流体运动描述方法(欧拉法和拉格朗日法)

合集下载

液体运动的流束理论

液体运动的流束理论

液体运动的流束理论本章先建立液体运动的基本概念,然后依据流束理论,从质量守恒定律出发建立水流的连续性方程、从能量方程出发建立水流的能量方程,以及从动量定理出发建立水流的动量方程。

1、描述液体运动的两种方法:拉格朗日法和欧拉法。

拉格朗日法,以研究个别液体质点的运动为基础,通过对每个液体质点运动规律的研究来获得整个液体运动的规律性,所以这种方法又称为“质点系法”。

欧拉法,以考察不同液体质点通过固定的空间点的运动情况来了解整个流动空间的流动情况,即着眼于研究各种运动要素的分布场,所以这种方法又叫做“流场法”。

2、恒定流与非恒定流恒定流:在流场中,任何空间点上所有的运动要素都不随时间而改变,即“运动要素仅仅是空间坐标的连续函数,而与时间无关”。

非恒定流:流场中任何点上有任何一个运动要素是随时间而变化的。

3、迹线与流线迹线,拉格朗日法研究个别液体质点在不同时刻的运动情况而引出的,是指某一液体质点在运动过程中不同时刻所流经的空间点所连成的线,即液体质点运动时所走过的轨迹线。

流线,欧拉法考察同一时刻液体质点在不同空间位置的运动情况引出的,是指某一瞬时在流场中绘出的一条曲线,在该曲线上所有各点的速度向量都与该曲线相切。

流线具有瞬时性(对于非恒定流来说,其图形会随时间变化),迹线没有瞬时性;流线与迹线都具有族线。

流线的基本特性:1恒定流时,流线的形状和位置不随时间而改变;2恒定流时液体质点运动的流线与迹线相重合;3流线不能相交。

4、流管、微小流束、总流,过水断面、流量与断面平均流速流管:在水流中任意一微分面积dA ,通过该面积的周界上的每一个点均可作一根流线,这样就构成一个封闭的管状曲面,称为流管。

微小流束:充满以流管为边界的一束液流,称为微小流束。

微小流束性质:1微小流束内外液体不会发生交换;2恒定流微小流束的形状和位置不会随时间而改变,非恒定流时将会随时间而改变;3横断面上各点的流速和压强可看作是相等的。

总流:任何一个实际水流都具有一定规模的边界,这种有一定大小尺寸的实际水流称为总流。

流体力学-第三章

流体力学-第三章
空间各点只要有一个运动要素随时间变化,流体运动称为非恒 定流。
二 均匀流和非均匀流 渐变流和急变 流
按各点运动要素(主要是速度)是否随位置变化,可将流体 运动分为均匀流和非均匀流。在给定的某一时刻,各点速度 都不随位置而变化的流体运动称均匀流。均匀流各点都没有 迁移加速度,表示为平行流动,流体作匀速直线运动。反之, 则称为非均匀流。
按限制总流的边界情况,可将流体运动分为有压流、无压流和射 流。
边界全为固体的流体运动称为有压流或有压管流。 边界部分为固体、部分为气体,具有自由表面的液体运动称为 无压流或明渠流。 流体经由孔口或管嘴喷射到某一空间,由于运动的流体脱离了 原来限制他的固体边界,在充满流体的空间继续流动的这种流 体运动称为射流。
四 三维流(三元流)、二维流(二元流)、一维流(一元流)
按决定流体的运动要素所需空间坐标的维数或空间坐标变量的 个数,可将流体运动分为三维流、二维流、一维流。
若流体的运动要素是空间三个坐标和时间t的函数,这种流体运 动称为三维流或三元流。
若流体的运动要素是空间两个坐标和时间t的函数,这种流体运 动称为二维流或二元流。
拉格朗日法来研究流体运动,就归结为求出函数x(a, b, c, t), y (a, b, c, t), z (a, b, c, t)。(1)由于流体运动的复杂,要想求 出这些函数是非常繁复的,常导致数学上的困难。(2)在大多 数实际工程问题中,不需要知道流体质点运动的轨迹及其沿轨迹 速度等的变化。(3)测量流体运动要素,要跟着流体质点移动 测试,测出不同瞬时的数值,这种测量方法较难,不易做到。
3 脉线
脉线又称染色线,在某一段时间内先后流过同一空间点的所 有流体质点,在既定瞬时均位于这条线上。
在恒定流时,流线和流线上流体质点的迹线以及脉线都相互 重合。

