的应用。

在研究流体运动过程中,描述流体运动状态和速度场是十分重要的。

本文将就流体的运动描述和速度场展开讨论,以便更好地理解流体力学的基本概念与方法。

一、流体的运动描述流体的运动描述包括欧拉法描述和拉格朗日法描述两种常用方法。

欧拉法描述是指将流体运动中某一固定位置处的流体性质随时间的变化进行描述,即研究流体性质随时间和空间的变化关系。

而拉格朗日法描述则是追踪流体中每个流体质点的轨迹,即研究流体质点在流体中运动过程中的性质变化。

这两种方法在不同问题的研究中各有优势,因此在具体应用中可以根据需要选择适合的方法进行描述。

二、速度场的概念与表示速度场是指在给定空间中各点上流体的速度分布情况。

在描述速度场时,可以使用向量场的概念和方法。

根据流体力学中的一些基本假设,流体的速度可以用速度矢量来表示。

在三维空间中,流体的速度场可以写作v(x, y, z),其中(vx, vy, vz)分别表示速度矢量在x、y、z轴方向上的分量。

具体而言,流体速度场的刻画可以采用流线、等速线、速度梯度、速度散度等概念。

流线是指在速度场中沿着速度矢量的方向得到的轨迹线,利用流线可以描绘出速度场中流体质点的运动路径。

等速线是指速度场中具有相同速度大小的线条,能够帮助我们观察速度场中速度的分布情况。

速度梯度则表示速度场中速度变化最快的方向和速度的变化率,它是一个向量。

速度散度描述了速度场中速度的聚集与分散情况,通过计算速度场向量场的散度值,可以得到速度场中的流入流出情况。

三、速度场的性质与应用速度场在流体力学中具有重要的性质和应用。

首先,速度场具有旋度性质,即速度矢量场的旋度表示速度场中的涡旋情况。

旋度为零的速度场表示无涡旋,速度场中流体的旋转是受力矩平衡的。

其次,速度场的压力梯度将导致流体中速度场的变化,速度场描述了流体在空间中的分布和运动特性。

流体力学2章讲稿

流体力学2章讲稿

第二章 流体运动学只研究流体运动, 不涉及力、质量等与动力学有关的物理量。

§2.1 流体运动的描述 两种研究方法:(1)拉格朗日(Lagrange)法: 以流场中质点或质点系为研究对象, 从而进一步研究整个流体。

理论力学中使用的质点系力学方法,难测量,不适用于实用理论研究。

(2)欧拉(Euler)法: 将流过空间的流体物理参数赋予各空间点(构成流场),以空间各点为研究对象,研究其物理参数随时间t ,位置(x ,y ,z )的变化规律。

易实验研究,流体力学的主要研究方法。

两种研究方法得到的结论形式不同,但结论的物理相同。

可通过一定公式转换。

1. 拉格朗日法有关结论质点: r=r (t ) dt d rV = dtd dt d V r a ==22x=x (t ) dt dxu = 22dtx d a x =y=y (t ) dtdyv = 22dt y d a y =p=p (t ) T=T (t ) .. .. .. .. .. .. .. .. 质点系:x=x (t,a,b,c ) p=p (t,a,b,c ) T=T (t,a,b,c ) .. .. .. .. .. .. .. ..(a, b, c)是质点系各质点在t =t 0时刻的坐标。

(a, b, c)不同值表不同质点2. 欧拉法物理量应是时间t 和空间点坐标x, y,z 的函数u =u(x, y, z, t) p =p(x, y, z, t) T =T(x, y, z, t) 3. 流体质点的随体导数!!流体质点的随体导数:流体质点物理参数对于时间的变化率。

简称为质点导数。

例:质点速度的随体导数(加速度)dt d V 质点分速度的随体导数dtdu质点压力的随体导数dtdp质点温度的随体导数dt dT.. .. .. .. .. .. 质点导数是拉格朗日法范畴的概念。

流体质点随体导数式---随体导数的欧拉表达式dt d V =z wy v x u t t∂∂+∂∂+∂∂+∂∂=∇⋅+∂∂V V V V V V Vdt du =z u w y u v x u u t u u tu∂∂+∂∂+∂∂+∂∂=∇⋅+∂∂Vdt dT =z T w y T v x T u t T T tT∂∂+∂∂+∂∂+∂∂=∇⋅+∂∂V普遍形式: dt dF =z F w y F v x F u t F F tF∂∂+∂∂+∂∂+∂∂=∇⋅+∂∂VF t )(∇⋅+∂∂=V证其一: dt d V =V V V∇⋅+∂∂t 由 dt d V=tt ∆-→∆V V 'lim 0因 V=V (x ,y , z,t )V ’=V (x+Δx ,y+Δy ,z+Δz,t+Δt )所以 V ’=V++∆∂∂x x V +∆∂∂y y V z z∆∂∂V t t ∆∂∂+V 代入上式得dt d V==∆∆∂∂+∂∂∆+∂∂∆+∂∂∆→∆tt z z y x xt tV V y V V lim 0V V V z V y V x V t V ∇⋅+∂∂=∂∂+∂∂+∂∂+∂∂=tw v u 可见, 在欧拉法中质点速度的随体导数(即加速度)由两部分组成。

流体力学欧拉法和拉格朗日法

流体力学欧拉法和拉格朗日法

流体力学欧拉法和拉格朗日法流体力学是研究流体运动规律的学科,它是物理学、数学和工程学的交叉学科。

在流体力学中,欧拉法和拉格朗日法是两种常用的描述流体运动的方法。

欧拉法是以欧拉方程为基础的一种描述流体运动的方法。

欧拉方程是描述流体运动的基本方程,它是由质量守恒、动量守恒和能量守恒三个基本方程组成的。

欧拉法的基本思想是将流体看作是一个连续的介质,通过对流体的宏观性质进行描述,如流体的密度、速度、压力等。

欧拉法适用于研究流体的宏观性质,如流体的流量、压力、速度等。

拉格朗日法是以拉格朗日方程为基础的一种描述流体运动的方法。

拉格朗日方程是描述流体运动的另一种基本方程,它是由质点的运动方程和流体的连续性方程组成的。

拉格朗日法的基本思想是将流体看作是由无数个质点组成的,通过对每个质点的运动进行描述,如质点的位置、速度、加速度等。

拉格朗日法适用于研究流体的微观性质,如流体的粘性、湍流等。

欧拉法和拉格朗日法各有优缺点,应用范围也不同。

欧拉法适用于研究流体的宏观性质,如流量、压力、速度等,但对于流体的微观性质,如粘性、湍流等,欧拉法的描述能力较弱。

而拉格朗日法适用于研究流体的微观性质,如粘性、湍流等,但对于流体的宏观性质,如流量、压力、速度等,拉格朗日法的描述能力较弱。

在实际应用中,欧拉法和拉格朗日法常常结合使用,以充分发挥它们各自的优势。

例如,在研究飞机的气动力学问题时,可以使用欧拉法来研究飞机的气动力学特性,如升力、阻力等;而在研究飞机的流场问题时,可以使用拉格朗日法来研究流体的微观性质,如湍流、涡旋等。

欧拉法和拉格朗日法是描述流体运动的两种基本方法,它们各有优缺点,应用范围也不同。

在实际应用中,需要根据具体问题选择合适的方法,以充分发挥它们的优势。

描述流体运动的两种方法

描述流体运动的两种方法

描述流体运动的两种方法(姓名:张旺龙学号:3 专业:流体力学)引言:描述流体运动的两种方法――拉各朗日方法和欧拉方法设流体质点在空间中运动,我们的任务就是确定描写流体运动的方法并且将它用数学式子表达出来。