流体力学概念精简版

流体力学概念精简版

1.拉格朗日法:以研究个别流体质点的运动为基础,通过对每个流体质点运动规律的研究来获得整个流体运动的规律性2.欧拉法:以考察不同流体质点通过固定的空间点的运动情况来了解整个流体空间内的流动情况3.过流断面:在流束上作出的与流线正交的横断面4.流场:运动流体占据的空间5.恒定流:流体的各点运动要素不随时间变化非恒定流:流体上点的运动要素随时间改变6.当地加速度:由于时间过程而使空间上的质点速度发生变化的加速度迁移加速度:流动过程中质点由于位移占据不同的空间点而发生速度变化的加速度全加速度:流体质点速度随时间的变化率7.迹线:流体质点在某一时段的运动轨迹流线:某一时刻不同流体质点的速度方向8.流管:一非流线且不自交的封闭曲线,从封闭曲线上各个点绘出流线,组成封闭管状曲面流束:流管内的流体元流:过流断面面积无限小的流束总流:过流断面面积具有一定大小的有限尺寸的流束9.流量:单位时间内通过某一过流断面的流体数量(体积流量,重量流量,质量流量)10.均匀流:某一时刻,各点速度不随位置而变化的流体运动相应点速度相等的流体运动非均匀流:在某一时刻,各点速度随位置而变化相应点速度不相等的流体运动渐变流:所有流线是一组几乎平行的直线急变流:各流线之间夹角很大,或各流线的曲率半径很小11.有压流:边界全部为固体的流体运动无压流(明渠流):边界部分为固体,部分为大气射流:运动的流体脱离原来限制它的固体边界在充满流体的空间继续流动的流体运动12.三维流:流体的运动要素是空间三个坐标和时间t的函数的流体运动二维流:流体的运动要素是空间两个坐标和时间t的函数的流体运动一维流:流体的运动要素是空间一个坐标和时间t的函数的流体运动13.流体微元:由大量流体质点组成的具有线性尺度效应的微小流体团流体运动的形式:平移,变形(线变形,角变形),转动14.无涡流:每一流体微元的角转速为零,又称有势流速度势有涡流:每一流体微元的角转速不为零,流场中有角转速存在15.皮托管:测量流体点速度16.驻点:速度为零的点,驻点处流体的动能全部转化为压能17.平面势流18.水力坡度(能线坡度):单位长度上的水头损失19.总流伯努利方程的物理意义:总流各过流断面上单位重量流体所具有的势能平均值与动能平均值之和,即总机械能的平均值沿流程减少20.能量损失:沿程阻力和沿程损失,局部阻力和局部损失21.文丘里管:测量恒定有压管流的流量22.水泵扬程:单位重量的水流通过水泵后增加的能量水泵扬程=上下游水面高差+全部管路中的水头损失提水高度(扬水高度:上下游水面高差)23.断面平均流速:假设总流同一过流断面上各点的速度都相等,大小均为断面平均流速,以断面平均流速通过的流量等与该过流断面上各点实际速度不相等情况下所通过的流量。

汽车工程流体力学(02流体力学基本方程)

汽车工程流体力学(02流体力学基本方程)