在流体力学中描写运动的观点和方法有两种,即拉各朗日方法和欧拉方法。

拉各朗日方法,着眼于流体质点。

设法描述出每个流体质点自始至终的运动过程,即它们的位置随时间变化的规律。

如果知道了所有流体质点的运动规律,那么整个流体运动的状况也就清楚了。

欧拉方法的着眼点不是流体质点而是空间点。

设法在空间中的每一点上描述出流体运动随时间的变化状况。

如果,每一点的流体运动都已知道,则整个流体的运动状况也就清楚了。

一拉格朗日方法现在我们将上述描写运动的拉各朗日观点和方法用数学式子表达出来,为此首先必须用某种数学方法区别不同的流体质点。

通常利用初始时刻流体质点的坐标作为区分不同流体质点的标志。

设初始时刻0t t=时,流体质点的坐标是(a,b,c),它可以是曲线坐标,也可以是直角坐标()x y z,重要的是给流体质点以标号而不在于采取什么具体的方式。

我们约定,,000采用a,b,c三个数的组合来区别流体质点,不同的a,b,c代表不同的质点。

于是流体质点的运动规律数学上可表示为下列矢量形式:()=r r(1),,,a b c t其中r是流体质点的失径。

在直角坐标系中,有()=(),,,z z a b c t=(2),,,,,,x x a b c t=()y y a b c t变数a,b,c,t称为拉各朗日变数。

在式(2)中,如果固定a,b,c而令t改变,则得某一流体质点的运动规律。

如果固定时间t而令a,b,c改变,则得同一时刻不同流体质点的位置分布。

应该指出,在拉各朗日观点中,失径函数r的定义区域不是场,因为它不是空间坐标的函数,而是质点标号的函数。

现在从(1)式出发来求流体质点的速度和加速度。

假设由(1)式确定的函数具有二阶连续偏导数。

流体运动描述方法(欧拉法和拉格朗日法)

流体运动描述方法(欧拉法和拉格朗日法)

在流体力学里,有两种描述流体运动的方法:欧拉(Euler)和拉格朗日(Lagrange)方法。

欧拉法描述的是任何时刻流场中各种变量的分布,而拉格朗日法却是去追踪每个粒子从某一时刻起的运动轨迹。

在一个风和日丽的午后,YC坐在河岸边看河水流,恩,她总是很闲。

如果YC的位置不动,她在自己目光能及的河面上划出一块区域,数某一时刻经过的船只数,如果可能的话,再数数经过的鱼儿数;当然,如果手头有些仪器,她可以干干正事,比如测测水流的速度、水的压力、水的温度等,由此得到每一时刻这一河流区域水流各物理量的分布。

那么YC是在用欧拉方法研究流体。

这时,YC忽然看到一条船上坐着她的初恋情人,虽然根据陈安对初恋情人的定义,YC根本没有初恋情人。

现在假设她有,天哪,他们有20年没见面了,他还欠她20元呢,不能放了他。

于是YC记下第一眼看到初恋情人的时间,并迅速测出此时船的位置和速度,然后撒腿追去。

假设这条船是顺水而下,船的速度即是水流的速度。

每隔一个时间点,她便测一下船的速度和位置。

为了曾经的爱情,还有那不计利息的20元,她越过山岗,淌过小溪,直到那条船离开了她的视线。

于是,她得到了这条船在河流中的运动轨迹。

YC此时所用的研究方法就是拉格朗日法。

Understood?而在一些复杂的两相流动问题里,比如粒子在流场中运动的问题,我们关注的是粒子的运动轨迹,因此,我们可以用拉格朗日方法追踪粒子在流场中的运动,同时,用欧拉方法来计算流场的各物理量。

在许多工程领域,都有纤维在流场中运动的问题。

如果将纤维在流场中的运动视为两相流动,必须为纤维作一些改变,因为它不同于一般的刚性粒子。

它细长,细长到你无法用一个粒子来代表一根纤维;它柔,柔得自己的每一部分可以相对于其他部分发生变形。

我在《柔性纤维的妖娆运动》里,为slender and flexible纤维建立了模型,把纤维离散成一个个粒子,并在粒子之间建立了弹性或粘弹性的连接。

为了研究纤维在流场中运动的问题,我们首先用欧拉法来研究流场,通过求解Navier-Stokes方程,得到流场中每一时刻每一位置的各个物理量。

一元流体动力学基础

一元流体动力学基础

拉格朗日法表示流体质点的 速度
二、欧拉法
特点
以固定空间点为研究 对象,描述各瞬时物理量 在空间的分布来研究流体 运动的方法。
欧拉变量
变量 (x 、 y 、 z 、 t )称为欧拉变量。
本书以下的流动描 述均采用欧拉法!
第二节 恒定流动和 非恒定流动
非恒定流动
运动不平衡的流动,在流场中各 点流速随时间变化,各点压强,粘性力 和惯性力也随着速度的变化而变化。
质点标志
把流体质点在某一时间 t0时 的坐标( a 、 b 、c)作为该质点 的标志,则不同的( a 、 b 、c) 就表示流动空间的不同质点。这 样,流场中的全部质点,都包含 在 ( a 、 b 、c) 变数中。
拉格朗日变量
表达式中的自变量( a 、 b 、c、 t ) , 称为拉格朗日变量。
外力(压力)作功等于流段机械能量增加
压力作功为: (a) 动能增量为: (b)
位能增量为:
(c)
理想不可压缩流体恒定流元流能量方程(伯努利方程):
二、恒定元流能量方程本身及 其各项含义
Z: 断面对于选定基准面的高度, 水力 学中称为位置水头,表示单位重量 的位置势能,称为单位位能。
p γ
是断面压强作用使流体沿测压管所 能上升的高度,水力学中称为压强水头, 表示压力 y 作功所能提供给单位重量流 体的能量,称为单位压能。 以断面流速 u为初速的铅直上升射流所 能达到的理论高度,水力学中称为流速 水头,表示单位重量的动能,称为单位 动能。
一、总流能量方程的应用要点:
(1)基准面是写方程中 Z 值的依据。一般通过两 断面中较低一断面的形心,使一Z 为零,而另一Z 值 为正值。 (2)两计算断面必须是均匀流或渐变流断面并包含 已知和要求参数; (3)过水断面上计算点的选取,可任取,一般: 管流-断面中心点, 明渠流-自由液面上; (4)两计算断面压强必须采用相同计算基准〕 (绝对、常用:相对压强); (5)方程中各项单位必须统一。

流体运动的描述方法.

x x ( a, b, c, t ) u x t t y y ( a, b, c, t ) u y t t z z (a, b, c, t ) u z t t
u x 2 x(a, b, c, t ) ax t t 2 u y y (a, b, c, t ) a y t t 2 u z z (a, b, c, t ) az t t
流速场:
u x u x ( x, y, z , t ) u y u y ( x, y, z , t ) u u ( x, y, z , t ) z z
压强场: 密度场:
p p( x, y, z, t )
( x, y, z, t )
4.加速度的时间变化率
ax dux ux ux dx ux dy ux dz dt t x dt y dt z dt
u x u x u x u x a u u u x y z x t x y z u y u y u y u y a u u u y x y z t x y z u z u z u z u z a u u u z x y z t x y z
dA A (u ) A dt t
d ux uy uy (u ) dt t x y z t
§3.1 流体运动的描述方法
三、两种方法的比较
拉格朗日法 分别描述有限质点的轨迹 表达式复杂 不能直接反映参数的空间分布 不适合描述流体微元的运动变形特性 拉格朗日观点是重要的 欧拉法 同时描述所有质点的瞬时参数 表达式简单 直接反映参数的空间分布 适合描述流体微元的运动变形特性 流体力学最常用的解析方法

描述流体运动的两种方法是

描述流体运动的两种方法是
描述流体运动的两种方法是欧拉法和拉格朗日法。

欧拉法是一种以固定坐标系为基础的描述流体运动的方法。

它将流体视为一个连续的介质,通过考虑流体中每个点的速度和压力来描述流体的运动。

欧拉法关注的是流体中不同位置的性质和特征的变化,如速度、压力和密度等。

通过欧拉法,可以得到流体运动的偏微分方程,如连续性方程、动量方程和能量方程等。

拉格朗日法是一种以流体质点为基础的描述流体运动的方法。

它将流体视为一组流体质点,通过跟踪和描述每个质点的运动来描述整个流体的运动。

拉格朗日法关注的是流体中不同质点的性质和特征的变化,如位置、速度和加速度等。

通过拉格朗日法,可以得到流体质点的运动方程,如位置方程、速度方程和加速度方程等。

欧拉法和拉格朗日法是描述流体运动的两种重要方法,各有其优势和适用范围。

欧拉法适用于研究大规模流体运动和宏观性质的变化,如流体的整体运动特性和力学过程;而拉格朗日法适用于研究小尺度流体运动和微观性质的变化,如流体颗粒的运动规律和相互作用。