Q udA vA
A
v
/concepts
第二章 流体力学基本方程
1. 流体运动的描述方法
2. 流体运动的基本概念
3. 连续性方程
4. 流体微团的运动分析
5. 欧拉运动微分方程
6. 流体静力学
7. 伯努利(Bernoulli)方程
u x dx x 2
3. 连续性方程(Continuity equation)
x方向dt时间内净流出质量
1 ( ux ) 1 ( ux ) M x M右 -M 左 = u x dx dydzdt u x dx dydzdt 2 x 2 x ( ux ) = dxdydzdt x
同理y方向dt时间内净流出质量
My ( uy ) y dxdydzdt
同理z方向dt时间内净流出质量
Mz ( uz ) dxdydzdt z
3. 连续性方程(Continuity equation)
根据质量守恒原理,dt时间控制体的总净流出质量,必等于 控制体内由于密度变化而减少的质量
Q udA
A
u——微元断面的速度
有时,流量用单位时间内通过某一过流断面的流体质量来表示, 称为质量流量Qm,单位(kg/s)。
Qm Q
2. 流体运动的基本概念
八、流量和断面平均流速-2
2.断面平均流速(Mean velocity) 总流过流断面上各点的流速u一般是不相等的。为了便于 计算,设想过流断面上流速v 均匀分布,通过的流量与实 际流量相同。
dx dy dz dt u x uy uz
/blogger/post_show.asp?idWriter=0&Key=0&BlogID =1252939&PostID=21323050

流体力学欧拉法和拉格朗日法

流体力学欧拉法和拉格朗日法

流体力学欧拉法和拉格朗日法流体力学是研究流体运动规律的学科,它是物理学、数学和工程学的交叉学科。

在流体力学中,欧拉法和拉格朗日法是两种常用的描述流体运动的方法。

欧拉法是以欧拉方程为基础的一种描述流体运动的方法。

欧拉方程是描述流体运动的基本方程,它是由质量守恒、动量守恒和能量守恒三个基本方程组成的。

欧拉法的基本思想是将流体看作是一个连续的介质,通过对流体的宏观性质进行描述,如流体的密度、速度、压力等。

欧拉法适用于研究流体的宏观性质,如流体的流量、压力、速度等。

拉格朗日法是以拉格朗日方程为基础的一种描述流体运动的方法。

拉格朗日方程是描述流体运动的另一种基本方程,它是由质点的运动方程和流体的连续性方程组成的。

拉格朗日法的基本思想是将流体看作是由无数个质点组成的,通过对每个质点的运动进行描述,如质点的位置、速度、加速度等。

拉格朗日法适用于研究流体的微观性质,如流体的粘性、湍流等。

欧拉法和拉格朗日法各有优缺点,应用范围也不同。

欧拉法适用于研究流体的宏观性质,如流量、压力、速度等,但对于流体的微观性质,如粘性、湍流等,欧拉法的描述能力较弱。

而拉格朗日法适用于研究流体的微观性质,如粘性、湍流等,但对于流体的宏观性质,如流量、压力、速度等,拉格朗日法的描述能力较弱。

在实际应用中,欧拉法和拉格朗日法常常结合使用,以充分发挥它们各自的优势。

例如,在研究飞机的气动力学问题时,可以使用欧拉法来研究飞机的气动力学特性,如升力、阻力等;而在研究飞机的流场问题时,可以使用拉格朗日法来研究流体的微观性质,如湍流、涡旋等。

欧拉法和拉格朗日法是描述流体运动的两种基本方法,它们各有优缺点,应用范围也不同。

在实际应用中,需要根据具体问题选择合适的方法,以充分发挥它们的优势。

流体运动描述方法(欧拉法和拉格朗日法)

流体运动描述方法(欧拉法和拉格朗日法)

在流体力学里,有两种描述流体运动的方法:欧拉(Euler)和拉格朗日(Lagrange)方法。

欧拉法描述的是任何时刻流场中各种变量的分布,而拉格朗日法却是去追踪每个粒子从某一时刻起的运动轨迹。

在一个风和日丽的午后,YC坐在河岸边看河水流,恩,她总是很闲。

如果YC的位置不动,她在自己目光能及的河面上划出一块区域,数某一时刻经过的船只数,如果可能的话,再数数经过的鱼儿数;当然,如果手头有些仪器,她可以干干正事,比如测测水流的速度、水的压力、水的温度等,由此得到每一时刻这一河流区域水流各物理量的分布。