流体力学标准化作业答案第三章

流体力学标准化作业(三)——流体动力学本次作业知识点总结1.描述流体运动的两种方法 (1)拉格朗日法;(2)欧拉法。

2.流体流动的加速度、质点导数流场的速度分布与空间坐标(,,)x y z 和时间t 有关,即(,,,)u u x y z t =流体质点的加速度等于速度对时间的变化率,即Du u u dx u dy u dza Dt t x dt y dt z dt ∂∂∂∂==+++∂∂∂∂投影式为x x x x x x y z y y y y y x y z z z z z z x y z u u u u a u u u t x y z u u u u a u u u t x y z u u u ua u u u t x y z ∂∂∂∂⎧=+++⎪∂∂∂∂⎪∂∂∂∂⎪=+++⎨∂∂∂∂⎪⎪∂∂∂∂=+++⎪∂∂∂∂⎩或 ()du ua u u dt t∂==+⋅∇∂在欧拉法中质点的加速度du dt 由两部分组成, u t∂∂为固定空间点,由时间变化引起的加速度,称为当地加速度或时变加速度,由流场的不恒定性引起。

()u u ⋅∇v v 为同一时刻,由流场的空间位置变化引起的加速度,称为迁移加速度或位变加速度,由流场的不均匀性引起。

欧拉法描述流体运动,质点的物理量不论矢量还是标量,对时间的变化率称为该物理量的质点导数或随体导数。

例如不可压缩流体,密度的随体导数D D u t tρρρ∂=+⋅∇∂() 3.流体流动的分类 (1)恒定流和非恒定流 (2)一维、二维和三维流动 (3)均匀流和非均匀流 4.流体流动的基本概念 (1)流线和迹线流线微分方程x y zdx dy dzu u u ==迹线微分方程x y zdx dy dz dt u u u === (2)流管、流束与总流(3)过流断面、流量及断面平均流速体积流量 3(/)AQ udAm s =⎰质量流量 (/)m AQ udAkg s ρ=⎰断面平均流速 AudA Qv AA==⎰(4)渐变流与急变流 5. 连续性方程(1)不可压缩流体连续性微分方程0y x zu u u x y z∂∂∂++=∂∂∂ (2)元流的连续性方程121122dQ dQ u dA u dA =⎧⎨=⎩ (3)总流的连续性方程1122u dA u dA =6. 运动微分方程(1)理想流体的运动微分方程(欧拉运动微分方程)111xx x x x y z yy y y x y z zz z z x y z u u u u p X u u u x t x y zu u u u p Y u u u x t x y z u u u u p Z u u u x t x y z ρρρ∂∂∂∂∂⎫-=+++⎪∂∂∂∂∂⎪∂∂∂∂⎪∂-=+++⎬∂∂∂∂∂⎪⎪∂∂∂∂∂-=+++⎪∂∂∂∂∂⎭矢量表示式1()u f p u u tρ∂+∇=+⋅∇∂r r r r(2)粘性流体运动微分方程(N-S 方程)222111x x x x x x y z y y y y y x y z z z z z z x y z u u u u pX u u u u x t x y zu u u u pY u u u u x t x y z u u u u p Z u u u u x t x y z νρνρνρ∂∂∂∂∂⎫-+∇=+++⎪∂∂∂∂∂⎪∂∂∂∂⎪∂-+∇=+++⎬∂∂∂∂∂⎪⎪∂∂∂∂∂-+∇=+++⎪∂∂∂∂∂⎭矢量表示式 21()u f p u u u tνρ∂+∇+∇=+⋅∇∂r r r r r 7.理想流体的伯努利方 (1)理想流体元流的伯努利方程22p u z C g gρ++=(2)理想流体总流的伯努利方程221112221222p v p v z z g g g gααρρ++=++8.实际流体的伯努利方程(1)实际流体元流的伯努利方程2211221222w p u p u z z h g g g gρρ++=+++(2)实际流体总流的伯努利方程2211122212w 22p v p v z z h g g g gααρρ++=+++10.恒定总流的动量方程()2211F Q v v ρββ=-∑r r r投影分量形式()()()221122112211xx x y y y z z z F Q v v F Q v v FQ v v ρββρββρββ⎫=-⎪⎪=-⎬⎪=-⎪⎭∑∑∑标准化作业(5)——流体运动学选择题1. 用欧拉法表示流体质点的加速度a 等于( )。

7-描述流体运动的两种方法

拉格朗日法
拉格朗日法又称随体法:跟随流体质点运动,记录该质点在运动过程中
物理量随时间变化规。

设某质点标记为(a,b,c),该质点的物理量B的拉格朗
日表示式为
B=(B2.1.1)
)t,c,b,a(B
式中(a,b,c)称为拉格朗日坐标,可用某特征时刻质点所在位置的空间坐标定义,不同的(a,b,c)代表不同质点。

任意时刻质点相对于坐标原点的位置矢量(矢径)的拉格朗日表示式为
r=(B2.1.2)
)t,c,b,a(r
上式代表任意流体质点的运动轨迹。

欧拉法
1.欧拉法又称当地法:将某瞬时占据某空间点的流体质点物理量作为该空
间点的物理量,物理量随空间点位置和时间而变化。

设空间点坐标为(x,y,z),物理量B的欧拉表示式为
B=(B2.1.3)
)t,z,y,x(B
式中(x,y,z)称为欧拉坐标,不同的(x,y,z)代表不同的空间点。

2.在流体力学中最重要的物理量是速度v和压强p,其欧拉表示
式分别为
v=
)t,z,y,x(v
(B2.1.4)
p=
)t,z,y,x(p
3.物理量的欧拉表示式代表了该物理量的空间分布,称为该物理量场,例
如速度场、压强场等。

因此欧拉观点是场的观点,可运用数学上“场论”知识作
为理论分析工具。

欧拉法适用于描述空间固定域上的流动,是流体力学中最常用
的描述方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

描述流体运动的两种方法(姓名:张旺龙 学号:308081183 专业:流体力学)引言:描述流体运动的两种方法――拉各朗日方法和欧拉方法 设流体质点在空间中运动,我们的任务就是确定描写流体运动的方法并且将它用数学式子表达出来。

在流体力学中描写运动的观点和方法有两种,即拉各朗日方法和欧拉方法。

拉各朗日方法,着眼于流体质点。

设法描述出每个流体质点自始至终的运动过程,即它们的位置随时间变化的规律。

如果知道了所有流体质点的运动规律,那么整个流体运动的状况也就清楚了。

欧拉方法的着眼点不是流体质点而是空间点。

设法在空间中的每一点上描述出流体运动随时间的变化状况。

如果,每一点的流体运动都已知道,则整个流体的运动状况也就清楚了。

一 拉格朗日方法现在我们将上述描写运动的拉各朗日观点和方法用数学式子表达出来,为此首先必须用某种数学方法区别不同的流体质点。

通常利用初始时刻流体质点的坐标作为区分不同流体质点的标志。

设初始时刻0t t =时,流体质点的坐标是(a,b,c ),它可以是曲线坐标,也可以是直角坐标(),,000x y z ,重要的是给流体质点以标号而不在于采取什么具体的方式。

我们约定采用a,b,c 三个数的组合来区别流体质点,不同的a,b,c 代表不同的质点。

于是流体质点的运动规律数学上可表示为下列矢量形式:(),,,a b c t =r r (1)其中r 是流体质点的失径。

在直角坐标系中,有(),,,x x a b c t = (),,,y y a b c t = (),,,z z a b c t = (2)变数a,b,c,t 称为拉各朗日变数。

在式(2)中,如果固定a,b,c 而令t 改变,则得某一流体质点的运动规律。

如果固定时间t 而令a,b,c 改变,则得同一时刻不同流体质点的位置分布。

应该指出,在拉各朗日观点中,失径函数r 的定义区域不是场,因为它不是空间坐标的函数,而是质点标号的函数。

现在从(1)式出发来求流体质点的速度和加速度。

假设由(1)式确定的函数具有二阶连续偏导数。

速度和加速度是对于同一质点而言的单位时间内位移变化率及速度变化率,设v ,v 分别表示速度矢量和加速度矢量,则(),,,r a b c t t∂=∂v (3) ()22,,,r a b c t t =∂∂v (4)既然对同一质点而言,a,b,c 不变,因此上式写的是对时间t 的偏导数。