那么YC是在用欧拉方法研究流体。

这时,YC忽然看到一条船上坐着她的初恋情人,虽然根据陈安对初恋情人的定义,YC根本没有初恋情人。

现在假设她有,天哪,他们有20年没见面了,他还欠她20元呢,不能放了他。

于是YC记下第一眼看到初恋情人的时间,并迅速测出此时船的位置和速度,然后撒腿追去。

假设这条船是顺水而下,船的速度即是水流的速度。

每隔一个时间点,她便测一下船的速度和位置。

为了曾经的爱情,还有那不计利息的20元,她越过山岗,淌过小溪,直到那条船离开了她的视线。

于是,她得到了这条船在河流中的运动轨迹。

YC此时所用的研究方法就是拉格朗日法。

Understood?而在一些复杂的两相流动问题里,比如粒子在流场中运动的问题,我们关注的是粒子的运动轨迹,因此,我们可以用拉格朗日方法追踪粒子在流场中的运动,同时,用欧拉方法来计算流场的各物理量。

在许多工程领域,都有纤维在流场中运动的问题。

如果将纤维在流场中的运动视为两相流动,必须为纤维作一些改变,因为它不同于一般的刚性粒子。

它细长,细长到你无法用一个粒子来代表一根纤维;它柔,柔得自己的每一部分可以相对于其他部分发生变形。

我在《柔性纤维的妖娆运动》里,为slender and flexible纤维建立了模型,把纤维离散成一个个粒子,并在粒子之间建立了弹性或粘弹性的连接。

为了研究纤维在流场中运动的问题,我们首先用欧拉法来研究流场,通过求解Navier-Stokes方程,得到流场中每一时刻每一位置的各个物理量。

描述流体质点运动的两种方法

描述流体质点运动的两种方法
描述流体质点运动的两种方法
1.2 欧拉法(Euler Method)
采用欧拉法时,某时刻空间点速度还可表示为:
u u(x, y, z,t)
(4-6)
由于空间坐标x,y,z是时间t的函数,则加速度可表示为:
a du u u dx u dy u dz dt t x dt y dt z dt
描述流体质点运动的两种方法
1.1 拉格朗日法(Lagrange Method)
当研究该流体质点的流速u及加速度a时,可直接将式(4-1)对时间求一阶 和二阶偏导数。在求导过程中,a,b,c均视为常数。
ux
x(a, b, c, t ) t
uy
y(a,b,c,t)
t
uz
z (a, b, c, t ) t
欧拉法主要包括两个内容:① 确定在空间某一固定点上流体的运动参数随 时间变化的规律;② 确定在某一瞬间各空间点上流体的运动参数的分布规律。
描述流体质点运动的两种方法
1.2 欧拉法(Euler Method)
对于任一个流体质点来说,其位置变量x、y、z都是时间t的函数,即
x x(t) y y(t) z z(t)
例如,有一水箱的放水管在放水,其中有两个水流质 点A与B。假定经过微小时段dt后,它们分别移至A'和B', 如图所示。由于作用水头H在放水过程中逐渐降低,则
H
管内各固定的空间点上的流动都将随时间而变化,从而 形成时变加速度。但是,由于A与A'两点所处管段直径不
变,因此,这两点在同一时刻流速相同,理论上不存在 迁移加速度;而B与B'两点位于渐变段,管径逐渐变小, 流速逐渐加大,因此,B'点流速大于B点流速,故这两点 之间不仅存在时变加速度,也存在迁移加速度。

描述流体运动的两种方法是

描述流体运动的两种方法是

描述流体运动的两种方法是
描述流体运动的两种方法是欧拉法和拉格朗日法。

欧拉法是一种以固定坐标系为基础的描述流体运动的方法。

它将流体视为一个连续的介质,通过考虑流体中每个点的速度和压力来描述流体的运动。

欧拉法关注的是流体中不同位置的性质和特征的变化,如速度、压力和密度等。

通过欧拉法,可以得到流体运动的偏微分方程,如连续性方程、动量方程和能量方程等。

拉格朗日法是一种以流体质点为基础的描述流体运动的方法。

它将流体视为一组流体质点,通过跟踪和描述每个质点的运动来描述整个流体的运动。

拉格朗日法关注的是流体中不同质点的性质和特征的变化,如位置、速度和加速度等。

通过拉格朗日法,可以得到流体质点的运动方程,如位置方程、速度方程和加速度方程等。

欧拉法和拉格朗日法是描述流体运动的两种重要方法,各有其优势和适用范围。

欧拉法适用于研究大规模流体运动和宏观性质的变化,如流体的整体运动特性和力学过程;而拉格朗日法适用于研究小尺度流体运动和微观性质的变化,如流体颗粒的运动规律和相互作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