在直角坐标系中,速度和加速度的表达式是(),,,x a b c t u t ∂=∂ (),,,y a b c t v t∂=∂ (),,,z a b c t w t ∂=∂ (5)及()22,,,u x a b c t t =∂∂ ()22,,,v y a b c t t =∂∂ ()22,,,w z a b c t t =∂∂ (6)二 欧拉方法现在来介绍描写流体运动的另一种观点和方法,即欧拉方法。

和拉各朗日方法不同,欧拉方法不同,欧拉方法的着眼点不是流体质点而是空间点。

设法在空间中的每一点上描述出流体运动随时间的变化状况。

如果,每一点的流体运动都已知道,则整个流体的运动状况也就清楚了,那么应该用什么物理量来表现空间点上流体运动的变化情况呢?因为不同时刻将有不同流体质点经过空间某固定点,所以站在固定点上就无法观测和记录掠过的流体质点以前和以后的详细历史。

也就是说我们无法象拉各朗日方法那样直接测量出每个质点的位置随时间的变化情况。

虽然如此,不同时刻经过固定点的流体质点的速度是可以测出的,这样采用速度矢量来描写固定点上流体运动的变化状况就是十分自然的了。

考虑到上面所说的情形,欧拉方法中流体质点的运动规律数学上可表示为下列矢量形式:(),t =v v r (7)在直角坐标系中有:(),,,u u x y z t = (),,,v v x y z t = (),,,w w x y z t = (8)要完全描述运动流体的状况还需要给定状态函数压力、密度、温度等(),,,p p x y z t = (),,,x y z t ρρ= (),,,T T x y z t = (9)变数,,,x y z t ,称为欧拉变数,当,,x y z 固定,t 改变时,(7)式中的函数代表空间中固定点上速度随时间的变化规律,当t 固定,,,x y z 改变时,它代表的是某一时刻中速度在空间的分布规律。

应该指出,有(7)式确定的速度是定义在空间点上的,它们是空间点的坐标,,x y z 的函数,所以我们研究的是场,如速度场,压力场、密度场等。

因此当我们采用欧拉观点描述运动时,就可以广泛地利用场论的知识。

若场内函数不依赖于失径r 则称之为均匀场;反之称为不均匀场。

若场内函数不依赖时间t 则称为定常场,反之称不定常场。

三 随体导数3.1 定义求解假定速度函数(7)具有一阶连续偏导数,现在从(7)式出发求质点的加速度d dtv,设某质点在场内运动,其运动轨迹为L 。

在t 时刻,给质点位于M 点,速度为(),M t v ,过了t ∆时间后,该质点运动于M '点,速度为(),M t t '+∆v 。

根据定义,加速度的表达式是()()0,,lim t M t t M t d dt t∆→'+∆-=∆v v v(10) 从(10)式可以看到,速度的变化亦即加速度的获得主要是下面两个原因引起的。

一方面,当质点由M 点运动M '点时,时间过去了t ∆,由于场的不定常性速度将发生变化。

另一方面与此同时M 点在场内沿迹线移动了MM '距离,由于场的不均匀性亦将引起速度的变化。

根据这样的考虑,将(10)的右边分成两部分d dt =v()()0,,limt M t t M t t ∆→''+∆-∆v v +()()0,,lim t M t M t t ∆→'-∆v v =()()0,,limt M t t M t t ∆→''+∆-∆v v +()()00,,lim lim t MM M t M t MM t MM '∆→→'-''∆v v (11)右边第一项当0t ∆→时M M '→,因此它是(),M t t∂∂v ,这一项代表由于场的不定常性引起的速度变化,称为局部导数或就地导数;右边第二项是(),M t V s∂∂v ,它代表由于场的不均匀性引起的速度变化,称为位变导数或对流导数,其中s∂∂v代表沿s 方向移动单位长度引起的速度变化,而如今在单位时间内移动了V 的距离,因此s 方向上的速度变化是V s∂∂v。