在流体力学里,有两种描述流体运动的方法:欧拉(Euler)和拉格朗日(Lagrange)方法。

欧拉法描述的是任何时刻流场中各种变量的分布,而拉格朗日法却是去追踪每个粒子从某一时刻起的运动轨迹。

在一个风和日丽的午后,YC坐在河岸边看河水流,恩,她总是很闲。

如果YC的位置不动,她在自己目光能及的河面上划出一块区域,数某一时刻经过的船只数,如果可能的话,再数数经过的鱼儿数;当然,如果手头有些仪器,她可以干干正事,比如测测水流的速度、水的压力、水的温度等,由此得到每一时刻这一河流区域水流各物理量的分布。

那么YC是在用欧拉方法研究流体。

这时,YC忽然看到一条船上坐着她的初恋情人,虽然根据陈安对初恋情人的定义,YC根本没有初恋情人。

现在假设她有,天哪,他们有20年没见面了,他还欠她20元呢,不能放了他。

于是YC记下第一眼看到初恋情人的时间,并迅速测出此时船的位置和速度,然后撒腿追去。

假设这条船是顺水而下,船的速度即是水流的速度。

每隔一个时间点,她便测一下船的速度和位置。

为了曾经的爱情,还有那不计利息的20元,她越过山岗,淌过小溪,直到那条船离开了她的视线。

于是,她得到了这条船在河流中的运动轨迹。

YC此时所用的研究方法就是拉格朗日法。

Understood?
而在一些复杂的两相流动问题里,比如粒子在流场中运动的问题,我们关注的是粒子的运动轨迹,因此,我们可以用拉格朗日方法追踪粒子在流场中的运动,同时,用欧拉方法来计算流场的各物理量。

在许多工程领域,都有纤维在流场中运动的问题。

如果将纤维在流场中的运动视为两相流动,必须为纤维作一些改变,因为它不同于一般的刚性粒子。

它细长,细长到你无法用一个粒子来代表一根纤维;它柔,柔得自己的每一部分可以相对于其他部分发生变形。

我在《柔性纤维的妖娆运动》里,为slender and flexible纤维建立了模型,把纤维离散成一个个粒子,并在粒子之间建立了弹性或粘弹性的连接。

为了研究纤维在流场中运动的问题,我们首先用欧拉法来研究流场,通过求解Navier-Stokes方程,得到流场中每一时刻每一位置的各个物理量。

根据这些物理量,我们算出每个纤维粒子在这一时刻这一位置流场中所受的流体动力(hydrodynamic force),则可以算出每个纤维粒子的运动。

假设一根纤维离散为100个粒子,算出每个粒子的运动,将每一时刻这些粒子的位置连接起来,就回复成一根纤维的运动轨迹了。

所以说,我们是用拉格朗日方法在追踪纤维的运动轨迹,同时还可以得到变形纤维的妖娆模样呢!
我在前一篇博文中说:“在某年某月某一天,两个毫无关系的人,走到了同一个学校、同一个班级,并从此没再分开。

这其实是个很危险的旅程,如果一个人早一年,另一个人晚一年;又或许,如果一个人开始想去一个大学,却在最后改变了主意。

这样,两个人就失去了相识的初始条件和边界条件,陪在他们身边的,就会是另外的人了。

”你们看出来了吗?这里其实用的是拉格朗日方法,因为我是在追踪人的轨迹。

如果我和他不能在某一时空同时出现,那么我和他就不可能相遇、相爱、结为夫妻,因为他的轨迹和我是不同的。

但是,即使在1987年9月1日,我没有在中国纺织大学的纺织871班级里遇到他,那么我也可能遇见并爱上另一个男生,因为在这样一个时空区域里,总会有人出现。

这就是欧拉方法,我不去追踪他,我只坐在我的时空里,静静等待属于我的那个人。

也就是说,获得爱情有两种方法。

一种是拉格朗日法,你拼命去追踪你爱的人;另一种是欧拉法,你静静地坐在你的时空里,等待属于你的那个人。

那么,哪种方法更能获得幸福呢?。

相关文档
最新文档