这样总的速度变化即加速度就是局部导数和位变导数之和,称之为随体导数。

于是有d Vdt t s∂∂=+∂∂v v v(12) 从场论中得知()0s s∂=∇∂vv 其中0s 是曲线L 的单位切向矢量。

考虑到0Vs =v ,得()d dt t∂=+∇∂v v v v (13) 这就是矢量形式的加速度的表达式。

在直角坐标系中采取下列形式du u u u u u v w dt t x y z∂∂∂∂=+++∂∂∂∂ dv v v v vu v w dt t x y z ∂∂∂∂=+++∂∂∂∂ (14) dw w w w w u v w dt t x y z∂∂∂∂=+++∂∂∂∂ 3.2 级数求解从级数展开角度来求解欧拉下的加速度的表达式,用欧拉方法描述流场时,一、某空间点上的流体质点的速度是时间的函数,所以速度随时间变化,二、原来在某空间点上的流体质点经过了t ∆后到达了另一空间点,若这两点的速度不同,那么由于迁移,它也会有速度的变化。

设在t 时刻,位于(),,P x y z 点的一个微团具有速度,,u v w 。

经t ∆后,该微团移到(),,x u t y v t z w t +∆+∆+∆。

令(),,,u f x y z t =经过t ∆后,u 变成了u u +∆,即u u +∆=(),,,f x u t y v t z w t t t +∆+∆+∆+∆(),,,f x y z t =+f f f f u t v t w t t xy z t ⎛⎫∂∂∂∂∆+∆+∆+∆+⎪∂∂∂∂⎝⎭()t ∆的高阶项 (15)略去高阶项,仅保留一阶项,得u f f f fu v w t t x y z∆∂∂∂∂=+++∆∂∂∂∂ 即u u u u u u v w t t x y z∆∂∂∂∂=+++∆∂∂∂∂ (16) 此式右侧第一项是微团在(),,x y z 处其速度随时间的变化率,即当地导数或局部导数。

后三项是由于微团流向不同的领点是而出现的速度变化率,即迁移导数。

总的称为流体质点的随体导数。

同样,,v w 也有这样的随体导数dv v v v v u v w dt t x y z ∂∂∂∂=+++∂∂∂∂ dw w w w w u v w dt t x y z∂∂∂∂=+++∂∂∂∂ 3.3 微分求解随体导数的求解还可以通过直接微分的方式得到。

设与轨迹L 相对应的运动方程是 ()t =r r 或()x x t = ()y y t = ()z z t =于是速度函数可写成()()()(),,,x t y t z t t =v v (17) 对v 做复合函数微分,并考虑到d dt =rv 即 dx u dt = , dy v dt = , dz w dt= 于是得到d dx dy dz dt t x dt y dt z dt∂∂∂∂=+++∂∂∂∂v v v v v =u v w t x y z∂∂∂∂+++∂∂∂∂v v v v =()t∂+∇∂vv v (18) 上述将随体导数分解为局部导数和位变导数之和的方法对于任何矢量a 和任何标量ϕ都是成立的,此时有()d dt t ∂=+∇∂a a v a (19) ()d dt tϕϕϕ∂=+∇∂v (20) 四 两种流动描述方法之间的关系欧拉方法在数学处理上的最大困难是方程式的非线性,而拉各朗日方法中的加速度项则为线性。

但是直接应用拉各朗日型的基本方程解决流体力学问题是困难的,因此在处理流动问题是,常常必须用拉各朗日的观点而却应用欧拉观点的方法,这里就必须研究拉各朗日与欧拉两种系统之间的变化关系。

为此引用雅克比行列式(Jacobian )。

()detiix J t ξ∂=∂ (21) 拉各朗日变数ξ与欧拉变数x 可以互换的唯一条件是: ()0,J t ≠∞雅克比行列式的时间导数:()iiu dJ J J dt x ∂==∇∂u (22) 例1 讨论不可压缩流体的数学表示根据定义,质点的密度在运动过程中不变的流体的称为不可压缩流体。

换而言之,对于不可压缩流体而言,密度的随体导数为零,即0d dtρ= 这就是不可压缩流体的数学表示。

相关文档
最新文档